跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/02/18 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:闕郁倫
研究生(外文):Yu-Lun Chueh
論文名稱:鉭矽化物和耐火金屬氧化物奈米材料合成、結構鑑定及物理性質研究
論文名稱(外文):Synthesis and Characterization of Tantalum Silicide and Refractory Metal-Oxide Nanostructures
指導教授:周立人周立人引用關係
指導教授(外文):Li-Jen Chou
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:370
中文關鍵詞:耐火金屬氧化物鉭矽化物奈米材料
外文關鍵詞:Refractory Metal-OxideTantalum SilicideNanostructures
相關次數:
  • 被引用被引用:0
  • 點閱點閱:574
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:1
一維奈米結構如奈米線、奈米管等,擁有高的表面積比,因此具有獨特的光性、電性和機械性質而引發廣泛的興趣和研究。
本篇論文以設計及合成新穎奈米材料為主題,著重於奈米材料合成及奈米材料結構上分析鑑定,主要研究奈米材料分類如下:(1)低維度金屬及半導體矽化物材料; (2)半導體矽奈米線; (3)低維度金屬氧化物奈米材料。由於這些材料都具有金屬及半導體性質,因此探索奈米特性與現象對於這些奈米材料物理性質為此論文討論重點。
半導體性質的鐵矽化物之發光波長為1.55毫米,運用於光纖傳輸時,具有最小的能量消耗,未來於通訊領域極具發展潛力。因此,在低維度半導體矽化物奈米材料,本論文以嘗試成長具有半導體性質的鐵矽化物奈米薄膜及奈米點於矽及矽鍺虛擬基材為主要方向,進而討論成長時形貌及尺寸對於發光上之影響。此外,利用直接退火鐵矽物奈米點於矽及矽鍺虛擬基材而成長不同形貌一維矽奈米線及討論此獨特一維矽奈米線成長機制及各種物理性質如光學、場發射等則為本論文的另一項重點。此外,金屬性質矽化物奈米線屬矽化物具有著許多優點,如高熔點、良好的熱穩定性及低電阻等特性等,故在VLSI半導體製程上的應用,有舉足輕重的地位,如矽化鎢常應用於閘極間,降低接觸電阻,以形成歐姆接觸,本研究利用新的成長方式,嘗試利用鐵及鎳矽化物於一鉭加熱氣氛下成長鉭矽化物一維奈米線,對於成長機制上的探討及此金屬一維奈米鉭矽化物之物理性質如電性質、機械性質、場發射性質之量測與探討亦為本論文的重點,一維奈米鉭矽化物於液晶顯示器之場發射源或元件上之導線連接具有極大的潛力。
再者,在金屬氧化物方面,本論文亦涵蓋了下列幾項奈米材料:(1)二氧化矽/五氧化二鉭之同軸結構及五氧化二鉭一維奈米線、管; (2)二氧化三鐵及四氧化三鐵一維奈米線; (3)金屬性二氧化釕一維奈米線及二氧化釕/二氧化鈦同軸結構; (4)氧化鋅及磷化鋅一維奈米線。而本論文嘗試探討這些奈米材料之合成 、結構分析及鑑定並試圖找出尺寸及形貌對於各種物理性質如光電、機械及 場發射性質量測上的影響,並製作簡易奈米元件探索未來工程上之可能應用。
The theme of this dissertation mainly focuses on following nano-materials: (1) silicide, (2) silicon, and (3) metal oxide. Basically, they possess two different kinds of properties, namely, metallic and semiconducting properties, which can be applied in various applications. For silicide materials, we try to synthesize the semiconducting feature of β-FeSi2 thin film/nanodots on Si and SiGe virtual substrates for application at light emitting device and discuss on how the effect of morphologies and dimensionality for these nanodots can influence their optical properties. In addition, by in-situ annealing FeSi2 nanodots grown on Si and SiGe alloy virtual substrates, the taper- and rod-like Si nanowires are successfully synthesized. The possible growth mechanisms are discussed in detail based on the SLS and OAG for taper-like SiNWs and VLS for rod-like SiNWs.
Furthermore, metal silicides have many interesting properties, such as high melting temperature, superb thermal stability and low resistivity. In this thesis, we utilized an innovative method to synthesize the metallic TaSi2 nanowires by annealing FeSi2 and NiSi2 films and nanodots on Si substrate in an ambient containing Ta vapor at a pressure lower than 1×10-6 Torr. The growth mechanisms are illustrated and the electrical, mechanical, magnetic, field-emission properties are measured as well.
