跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉晏麟
研究生(外文):Yan-Lin Yeh
論文名稱:氧化鎵與氮化鎵相關之ㄧ維奈米結構製備與量測
論文名稱(外文):Synthesis and Characterization of Ga2O3, Core-Shell Ga2O3-GaN, and GaN Nanowires
指導教授:周立人周立人引用關係
指導教授(外文):Li-Jen Chou
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:95
中文關鍵詞:氧化鎵氮化鎵奈米線同軸奈米線
外文關鍵詞:Ga2O3GaNNanowireCore-Shell Nanowire
相關次數:
  • 被引用被引用:0
  • 點閱點閱:589
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:0
鎵化物的半導體材料在工業界上廣泛的應用。隨著奈米科技的發展,一維奈米材料漸漸的被重視即於它獨特的物性及化性。本研究的第一部分在於低溫成長高密度且單晶的氧化鎵奈米線。以化學氣相沉積法利用鎵金屬在氧化矽基板上成長氧化鎵奈米線。其成長方式遵循V-L-S 機制。使用SEM,EDX,TEM分別去分析材料的表面形貌和成份分析以及結構特性。我們以不同的製程溫度去控制氧化鎵奈米線的線徑以及氧缺陷含量。由實驗的結果顯示,在較高的製程溫度當中,我們可以得到較大線徑以及較高含量氧缺陷的氧化鎵奈米線。在CL量測中,實驗發現氧化鎵奈米線激發放出藍光到綠光波長帶的電磁波,而此現象是由於存在氧化鎵奈米線中的氧缺陷及鎵缺陷所造成的。而在高氧缺陷的含量下會增加藍光波長的電磁波強度,使得在800℃下合成的氧化鎵奈米線的激發光譜相較於600℃下合成的氧化鎵奈米線會有藍位移的現象。在電性測量方面,氧化鎵奈米線會呈現N-type的半導體特性。
本研究的第二部分,氧化鎵奈米線做為合成氮化鎵奈米結構的模板並且在不同的氮化條件下得到不同的氮化鎵奈米結構,例如氮化鎵及氧化鎵的同軸奈米線,氮化鎵奈米線。而藉由將氮化鎵及氧化鎵的同軸奈米線在800℃下持溫兩小時並且在氫氣的氣氛下進行還原反應以去除氧化鎵,可以得到氮化鎵的奈米管。使用XRD和TEM去分析氮化鎵奈米結構的變化。最後CL 及場發射的量測用來探討結構的特性。
Ga-based semiconductors were extensive applied in the semiconductor industry. Along with the development of nanotechnology, one dimensional nanomaterials have been paid much attention due to their unique physical and chemical properties. In the first part of the experiment, molten Ga metal and silica were chosen as Ga source and substrate to approach the low temperature process. High density and single crystalline Ga2O3 nanowires were synthesized via vacuum annealing process at 400℃. The growth mechanism is obeyed the vapor-liquid-solid (VLS) method owing to the metal catalysts were found at the tip region of the nanowires. The surface morphology, compositions, and microstructures of Ga2O3 nanowires were characterized by SEM, EDX and TEM, respectively. Besides, the processing temperatures would significantly influence the diameter and the oxygen vacancy of Ga2O3 nanowires. From the measurement of cathodoluminescence (CL), the broad emission of the β-Ga2O3 nanowires was originated from various defects including oxygen and gallium vacancy. In this work, the blue emission of the β-Ga2O3 nanowires could be enhanced by the higher concentration of the oxygen vacancy. On the other hands, based on the result of the filed effect measurement, the Ga2O3 nanowires were considered as N-type semiconductors.
In the second part of the experiment, several GaN-based nanostrcuctures such as core-shell Ga2O3-GaN nanowires and GaN nanowires were achieved by using Ga2O3 nanowires as a template under different nitridation process. Furthermore, the GaN nanotube could be formed by annealing core-shell Ga2O3-GaN nanowires under H2 ambient at 800℃ for 2 hours in order to remove the inner Ga2O3. Finally, the results of the field-emission and the cathodoluminescence (CL) measurement were also presented.
