跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 03:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊銘
論文名稱:利用光注入半導體雷射非線性動態產生線性啾頻訊號及其於雷射測距的應用
論文名稱(外文):Linearly Chirped Signal Generation and Its Application in Range Finding Utilizing Optically Injected Semiconductor Laser System
指導教授:林凡異
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:41
中文關鍵詞:線性啾頻訊號線性度半導體雷射非線性動態
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:65
  • 收藏至我的研究室書目清單書目收藏:3
在本論文中以數值模擬的方式利用光注入半導體雷射非線性動態的特性產生線性啾頻訊號(linearly chirped signal)。光注入系統包含一組雷射波長相近的主雷射與副雷射,其產生的非線性動態包含穩定鎖定區(stable-locking)、渾沌振盪區(chaotic oscillation)、週期一振盪區(period-one)、週期二振盪區(period-two)與其他高階的振盪區。我們將運用四種調變的方式來產生線性啾頻訊號,包括(1)在穩定鎖定區以直接電流調變方式調變副雷射、(2)在穩定鎖定區調變主雷射、(3)在週期一振盪區調變光注入強度,(4)在週期一振盪區電流調變主雷射。在不同架構中,研究調變係數(modulation index)、調變週期、掃頻的頻寬(bandwidth)、頻率變化率(chirp rate)與頻率變化的線性度等參數之間的相互關係。運用穩定鎖定區的特性,可以用直接調變方式產生一個掃頻的頻寬大於30 GHz,且頻率變化具有很好的線性程度。利用P1區的特性,不需要複雜昂貴的電子儀器,即可產生振盪頻率在RF範圍的訊號,但是頻率隨時間變化的線性程度較差。
在Intensity Modulation Continuous Wave(IMCW)雷射測距系統中,由於雷射光強度的振盪頻率會隨著時間線性變化,將此訊號朝向物體發射,參考訊號與反射訊號之間會有個延遲時間,訊號混合後在頻譜上會產生一個差頻,利用這頻率可以計算受測物體的距離。差頻在頻譜上會有個線寬(linewidth),線寬會影響空間上的解析度。我們研究了掃頻的頻寬與線性度對線寬的影響,驗證利用非線性動態產生的訊號在雷射測距上的效果(performance)。我們發現線性度對解析度有很大的影響,而利用穩定鎖定區所產生的訊號有較佳的線性度,因此在測距的應用上有較好的空間解析度,解析度可以達到1.5公尺。
We numerically simulated the characteristics of linearly chirped signal generation utilizing optically injected semiconductor laser. The optically injected laser system consists of two lasers with similar intrinsic parameters and wavelength. The slave laser is injected by the master laser. By tuning the operating parameters, the optically injected semiconductor laser can be operated in different instable regions. There are stable-locking, chaotic oscillation (CO), period-one oscillation (P1), period-two oscillation (P2) and high order oscillation regions. Four schemes will be used to generate linearly chirped signal: (1) direct current modulation on slave and on (2) master laser, respectively, while the slave laser is operated in stable-locking region. (3) The third scheme is modulating the injection strength of the slave laser directly while which is operated in the P1 region. (4) The last one is modulating the injection strength by current modulation on the master laser while the optically injected slave laser is operated in the P1 region. The relation between modulation index, modulation period, bandwidth and chirp rate will be studied. We also show the dependence of linearity on chirp rate. We can generate a linearly chirped signal with bandwidth more than 30 GHz and with high linearity when the laser is operated in stable-locking region. On the other hand, a complicate electronics free method can used to generate signal in RF range by utilizing period-one oscillation region.
The signal used in the intensity modulation continuous wave (IMCW) laser ranging system is a linearly chirped signal. The signal will be transmitted toward the target and the reflected signal will be collected by a photo-diode. The frequency difference between the two signals caused by the delay time of reflected signal can be used to estimate the range of the target. We investigate the effect of linearity and bandwidth on the linewidth that determinates the resolution of the ranging system. We show the high linearity of the linearly chirped signal generated by laser operating in and a 1.5 m resolution is achieved.
致謝
中文摘要
英文摘要
目錄
圖目錄
表目錄
第一章 序論
1-1簡介
1-2動機
第二章 雷射系統
2-1理論模型
2-2數值模擬模型
第三章 非線性動態區頻率調變特性
3-1簡介
3-2穩定鎖定區(stable-locking)的頻率調變
3-2-1 (1)副雷射直接調變架構
3-2-2 (2)主雷射的直接調變架構
3-3週期一區(period-one)的頻率調變
3-3-1 (3)直接光注入強度調變結構
3-3-2 (4)間接注入強度調變架構
3-4 小結
第四章 雷射測距的應用
4-1 簡介
4-2調變範圍�惠對解析度的影響
4-3線性度對解析度的影響
4-4 小結
第五章 結論與未來展望
參考文獻
附錄
[1] J. D. McClure, “Diode laser radar: application and technology,” SPIE Laser-Diode Technology and Application II, vol. 1219, pp. 446-456, 1990.

[2] M. C. Amann, M. Lescure, R. Myllyla, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng., vol. 40, No. 1, pp. 10-19, Jan. 2001.

[3] Katuo SETA and Tadanao OH’ISHI, “Distance measurement using a pulse train emitted from a laser diode,” J. Applied Physics, vol. 26, No. 10, pp. L1690-L1692, Oct. 1987.

[4] H. D. Griffiths, “New ideas in FM radar”, Electronics and Communication Engineering Journal, pp. 185-192, 1990.