For the metal oxide nanomaterials, we focus on synthesis of various functional metal oxide nanomaterials as follows: (1) SiO2/Ta2O5 core-shell and Ta2O5 nanotube as well as nanowires, (2) Fe2O3 and Fe3O4 NW, (3) RuO2 and RuO2/TiO2 core-shell NW, (3) The Zn3P2 and ZnO NW for various applications. The studies for these functional metal oxide nanomaterials mainly focus on synthesis, microstrucutre characterizations, and functional measurements, including optical, mechanical, magnetic, and field-emission properties. Device fabrications and testing for these nanomaterials are carried out as well. The results show the great potential of these nanomaterials in future applications.
Contents
Contents I
Acknowledgements VIII
List of Acronyms and Abbreviations XIV
Chapter 1 Introduction of Light-Emitting Iron Silicide 1
1.1 Materials for Light Emitting Application 1
1.1.1 Porous Si 2
1.1.2 Nanocrystalline Si 2
1.1.3 Erbium-Doped Si 2
1.1.4 Si/Insulator Superlattice Structures 3
1.2 Introduction of Iron Disilicide 3
1.3 ��-FeSi2 in Light-Emitting Diode 4
Chapter 2 Development of Nanotechnology 14
2.1 Nanoscale Science and Technology 14
2.2 Synthesis Methods of Nanowires and Growth Mechanism 15
2.2.1 Vapor-Liquid-Solid Growth Mechanism 16
2.2.2 Solution-Liquid-Solid Growth Mechanism 18
2.2.3 Solid-Liquid-Solid Growth Mechanism 19
2.2.3 Vapor-Solid Growth Mechanism 20
2.2.4 Oxide-Assisted Growth Mechanism 21
2.3 Scope and Aim of the Thesis 23
Chapter 3 Experimental Procedures 35
3.1 The Growth Procedures of Iron Film 40
3.1.1 Initial Wafer Cleaning 40
3.1.2 The Film Deposition 40
3.1.3 In-situ Ultimate High Vacuum Thermal Annealing 41
3.1.4 Thermal Annealing and Rapid Thermal Annealing 41
3.2 The Setup of a Ta Vapor from the Ta Filament for Synthesis of TaSi2 nanowires 41
3.3 Transmission Electron Microscope (TEM) Observation 42
3.3.1 Preparation of Planview Samples 42
3.3.2 Preparation of Cross-Sectional Samples 42
3.3.2 Preparation of Nanowires Samples for Transmission Electron Microscopy Observation 43
3.4 Transmission Electron Microscopy Observation 43
3.5 Energy Dispersion Spectrometer (EDS) Analysis 44
3.6 Electron Energy Loss Spectrum (EELS) Analysis 45
3.7 Electron Holography Analysis [3.1] 47
3.8 Scanning Electron Microscopy Observation 50
3.9 Sheet Resistance Measurements 50
3.11 Glancing Incidence X-Ray Diffraction Analysis 51
3.12 Precise Location of Nanowires and Measurement of the I-V Characteristic 52
3.12.1 Chip Cleaning and Sample Preparation 52
3.12.2 Locating Positions of Nanowires 52
3.12.3 Defining the Contact Electrodes and Side-Gate Electrodes 52
3.12.4 Photoresist Spin Coating and Soft Baking 53
3.12.5 Electron Beam Lithography 53
3.12.6 Development 53
3.12.7 Thermal Evaporation 53
3.12.8 Lift Off Process 54
3.13 I-V Characterization at Low Temperature 54
3.14 Field-Emission Characterization Measurements 54
3.15 Photoluminescence (PL) Analysis 55
3.16 Cathodoluminescence (CL) Analysis 55
Cheap 4 Characterization of β-FeSi2 : Epitaxy Growth on Si (001) and Solid Reaction on SiGe Alloy Substrate 58
4.1 Epitaxy of High Quality β-FeSi2 Films on Si (001) by Intercalated Ti Layer 58
4.1.1 Motivation 58
4.1.2 Experimental Procedures 59
4.1.3 Results and Conclusion 60
4.1.3.1 Phase Identification 60
4.1.3.2 Microstructure Analysis 61
4.1.3.3 Effect Heat of Formation (EHF) Model 63
4.1.3.4 Summary and Conclusions 65
4.2 Solid Phase Reactions between Fe Thin Films and Si-Ge Layers on Si Substrates 66
4.2.1 Motivation 66
4.2.2 Experimental Procedures 67