Contents
Contents..................................................I
Acknowledgements.........................................IV
List of Acronyms and Abbreviations........................V
Abstracts ................................................VI
Chapter 1 Introduction
1-1 Nanotechnology............................................1
1-2 Vapor-Based Growth Mechanism..........................2
1-2-1 Vapor–Liquid-Solid Growth.................2
1-2-2 Vapor–Solid Growth........................3
1-2-3 Oxide-Assisted Growth......................4 1-2-4 Carbothermal Process.......................4
1-2-5 The Conclusion of Various Vapor Based Growth Mechanism....................................5
1-3 Gallium Oxide Nanowires...............................6
1-4 Gallium Nitride Nanowires.............................7
1-5 Motivation and Research Direction.....................9
Chapter 2 Experiment Procedures
2-1 Experiment of Ga2O3 nanowires and GaN nanosturctures.10
2-1-1 Sample Preparation........................10
2-1-2 Synthesis Process of Ga2O3 Nanowires (Part1)..................................................10
2-1-3 Synthesis Process of GaN Nanostructures (Part 2).................................................11
2-2 Experiments of Material Analysis.....................12 2-2-1 X-Ray Diffractometry......................12
2-2-2 Field Emission Scanning Electron Microscopy (SEM) Analysis...........................................12
2-2-3 Transmission Electron Microscopy (TEM) Analysis.................................................12 2-2-4 Energy Dispersive Spectrometer (EDS) Analysis.................................................14
2-2-5 Electron Energy Loss Spectrometer (EELS) Analysis.................................................14
2-2-6 Optical Property Measurement..............14
2-2-7 Field-Emission Property Measurement.......14
Chapter 3 Results and Discussions (Part 1)
Part 1 The Synthesis of Ga2O3 Nanowires
3-1 Low-Temperature Synthesis of Gallium Oxide Nanowires.16 3-1-1 Morphology Analysis.......................16
3-1-2 Structure and Composition Analysis........17 3-1-3 Low Temperature of Growth mechanism.......18
3-2 Core-shell Gallium Oxide-Gold Silicide Nanowires.....20
3-2-1 Structure and Composition Analysis........20
3-2-2 The Proposed growth mechanism.............20
3-3 The Discussion of the Oxygen vacancy of Ga2O3 Nanowires ................................................23
3-3-1 The EELS and EDX analysis.................23
3-3-2 The CL Spectrum of Ga2O3 Nanowires........24 3-3-3 Electrical Property of Ga2O3 Nanowires....25
Chapter 4 Results and Discussions (Part 2)
Part 2 The Synthesis of GaN Nanostructures.
4-1 The formation of Core-Shell Ga2O3-GaN Nanowires......28
4-1-1 Morphology Analysis.......................28
4-1-2 Structure and Composition Analysis........28 4-1-3 The Growth Models of GaN Shell Layers.....31
4-1-4 The Field-Emission Property of Core-Shell Ga2O3-GaN Nanowires......................................31
4-2 The formation of GaN Nanowires.......................32
4-3 The formation of GaN Nanotubes.......................33
Chapter 5 Summary and Conclusions
Summary and Conclusions..................................35
Reference................................................37
Tables Captions..........................................49
Figures Captions.........................................50
Tables...................................................54
Figures..................................................57
Reference
Chapter 1 Introduction
[01]Jurriaan Huskens
’’Integration of Top-Down and Bottom-Up Nanofabrication Schemes’’
University of Twente, MESA+ Institute for Nanotechnology
[02]André DeHon, Member
’’Deterministic Addressing of Nanoscale Devices Assembled at Sublithographic Pitches’’
IEEE Transactions on Nanotechnology, 4, 6, (2005)
[03]J.Michael Köhler, and Thomas Henkel,
’’Chip devices for miniaturized biotechnology’’
Appl Microbiol Biotechnol, 69, 113–125(2005)
[04]James H. Thrall, MD
’’Nanotechnology and Medicine’’
Appl Microbiol Biotechnol, Radiology 315-318(2004).
[05] R. S. Wagner, and W. C. Ellis
”Vapor Liquid Solid Mechanism of Single Crystal Growth”
Appl. Phys. Lett., 4, 89(1964).