[5] E. C. Burrow and K. Y. Liou, “High resolution laser lidar utilizing two-section distributed feedback semiconductor laser as a coherent source,” Electronics Letters, vol. 26, pp. 577, No. 9, 1990.

[6] A. Dieckmann, “FMCW-LIDAR with tunable twin-guide laser diode,” Electronics Letters, vol. 30, No. 4, pp. 308, 1994.

[7] S. F. Collins, W. X. Huang, M. M. Murphy, K. T. V. Grattan and A. W. Palmer, “A simple laser diode ranging scheme using an intensity modulation FMCW approach,” Meas. Sci. Technol. 4, pp. 1437-1439, 1993.

[8] B. L. Stann, W. C. Ruff and Z. G. Sztankay, “Intensity-modulated diode laser radar using frequency-modulation/contunious-wave ranging techniques,” Opt. Eng. 35, pp. 3270-3278, 1996.

[9] G. Bazin and B. Journet, “A new range-finder based on FMCW-like method,” IEEE Instrumentation and Measurement Technology Conference, pp. 90-93, 1996.



[10] B. Journet and G. Bazin, “A low-cost range finder based on an FMCW-like method,” IEEE Transactions on Instrumentation and Measurement, vol. 49, pp. 840-843, 2000.

[11] S. K. Hwang and J. M. Liu, “Dynamical characteristics of an optically injected semiconductor laser,” Optics Comm., vol. 183, pp. 195-205, 2000.

[12] J. S. Lawrene and D. M. Kane, “Injection locking suppression of coherence collapse in a diode laser with optical feedback,” Optics Comm., vol. 167, pp. 273-282, 1999.

[13] S. Tang and J. M. Liu. “Chaotic pulsing and quasi-period route to chaos in a semiconductor laser with delayed opto-electronic feedback,” IEEE J. Quantum Electron., vol. 37, pp. 329-336, 2001.

[14] T. B. Simpson, J. M. Liu and A. Gavrielides, “Small-signal analysis of modulation characteristics in semiconductor laser subject to strong optical injection,” IEEE J. Quantum Electron., 32, pp. 1456-1468, 1996.

[15] T. B. Simpson, J. M. Liu, A, Gavrielides, V Kovanis, and P. M. Alsing, “Period-doubling route to chaos in a semiconductor laser subject to optical injection,” Appl. Phys. Lett., 64(26), pp. 3539-3541, 1994.

[16] T. B. Simpson and J. M. Liu, “Enhanced modulation bandwidth in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 9, pp. 1322-1324, 1997.

[17] H. F. Chen, J. M. Liu and T. B. Simpson, “Response characteristics of direct current modulation bandwidth-enhanced semiconductor laser under strong injection locking,” Optics Comm., vol. 173, pp. 349-355, 2000.

[18] Y. Okajima and S. K. Huang and J. M. Liu, “Experimental observation of chirp reduction in bandwidth-enhanced semiconductor lasers subject to strong optical injection,” Optics Comm., vol. 219, pp. 357-364, 2003.



[19] S. K. Huang, J. M. Liu and J. K. White, “35-GHz intrinsic bandwidth for direct modulation in 1.3-�慆 semiconductor lasers subject to strong injection locking,” IEEE Photon. Technol. Lett., Vol. 16, pp. 972-974, 2004.

[20] F.Y. Lin and J.M. Liu, “Chaotic lidar”, to be published in IEEE J. of Select Topic in Quantum Electron.

[21] F.Y. Lin and J.M. Liu, “Diverse waveform generation using semiconductor lasers for radar and microwave applications”, IEEE J. of Quantum Electron., vol. 40, no 6, pp. 682-689, 2004.

[22] F. Y. Lin and J. M. Liu, “Chaotic radar using nonlinear laser dynamics,” IEEE J. Quantum Electron., vol. 40, pp. 815-820, 2004.

[23] J.M. Liu, H.F. Chen and S. Tang, “Optical-communication systems based on chaos in semiconductor lasers,” IEEE Trans. Circuits Syst. I, vol. 48, pp. 1475-1483.

[24] J. M. Liu, H. F. Chen and S. Tang, “Synchronized chaotic optical communications at high bit rates,” IEEE J. Quantum Electron. vol. 30, pp. 1184-1196, 2002.

[25] S. Tang, H.F. Chen and J. M. Liu, “Message encoding and decoding through chaos modulation in chaotic optical communications,” IEEE Trans. Circuits Syst. I, vol. 49, pp. 163-169, 2002.

[26] T. B. Simpson, J. M. Liu, A, Gavrielides, V Kovanis, and P. M. Alsing, “Period-doubling cascades and chaos in a semiconductor laser with optical injection,” Phys. Rev. A, vol. 51, pp. 4181-4185, 1995.

[27] T. B. Simpson, J. M. Liu, K, F, Huang and K. Tai, “Nonlinear dynamics induced by external optical injection in semiconductor lasers,” Quantum Semiclass. Opt. 9, pp. 765-784, 1997.

[28] V. Kovanis, A. Gavrielides, T. B. Simpson and J. M. Liu, “Instabilities and chaos in optically injected semiconductor lasers,” Appl. Phys. Lett. vol. 64, pp. 2780-2782, 1995.

[29] J. M. Liu and T. B. Simpson, “Four-wave mixing and optical modulation in a semiconductor laser,” IEEE J. Quantum Electron., vol. 4, pp. 957-965, 1994.


[30] J. M. Liu and T. B. Simpson, “Characterization of fundamental parameters of a semiconductor laser with an injected optical probe,” IEEE Photon. Technol. Lett., vol. 4, pp. 380-382, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top