4.3.3 Results and Conclusion 68
4.3.3.1 Sheet Resistance Measurements 68
4.3.3.2 Phase Identification 68
4.3.3.3 Microstructure Analysis 69
4.3.4 Summary and Conclusion 71
Chapter 5 Light Emitting β-Fe(SiXGe1-X)2 Nanodots on Si and Si0.8Ge0.2 Substrates 92
5.1 Motivation 92
5.2 Experimental Procedures 93
5.3 Results and Conclusion 94
5.3.1 Synthesis of β-FeSi2 Nanodots on Si Substrate 94
5.3.2 Synthesis of β-Fe(SiXGe1-X)2 Nanodots on a-Si/Si0.8Ge0.2 Substrate 95
5.3.3 Synthsis of β-Fe(SiXGe1-X)2 Nanodots on e-Si/ Si0.8Ge0.2 Substrate 96
5.4 Summary and Conclusion 99
Chapter 6 Synthesis and characterization of Taper- and Rod-like Si nanowires on SiXGe1-X substrates 111
6.1 Motivation 111
6.2 Experimental Procedures 112
6.3 Results and Conclusion 113
6.3.1 taper-like silicon nanowires 113
6.3.2 Rod-like Silicon Nanowires 114
6.3.3 Growth Mechanism of Taper- and Rod-like Silicon Nanowires 115
6.3.4 Characterization of Taper and Rod-like Silicon Nanowires 118
6.3.4 Summary and Conclusion 120
Chapter 7 Synthesis and Characterization of Metallic TaSi2 Nanowires 131
7.1 Motivation 131
7.2 Experimental Procedures 132
7.3 Results and Conclusion 134
7.3.1 Synthesis of TaSi2 Nanowirs by FeSi2 Thin Film and Nandots 134
7.3.2 Synthesis of TaSi2 Nanowirs by Thin NiSi2 Film and Nandots 136
7.3.3 Growth Mechanism of TaSi2 Nanowire Induced by FeSi2 and NiSi2 Films and Nanodots 138
7.3.4 Field-Emission properties of TaSi2 nanowires Induced by FeSi2, NiSi2 Thin Films and Nanodots 143
7.3.6 Electric Characterization of TaSi2 Single Crystal Nanowires 149
7.3.7 Magnetic Properties of TaSi2 Nanowires 152
7.3.8 Mechanical Properties of TaSi2 Nanowires 155
7.4 Summary and Conclusion 157
Chapter 8 Synthesis and Characterization of SiO2/Ta2O5 Core-Shell Nanowire and Nanotube 185
8.1 Motivation 185
8.2 Experimental Procedures 186
8.3 Results and Conclusion 188
8.3.1 SiO2/Ta2O5 Co-Shell Structure 188
8.3.2 Synthesis of Ta2O5 Nanotube and Nanowires 192
8.3.4 Characterization of SiO2/Ta2O5 Co-Shell, Ta2O5 Nanotube, and Ta2O5 Nanowires 194
8.3.5 Field-Emission Properties of Ta2O5 Nanotube 196
8.4 Summary and Conclusion 197
Chapter 9 Systematic Study on the Growth of the Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor-Solid Process 214
9.1 Motivation 214
9.2 Experimental Procedures 215
9.3 Results and Conclusion 217
9.3.1 Effect of Alloyed Substrates on the Synthesis of α-Fe2O3 NWs 217
9.3.2 Dependence of Growth Morphologies of α-Fe2O3 NWs on the Local Substrate Environment 219
9.3.3 Microstructure and EELS Analysis of the Samples 220
9.3.4 Influence of Gas Flow Rate 223
9.3.5 Influence of Growth Temperature 225
9.3.6 Reducing Fe2O3 NWs to Fe3O4 NWs by a Reduction Process 225
9.3.7 In-Situ Phase Transformation from α-Fe2O3 NW to of Fe3O4 NW 227
9.3.8 Property Characterization 228
9.3.8.1 Magnetic Properties 229
9.3.8.2 Field-Emission Properties of α-Fe2O3 230
9.4 Summary and Conclusion 232
Chapter 10 P-type α-Fe2O3 Nanowire and its N-type Transition at Reductive Ambient 250
10.1 Motivation 250
10.2 Experimental Procedures 251
10.3 Results and Conclusion 253
10.3.1 Microstructure of Oxygen Vacancies Ordering 253
10.3.2 Electricity of P-type α-Fe2O3 Nanowire 254
10.3.3 Electron Energy Loss Spectrum of P-type α-Fe2O3 Nanowire 256
10.3.4 N-type Transition at Reductive Ambient 257
10.3.5 P-N Type Switch via Inversion Layer 259
10.4 Summary and Conclusion 260
Chapter 11 RuO2 Nanowires and RuO2/TiO2 Core-Shell Nanowires: from Synthesis to Mechanical, Optical, Electrical and Photoconductive Properties 271