[06]M. Morales, and C. M. Lieber,
’’A Laser Ablation Method for the Synthesis of Crystalline Semiconducter Nanowires’’
Science, 279,208-211(1998).
[07]Y. Wu, and P. Yang
’’ Germanium Nanowire Growth via Simple Vapor Transport’’
Chen. Metter, 12, 605-607(2000).
[08]X. F. Duan, and C. M. Lieber
’’General Synthesis of Compound Semiconductor Nanowires’’
Adv.Mater, 12, 298-302(2000).
[09]W. F. Li, X. L. Ma, W. S. Zhang , W. Zhang , Y. Li , and Z. D. Zhang
’’ Synthesis and characterization of γ-Al2O3 nanorods’’
Physica status solidi, 203, 2 , 294–299 (2006).
[10]Y. Liu, and M. Liu
’’Growth of Aligned Square-Shaped SnO2 Tube Arrays ’’
Advanced Functional Materials, 15, 57–62 (2005).
[11]Xiang, Xua; Cao, Chuan-Baoa; Guo, Ya-Juna; Zhu, and He-Suna
’’A simple method to synthesize gallium oxide nanosheets and nanobelts ’’
Chemical Physics Letters, 378, 660-64 (2003).
[12]H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng
’’Ga2O3 nanowires prepared by physical evaporation ’’
Solid State Communications, 109, 677-682 (1999).
[13]W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S, and T. Lee
’’A General Synthetic Route to III-V Compound Semiconductor Nanowires’’
Advanced Materials, 13, 591-594,(2001).
[14]Shi,W., Peng, H., Wang, N., Li, C. P., Xu, L., Lee, C. S., Kalish, R., and Lee, S.-T.
’’Free-standing Single Crystal Silicon Nanoribbons’’
J. Am. Chem. Soc., 123(44), 1095-1109, (2001).
[15]R.-Q. Zhang, Y. Lifshitz, and S.-T. Lee
’’Oxide-Assisted Growth of Semiconducting Nanowires’’
Adv. Mater 15, 635-640 (2003).
[16]H. Dai, E. W. Wong, Y. Z. Lu, S. Fan, and C. Lieber
’’Synthesis and characterization of carbide
Nature 375, 769 (1995).
[17]W. Q. Han, and S. S. Fan
’’Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction’’
Science, 277,29 (1997)
[18]Y. S. Lim, J. W. Park, S. T. Hong, and J. Kim
’’Carbothermal synthesis of ZnO nanocomb structure’’
Materials Science and Engineering B, 129, 100–103(2006)
[19]Y. F. Zhang, Y. H. Tang, H. Y. Peng, N. Wang, C. S. Lee, I. Bello, and S. T. Lee
’’ Diameter modification of silicon nanowires by ambient gas’’
Applied Physics Letters ,75, 1842-1844(1999)
[20]A. N. Goldstein, C. M. Echer, and A. P. Alivisatos
”Melting in semiconductor Nanocrystals”
Science ,256, 1425 (1992)
[21]Zhi Chen, Qiuming Gao,a Meiling Ruan, and Jianlin Shi
”Zinc oxide nanoarrays in nanoporous nickel phosphate with a huge blueshift ultraviolet-visible exciton absorption peak”
Appl.Phys.Lett ,87, 093113(2005)
[22]Byeongchul Ha, Sung Ho Seo, Jung Hee Cho, Chong S. Yoon, Jinkyoung Yoo, Gyu-Chul Yi, Chong Yun Park, and Cheol Jin Lee
”Optical and Field Emission Properties of Thin Single-Crystalline GaN Nanowires ”
J. Phys. Chem. B ,109, 11095-11099(2005)
[23]Bu-Xuan Wang, Le-Ping Zhou, and Xiao-Feng Peng
” Surface and Size Effects on the Specific Heat Capacity of Nanoparticles ”
International Journal of Thermophysics, 27,1,( 2006).
[24]David. L. Klein, R. Roth, A.K.L. Lin, A. P. Alivisatos, and P. L. McEuen
”Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications”
J. Mater. Chem., 16, 1543–1548(2006).
[25]Andrew. N. Shipway, E. Katz, and I. Willner
”Nanoparticle arrays on surface for electronic, optical, sensor application”
Chem Phys Chem, 1, 18 (2000).