11.1 Motivation 271
11.2 Experimental Procedures 272
11.3 Results and Conclusion 273
11.3.1 Crystal Structures 273
11.3.2 Mechanical Properties 275
11.3.3 Optoelectronic Properties 277
11.3.4 Electrical Properties 278
11.3.5 Photoconductivity 280
11.4 Summary and Conclusion 283
Chapter 12 Single-crystalline Zn3P2 Nanostructures: Synthesis, Properties Characterization and Zn3P2/ZnO-Nanoscale Photodiode Application 304
12.1 Motivation 304
12.2 Experimental Procedures 305
12.3 Results and Conclusion 306
12.3.1 Crystal Structures 306
12.3.2 Growth Mechanism of Zn3P2 NW 309
12.3.3 Optoelectronic Properties 310
12.3.4 Photoconductivity 310
12.3.5 Photo-Diode of Heterojunciton of Zn3P2 and ZnO NWs 312
12.4 Summary and Conclusion 317
Chapter 13. Summary and Conclusions 333
13.1 Characterization of β-FeSi2 : Epitaxy Growth on Si (001) and Solid Reaction on SiGe alloy Substrate 333
13.1.1 Epitaxy of High Quality β-FeSi2 Films on Si (001) by 333
13.1.2 Solid Phase Reactions between Fe Thin Films and Si-Ge Layers on Si 333
13.2 Light Emitting β-Fe(SiXGe1-X)2 Nanodots On Si And Si0.8Ge0.2 334
13.3 Synthesis and Characterization of Taper- and Rod-like Si 335
13.4 Synthesis and Characterization of Metallic TaSi2 Nanowires 336
13.6 Systematic Study on the Growth of the Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor-Solid Process 337
13.7 P-type α-Fe2O3 Nanowire and its N-type Transition at Reductive Ambient 338
13.8 RuO2 Nanowires and RuO2-TiO2 Core-Shelled nanowires: from Synthesis to Mechanical, Optical, Electrical and Photoconductive Properties 338
13.9 Single-Crystalline Zinc Phosphide Nanostructures: Synthesis, Properties Characterization and Nanoscale Photodiode Application 339
Chapter 14 Future Prospects 341
14.1 Multi-layer Light Emitting β-Fe(SiXGe1-X)2 Nanodots Eembedded Inside the Si and Si0.8Ge0.2 Substrate 341
14.2 Si/SiO2 Co-Shell Taper- and Rod-like Si Nanowires on SiXGe1-X Substrates for Nano-Device Vertical Transistor. 341
14.3 Metallic TaSi2 Nanowires for Emitter, Magnetic Device, and Interconnection. 342
14.4 SiO2/Metal Oxide Core-Shell Structure for Application of Light Waveguide 342
14.5 α-Fe2O3 and Fe3O4 Nanowires for Bio-sensor and Spintronic Applications 343
Journal publication list 345
Curruculum Vitate 354
Reference
Chapter 1
1.1 M. Forster, U. Mantz, S. Ramminger, K. Thonke, R. Sauer, H. Kibbel, F. Schoffler, and H. J. Herzog, “Electroluminescence, photoluminescence, and photocurrent studies of Si/SiGe p-i-n heterostructures,” J. Appl. Phys. 80, 3017-3023 (1996).
1.2 A Richiter, P. Steiner, F. Kozlowski, and W. Lang, “Current-induced light emission from a porous silicon device,” IEEE Electron Device Lett. 12, 691-692. (1991)
1.3 H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki and T. Nakagiri, “Quantum size effects on photoluminescence in ultrafine Si particles,” Appl. Phys. Lett. 56, 2379-2380 (1990).
1.4 G. R. Lin, C. J. Lin, L. J. Chou, and Y. L. Chueh, “Nanotechnology-Microphotoluminescence and Microphotoreflectance Analyses of CO2 Laser Rapid-Thermal-Annealed SiOx Surface With Buried Si Nanocrystals,” IEEE Trans. Nanotechnol. 5, 511 (2006).
1.5 H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-µm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett. 43, 943-945(1983).
1.6 J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y.-H. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54-µm Er3 + luminescence in silicon,” J. Appl. Phys. 70, 2672-2678 (1991).
1.7 H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381-383 (1985).
1.8 B. Zheng, J. Michel, F. Y. G.. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at =1.54 µm from an erbium-doped, silicon light-emitting diode,” Appl. Phys. Lett. 64, 2842-2844 (1994).
1.9 D. J. Lockwood, Z. H. Lu, and J.M. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Phys. Rev. Lett. 76, 539-541 (1996).
1.10 H. Von Kanel, N. Onda, H. Sirringhaus, E. Mullergubler, S. Goncalvesconto, and C. Schwarz, “Epitaxial Phase Transitions in the Iron Silicon System,” Appl. Surf. Sci. 70/71, 559-56 (1993).
1.11 J. Desimoni, H. Bernas, M. Behar, X. W. Lin, S. Washburn, and Z. Lilientalweber, “Ion-Beam Synthesis of Cubic FeSi2,” Appl. Phys. Lett. 62, 306-308 (1993).
1.12 J. Alvarez, J. J. Hinarejos, E. G. Michel, and R. Miranda, “Determination of the Fe/Si(111) Phase Diagram by Means of Photoelectron Spectroscopies,” Surf. Sci. 287/288, 490-494 (1993).
1.13 N. E. Christensen, “Electronic-Structure of Beta-FeSi2,” Phys. Rev. B 42, 7148-7153 (1990).
1.14 M. Libezny, J. Poortmans, T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, and M. Powalla, , “Book of Abstracts of 13th European Photovoltaic Solar Energy Conference and Exhibition,” PO8B., 49 (1995).
1.15 H. Katsumata, Y. Makita, N. Kobayashi, H. Shibata, M. Hasegawa, S Uekusa, I. Aksenov, S. Kimura, A. Obara, and S. Uekusa, “Optical Absorption and Photoluminescence Studies of Beta-FeSi2 Prepared by Heavy Implantation of Fe+ Ions into Si,” J. Appl. Phys. 80, 5955-5962 (1996).
1.16 Katsumata, H., Makita, Y., Kobayashi, N., Shibata, H., Hasegawa, M., and Uekusa, S., “Effect of Multiple Step Annealing on the Formation of Semiconducting Beta-FeSi2 and Metallic Alpha-Fe2Si5 on Si(100) by Ion-Beam Synthesis,” Jpn. J. Appl. Phys. 36(5), 2802-2812 (1997).
1.17 M. Libezny, J. Poortmans, T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, and M. Powalla, Proc. Of 13th European Photovoltaic Solar Energy Conf. 1326 (1995).
1.18 M. Riffel, E. Gross, and U. Stohrer, “Electrical Contacts for FeSi2 and Higher Manganese Silicide Thermoelectric Elements”, J. Mater. Sci.-Mater. Electron 6, 182-185 (1995).
1.19 R. Eppenga, “ab initio band-structure calculation of the semiconductor ��-FeSi2,” J. Appl. Phys. 68, 3027-3029 (1990).
1.20 Z. Yang, K. P. Homewood, M. S. Finney, M. A. Harry, and K. J. Resson, “Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2,” J. Appl. Phys. 78, 1958-1963 (1995).
1.21 C. A. Dimitriadis, J. H. Werner, S. Logothtidis, M. Stutzmann, J. Weber, and R. Nesper, “Electronic properties of semiconducting FeSi2 films,” J. Appl. Phys. 68, 1726-1734 (1990).
1.22 M. C. Bost and J. E. Mahan, “A clarification of the index of refraction of beta-iron disilicide,” J. Appl. Phys. 64, 2034-2037(1988).
1.23 E. Arushanov, E. Bucher, Ch. Kloc, O. Kulikova, L. Kulyuk, and A. Siminel, “Photoconductivity in n-type beta -FeSi2 single crystals,” Phys. Rev. B 52, 20-23 (1995).
1.24 T. Miya, Y. Terunuma, T. Hosaka and T. Miyashita, Electron. Lett. 15, 106-109 (1979).
1.25 J. Derrien, J. Chevrier, V. Le Thanh, and J. E. Mahan, “Semiconducting Silicide Silicon Heterostructures - Growth, Properties and Applications,” Appl. Surf. Sci. 56-58, 382-393 (1992).
1.26 H. Lange, “Electronic Properties of Semiconducting Silicides,” Phys. Stat. Sol. (b) 201, 3-66 (1997).
1.27 E. Grob., M. Riffel, and U. Stohrer, “Thermoelectric Generators Made of FeSi2 and HMS - Fabrication and Measurement,” J. Mater. Res. 10, 34-40 (1995).