[26]S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic
”Electroluminescence from single monolayers of nanocrystals in molecular organic devices ”
Nature, 420, 800 (2002).
[27]J. Phillips
”Evaluation of the fundamental properties of quantum dot infrared detectors”
J. Appl. Phys., 91, 4590 (2002).
[28]S. Iijima
”Helical Microtube of Graphitic Carbon”
Nature, 354, 56-58(1991).
[29]Vashaee, D, Shakouri, A, and Goldberger, J.
”Electrostatics of nanowire transistors with triangular cross sections”
J. Appl. Phys., 99, 5 (2006).
[30]H. M. Kim, T.W. Kang, and K.S. Chung
”Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods”
Advanced Materials, 15, 7-8 , 567 –569(2003).
[31]J.Q. Hu ,Y. Bando, and D. Golberg
’’ Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons’’
Chemical Physics Letters 372, 758(2003).
[32]S. Geller
’’Crystal Structure of β-Ga2O3’’
J. Chem. Phys. 33, 676 (1960).
[33]JCPDS card: No. 41-1103
[34]Matvei Zinkevich and Fritz Aldinger
’’Thermodynamic Assessment of the Gallium-Oxygen System’’
J. Am. Ceram. Soc. 87,683–691 (2004).
[35]M. Fleischer and H. Meixner
’’Sensing reducing gases at high temperatures using long-term
stable Ga2O3thin films’’
Sensors and Actuators B, 6 257-261( 1992).
[36]M. Fleischer and H. Meixner
’’ Thin-film gas sensors based on high-temperature-operated metal oxides’’
J. Vac. Sci. Technol. A 17, 1866 (1999).
[37]M. Fleischer and H. Meixner
’’ Electron mobility in single- and polycrystalline Ga2O3’’
J. Appl. Phys., 74, 300 (1993).
[38]M.R. Lorenz, J.F . Woods, and R. J. Gambino
’’Some electrical properties of the semiconductor β---Ga2O3’’
J. Phys. Chem. Solids , 28, 403 (1967).
[39]D. Gourier, E. Aubay, and J. Guglielmi
’’ Magnetic bistability and Overhauser shift of conduction electrons in gallium oxide’’
Phys. Rev. B 47, 15023 (1993).
[40]Zhang H.Z.; Kong Y.C.; Wang Y.Z.; Du X.; Bai Z.G.; Wang J.J.; Yu D.P.; Ding Y.; Hang Q.L., and Feng S.Q.
’’ Ga2O3 nanowires prepared by physical evaporation’’
Solid State Commun ,109, 677(1999).
[41]Z.R. Dai, Z.W. Pan, and Z.L. Wang
’’Gallium Oxide Nanoribbons and Nanosheets’’
J. Phys. Chem. B, 106,902(2002).
[42]H. J. Chun, Y. S. Choi, S. Y.Bae, H.W.Seo, S. J. Hong, J. Park, and H. Yang,
’’Controlled Structure of Gallium Oxide Nanowires’’
J. Phys. Chem. B , 107, 9042(2003).
[43]Y. H. Gao, Y.Bando, T. Sato, and Y. F.Zhang
’’Synthesis, Raman scattering and defects ofβ-Ga2O3 nanorods’’
Appl. Phys. Lett. , 81, 2267(2002).
[44]D.P . Yu, J.L. Bubendorff, J. F. Zhou, Y. L. Wang, and M. Troyon,
’’Localized cathodoluminescence investigation on single Ga2O3 nanoribbon/nanowire’’
Solid State Commun., 124, 417(2002).
[45]Lei Fu, Yunqi Liu, Ping’an Hu, Kai Xiao, Gui Yu, and Daoben Zhu
’’Ga2O3 Nanoribbons: Synthesis, Characterization, and Electronic Properties’’
Chem. Mater. 15, 4289(2003).