1.28 H. Katsumata, H. L. Shen, N. Kobayashi, Y. Makita, M. Hasegawa, H. Shibata, S. Kimura, A. Obara, and S. Uekusa, Proc. 9th International Conference on Ion Beam Modification of Materials, Elserier Science, New York, 943 (1996).
1.29 M. Libezny, J. Poortmans, T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, and M. Powalla, Proceedings of 13th European Photovoltaic Solar Energy Conference, 1326 (1995).
1.30 D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 �慆”, Nature 387, 686-688(1997).
1.31 T. Suemasu, Y. Negishi, K. Takakura and F. Hasegawa, “Room Temperature 1.6 �慆 Electroluminescence from a Si-based Light Emitting Diode with beta-FeSi2 Active Region”, Jpn. J. Appl. Phys. 39, 1013-1015(2000).
Chapter 2
2.1 P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, 933-937 (1996).
2.2 C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000).
2.3 J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. deJongh, “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature 375, 767-769 (1995).
2.4 K. K. Likharev and T. Claeson, “Single Electronics,” Sci. Am. 266, 80-85 (1992).
2.5 G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, “Architectonic Quantum Dot Solids,” Acc. Chem. Res. 32, 415-423 (1999).
2.6 M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, “Resonant Tunneling of Electrons via 20 nm Scale InAs Quantum Dot and Magnetotunneling Spectroscopy of its Electronic States,” Appl. Phys. Lett. 70, 105-107 (1996).
2.7 J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science 286, 1550-1552 (1999).
2.8 C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, “Electronic Transport in Y-Junction Carbon Nanotubes,” Phys. Rev. Lett. 85, 3476-3479 (2000).
2.9 M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “Nanowire Resonant Tunneling Diodes,” Appl. Phys. Lett. 81, 4458-4460 (2002).
2.10 J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on Silicon Nanoelectronics for Terascale Integration,” Science 293, 2044-2049 (2001).
2.11 C. M. Lieber, “The Incredible Shrinking Circuit,” Sci. Am. 285(3), 58-65 (2001).
2.12 V. Balzani, A. Credi, and M. Venturi, “The Bottom-Up Approach to Molecular-Level Devices and Machines,” Chem. Eur. J. 8, 5524-5532 (2002).
2.13 K. E. Drexler, “Engines of Creation, The Coming Era of Nanotechnology,” Anchor Press, New York (1986).
2.14 K. E. Drexler, “Machine-Phase Nanotechnology,” Sci. Am. 285(3), 74-75 (2001).
2.15 P. Yang, Y. Wu and R. Fan, “Inorganic Semiconductor Nanowires,” Inter. J. Nano. 1, 1-39 (2002).
2.16 Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song, and P. Yang, “Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties,” J. Chemistry, Euro. 81260-1268 (2002).
2.17 P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties,” Adv. Func. Mater. 12, 323-331 (2002)
2.18 E. W. Wang, P. E. Sheehan, and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science 277, 1971-1975 (1997).
2.19 J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 287, 1471-1473 (2000).
2.20 L. D. Hicks and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Phys. Rev. B 47, 16631-16634 (1993).
2.21 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001).
2.22 Y. Wu and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, 605-607 (2000).
2.23 Y. Wu, B. Messer and P. Yang, “Superconducting MgB2 Nanowires,” Adv. Mater. 13, 1487-1489 (2001).
2.24 Y. Wu and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc. 123, 3165-3166 (2001).
2.25 C. C. Chen and C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater. 12, 738-741 (2000).
2.26 M. H. Huang, Y. Wu, H. Feick, W. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. 13, 113-116 (2001).
2.27 M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, “Effect of One Monolayer of Surface Gold Atoms on the Epitaxial Growth of InAs Nanowhiskers,” Appl. Phys. Lett. 61, 2051-2053 (1992).
2.28 Y. Wu, R. Fan, and P. Yang, “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires,” Nano Lett. 2, 83-86 (2002).
2.29 Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge,” Adv. Mater. 12, 746-750 (2000).
2.30 X. F. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12, 298-302 (2000).
2.31 A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208-211 (1998).
2.32 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science 270, 1791-1794 (1995).
2.33 M. H. Huang, A. Choudrey, and P. Yang, “Ag Nanowire Formation within Mesoporous Silica,” Chem. Commum. 12, 1603-1604 (2000).
2.34 J. Zhu and S. Fan, “Nanostructure of GaN and SiC Nanowires Based on Carbon Nanotubes,” J. Mater. Res. 14, 1175-1177 (1999).
2.35 Y. Li, G. W. Meng, L. D. Zhang, and F. Philipp, “Ordered Semiconductor ZnO Nanowire Arrays and Their Photoluminescence Properties,” Appl. Phys. Lett. 76, 2011-2013 (2000).
2.36 R. S. Wagner and W. C. Ellis, “Vapor-Solid-Liquid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, 89-90 (1964).
2.37 Y. Y. Wu and P. D. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth” J. Am. Soc. 123, 3165-3166 (2001).
2.38 J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction,” J. Vac. Sci. Technol. B, 15, 554-557 (1997).
2.39 Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto, and D. R. M. Walton, “3D Silicon Oxide Nanostructures: from Nanoflowers to Radiolaria,” J. Mater. Chem. 8, 1859-1864 (1998).
2.40 Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zhou, and G. Wang, “Synthesis of a-SiO2 Nanowires Using Au Nanoparticle Catalysts on a Silicon Substrate,” J. Mater. Res. 16, 683-686 (2001).
2.41 Skuja, “Optically Active Oxygen-Deficiency-Related Centers in Amorphous Silicon Dioxide,” J. Non-Cryst. Solids. 239, 16-48 (1998).
2.42 Lu, T. Hanrath, K. P. Johnston, and B. A. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate,” Nano Lett. 3, 93-99 (2003).
2.43 H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett. 323, 224-228 (2000).
2.44 P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism,” Physica E 9, 305-309 (2001).
2.45 N. D. Zakharov , P. Werner , G. Gerth , L. Schubert, L. Sokolov , U. Gosele, “ Growth phenomena of Si and Si/Ge nanowires on Si(111) by molecular beam epitaxy,” J. Cryst. Growth 290, 6-10 (2006).
2.46 S. Kar , B. N. Pal , S. Chaudhuri , D. Chakravorty, “One-dimensional ZnO nanostructure arrays: Synthesis and characterization,” J. Phys. Chem. B 110 (10), 4605-4611 (2006).
2.47 Z. H. Lan , C. H. Liang, C. W. Hsu , C. T. Wu , H. M. Lin , S. Dhara , K. H. Chen, L. C. Chen , C. C. Chen, “Nanohomojunction (GaN) and nanoheterojunction (InN) nanorods on one-dimensional GaN nanowire substrates,” adv. Funct. Mater. 14 (3), 233-237 (2004).
2.48 S. K. Chan , N. Liu , Y. Cai , N. Wang , G.. K. L. Wong , I. K. Sou, “Molecular beam epitaxy-grown ZnSe nanowires,” J. Electron. Mater. 35 (6), 1246-1250 (2006)
2.49 Y. D. Yin, D. G. Zhang, and Y. N. Xia, “Synthesis, and Characterization of MgO Nanowires through a Vapor-Phase Precusor Mthod,” Adv. Funct. Mater. 12, 293-298 (2002).
2.50. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P, Yu, Y. Ding, Q. L. Hang, and S.Q. Feng, “Ga2O3 Nanowires Prepared by Physical Evaporation,” Solid State Comm. 109, 677-682 (1999).
2.51 R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-Assisted Semiconductor Nanowire Growth,” Adv. Mater. 15, 635-640 (2003).
2.52 Q. Zhang, Y. Lifshitz and S. T. Lee, “Oxide-Assisted Semiconductor Nanowire Growth,” Adv. Mater. 15, 635-640 (2003).
2.53 W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish, and S. T. Lee, “Free-Standing Single Crystal Silicon Nanoribbons,” J. Am. Chem. Soc. 123, 11095-11096 (2001).
2.54 S. T. Lee, N. Wang, and C. S. Lee, “Semiconductor Nanowires: Synthesis, Structure and Properties,” Mater. Sci. Eng. A 286, 16-23 (2000).
2.55 N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si Nanowires Grown from Silicon Oxide,” Chem. Phys. Lett. 29923, 7-242 (1999).
Chapter 3
3.1 D. Shindo, T. Oikawa, “Analytical Electron Microscopy for Materials Science,” Springer Japan (2002).
Chapter 4
4.1 H. C. Cheng, T. R. Yew, and L. J. Chen, “Interfacial reactions of iron thin films on silicon,” J. Appl. Phys. 57, 5246-5250(1985).
4.2 P. Y. Dusausy, J. Protas, R. Wandji, and B. Roques, Acta. Cryst. B 27 (1971) 1209.
4.3 W. B. Person, “Handlook of Lattice Spacing and Structure of Metals and Alloys,” (Pergamon, New York, 1967).
4.4 C. A. Dimitriadis, J. H. Werner, S. Logothetids, M. Stutamann, J. Weber, R. Nesper, J Weber, and R. Nesper, ” Electronic properties of semiconducting FeSi2 films,” J. Appl. Phys. 68, 1726-1734(1990) .