[46]J. Q.Hu, Q.Li, X. M. Meng, C. S. Lee, and S. T. Lee
’’Synthesis of β-Ga2O3 Nanowires by Laser Ablation’’
J. Phys. Chem. B, 106, 9536(2002).
[47]W. Q.Han, P.Koh ler-Redlich, F.Ernst, and M. RGhle
’’Growth and microstructure of Ga2O3 nanorods’’
Solid State Commun. 115, 527(2000).
[48]Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G.-S. Park, W. B. Choi, N. S. Lee, and J. M. Kim
’’Catalytic Growth of -Ga2O3 Nanowires by Arc Discharge’’
Advanced Materials, 12, 746-750(2000).
[49]U.M. Graham, S. Sharma, M.K. Sunkara, and B.H. Davis
’’Nanoweb Formation 2D Self-Assembly of Semiconductor Gallium Oxide NanowiresNanotubes’’
Adv. Funct. Mater, 13, 576(2003).
[50]S.Sharma, and M. K.Sunkara,
’’Direct Synthesis of Gallium Oxide Tubes, Nanowires, and Nanopaintbrushes’’
J. Am. Chem. Soc, 124, 12288(2002).
[51]K.W. Chang, and J. J. Wu
’’Low-Temperature Growth of Well-Aligned -Ga2O3 Nanowires from a Single-Source Organometallic Precursor’’
Adv. Mater, 16, 545(2004).
[52]Z.R. Dai, Z.W. Pan, and Z.L. Wang
’’Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation’’
Adv. Funct. Mater, 13, 9(2003).
[53]JCPDS card: No. 02-1078
[54]Oliver Brandt, Hui Yang, Helmar Kostial, and Klaus H. Ploog
’’High p -type conductivity in cubic GaN/GaAs(113)A by using Be as the acceptor and O as the codopant’’
Appl. Phys. Lett. 69, 18 (1996).
[55]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand
’’Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors’’
SCIENCE, 287, 1019-1022 (2000).
[56]Isamu Akasaki
’’Nitride semiconductors Fimpact on the future world’’
J. Crystal Growth 237-239, 905 -911(2002).
[57]J. C. Zolper, R. J. Shul, and A. G. Baca
’’Ion-implanted GaN junction field effect transistor’’
Appl. Phys. Lett. 68, 16( 1996).
[58]Palph M. Potter, John M. Blank, and Arrigo Addamiano
’’ Silicon Carbide Light-Emitting Diodes’’
Journal of Applied Physics. 40, 2253(1969)
[59]G.S.Cheng, L.D. Zhang, Y. Zhu, and G.T. Fei
’’Ordered nanostructure of single-crystalline GaN nanowires in a honeycomb structure of anodic alumina’’
J. Mater. Res., 15, 2 (2000).
[60]Xiangfeng Duan, and C.M. Lieber
’’Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires’’
J. Am. Chem. Soc.122, 188 (2000).
[61]Maoqi He, Indira Minus, Piezhen Zhou, S. Noor Mohammed, and Joshua B. Halpern
’’Growth of large-scale GaN nanowires and tubes by direct reaction of Ga with NH3’’
Appl. Phys. Lett.77,23(2000).
[62]H. M. Kim, D. S. Kim, Y. S. Park, D. Y. Kim, T.W. Kang, and K. S. Chung
’’Growth of GaN nanorod by a Hydride Vapor Phase Epitaxy Method’’
Adv. Mater., 14, 991(2002).
Chapter 3 Result and discussion (part 1)
[63]C. C. Tang, S. S. Fan, Marc Lamy de la Chapelle, P. Li, and Y. M. Liu
’’Simple and high-yield method for synthesizing single-crystal GaN nanowires’’
Appl. Phys. Lett. 77, 1961 (2000).
[64]C. C. Tang, S. S. Fan, Marc Lamy de la Chapelle, and P. Li
’’ Silica-assisted catalytic growth of oxide and nitride nanowires’’
Chemical Physics Letters 333 12-15. (2001).
[65]E. A. Brandes
’’Smithells Metals Reference Book, 6th’’
Butterworths, London, pp. 12–18. (1983).
[66]Matvei Zinkevich and Fritz Aldinger
’’Thermodynamic Assessment of the Gallium-Oxygen System’’
J. Am. Ceram. Soc. 87,683–691 (2004).
[67]J. S. Wu, S. Dhara, C. T. Wu, K. H. Chen, Y. F. Chen and L. C. Chen*
’’Growth and Optical Properties of Self-Organized Au2Si Nanospheres Pea-Podded in a Silicon Oxide Nanowire’’
Adv. Mater. 14, 1847 (2002).
[68]Maggie Paulose, Oomman K. Varghese, and Craig A. Grimes.
’’ Synthesis of Gold-Silica Composite Nanowires through Solid-Liquid-Solid Phase Growth’’
J. Nanosci. Nanotech.. 3, 4,(2003).
[69]F. Tourtin, P. Armand, A. Ibanez, G. Tourillon, and E. Philippot
’’Gallium phosphate thin solid films: structural and chemical determination of the oxygen surroundings by XANES and XPS’’
Thin Solid Films 322,85–92(1998).
[70]C. H. Liang,a) G. W. Meng, G. Z. Wang, Y. W. Wang, and L. D. ZhangCatalytic
’’ Synthesis and photoluminescence of β-Ga2O3 nanowires’’
Appl. Phys. Lett., 78, 21, (2001).
[71]LAURENT BINET and DIDIER
’’GOURIERORIGIN OF THE BLUE LUMINESCENCE OF β-Ga2O3’’
J Phys. Chem Solids 59, 1241–1249, (1998).
[72]T. HARWIG AND F. KELLENDONK
’’Some observations on the photoluminescence of doped β-galliumsesquioxide’’
JOURNAL OF SOLID STATE CHEMISTRY ,24,255-263 (1978).
[73]Encarnación García Víllora, Toshiyuki Atou, Takashi Sekiguchi, Takasi Sugawara, Masae Kikuchi, and Tsuguo Fukuda
’’Cathodoluminescence of undoped β-Ga2O3 single crystals ’’
Solid State Commun. 120 ,455-458. (2001).
[74]R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avourisa
’’Single- and multi-wall carbon nanotube field-effect transistors’’
Appl. Phys. Lett. 73, 26 (1998).
[75]S.M.Sze, Modern Semiconductor Device Physic (Wiley, New York,1998).
[76]M. R. LORENZ, J. F. WOODS and R. J. GAMBINO
’’SOME ELECTRICAL PROPERTIES OF THE SEMICONDUCTOR β-Ga2O3’’
J. Phys. Chem. 28, 403-404 (1967).
[77]Yang Huang, Shuanglin Yue, Zhongli Wang, Qiang Wang, Chengying Shi, Z. Xu,X. D. Bai, Chengcun Tang, and Changzhi Gu
’’Preparation and Electrical Properties of Ultrafine Ga2O3 Nanowires’’
J. Phys. Chem. B, 110, 796-800(2006).
[78]M. Passlack, N. E. J. Hunt, E. F. Schubert, G. J. Zydzik, M. Hong, J. P. Mannaerts, R. L. Opila, and R. J. Fische
’’Dielectric properties of electron-beam deposited Ga2O3 films’’
Appl. Phys. Lett. 64, 16 (1994).
Chapter 4 Result and discussion (part 2)
[79]Encarnacion G. Villoraa, Kiyoshi Shimamuraa, Kazuo Aokib, and Noboru Ichinosea
’’Reconstruction of the β-Ga2O3 (10 0) cleavage surface to hexagonal GaN after NH3 nitridation’’
Journal of Crystal Growth 270, 462-468 (2004).
[80]Jian, J. K., Chen, X. L., He, M., Wang, W. J.,Zhang, X. N., and Shen,F.
’’Large-scale GaN nanobelts and nanowires grown from milled Ga2O3 powders’’
Chem. Phys. Lett. 368, 416. (2003).
[81]Junqing Hu, Yoshio Bando, Dmintri Golberg , and Quanlin Liu.
’’Gallium Nitride Nanotubes by the Conversion of Gallium Oxide Nanotubes’’
Angew. Chem., Int.Ed. 42, 349. (2003).
[82]Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen
” Synthesis of taperlike Si nanowires with strong field emission”
Appl. Phys. Lett., 86, 133112, (2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