4.5 J. E. Mahan, K. M. Geib, G.. Y. Robinson, R. G. Long, X. Yan, G. Baj, M. A. Nicolet, and M. Nathan, “Effect of the oxide-desorption temperature on the substrate–epilayer interface charge in organometallic vapor-phase epitaxy of GaAs,” Appl. Phys. Lett. 56, 2126-2129 (1990).
4.6 K. M. Geib, J. E. Mahan, R. G. Long, M. Nathan, and G. Bai, “Epitaxial orientation and morphology of β-FeSi2 on (001) silicon” J. Appl. Phys. 70, 1730-1736 (1991).
4.7 A. H. Reader, J. P. W. B. Duchateaum, J. Timmers, and F. J. G. Hakkens, “Epotaxial beta-FeSi2, formed by Fe deposition on hot Si(001),” Appl. Surf. Sci. 73, 131-134(1993).
4.8 H. Sirrighaus, N. Onda, E. Muller-Gubler, P. Muller, R. Stalder, and H. Von Kanel, “Phase transition from pseudomorphic FeSi2 to beta -FeSi2/Si(111) studied by in situ scanning tunneling microscopy,” Phys. Rev. B 47, 10567-10577 (1993).
4.9 M. Tanaka, Y. Kumagat, T. Suemasu, and F. Hasegawa, “Formation of beta-FeSi2 layers on Si(001) substrates,” Jap. J. Appl. Phys. 36, 3620-3624 (1997).
4.10 C. M. Osbum, J. Y. Tsai, and J. Sun, “Metal silicides: Active elements of ULSI contacts,” J. Electron Mater. 25, 1725-1739 (1996).
4.11 J. Y. Tsai, C. M. Osbum, and S. L. Hsia, Mater. Res. Soc. Symp. Proc. 402, 245-248 (1996).
4.12 T. Iinuma, H. Akutsu, K. Ohuchi, K. Miyahshita, Y. T. Shima, and K. Suguro, “Symposium VLSI Technical,” Digest Honolulu, P188 (1998).
4.13 G. B. Kim and H. K. Baik, “Control of Co flux through ternary compound for the formation of epitaxial CoSi2 using Co/Ti/Si system,” Appl. Phys. Lett 69, 3498-3500 (1998).
4.14 G. B. Kim, J. S. Kwak, H. K. Baik, and S.M. Lee, “Interfacial reaction and formation mechanism of epitaxial CoSi2 by rapid thermal annealing in Co/Ti/Si(100) system,” J. Appl. Phys. 82, 2323-2328 (1997).
4.15 K. K. Larsen, J. Tavares, H. Bender, R. A. Donaton, A. Lanwers, and K. Maex, “Growth of epitaxial β-FeSi2 on (100) silicon using Fe-Ti-Si diffusion couples,” J. Appl. Phys. 78, 599-601 (1995).
4.16 K. Radermacher, S. Mantl, Ch. Dieker, and H. Lüth, “Growth-kinetices of iron silicides fabricated by solid-phase epitaxy or ion-bean synthesis,” Thin solid Films 215, 76-83 (1992).
4.17 Charalabos A. Dimitriadis, and Jurgen H. Werner, “Growth mechanism, and morphology of semiconducting FeSi2 films,” J. Appl. Phys. 68, 93-96 (1990).
4.18 G. V. Raynor and V. G. Rivlin, “Phase equilibria in iron ternary alloys,”(The institute of Metals, 1988).
4.19 A. Yu. Kuzenetsov and B. G. Svensson, “Nickel atomic diffusion in amorphous silicon,” Appl. Phys. Lett. 66, 2229-2231 (1995).
4.20 E. R. Weber, “Transition-metals in silicon,” Appl. Phys. A: materials science & processing 30, 1-22 (1983).
4.21 D. Hesse, P. Werner, J. Heydenreich, and R. Mattheis, Mater, Res. Soc. Symp. Proc. 320, 221 (1994).
4.22 L. Haderbache, P. Wetzel, C. Pirri, J. C. Peruchetti, D. Bolmont, and G. Gewinner, “Epitaxy of CoSi2 on Si (111) at low temperature ( 400 °C),” Appl. Phys. Lett. 53, 1384-1386 (1988).
4.23 M. Tanaka, Y. Kumagai, T. Suemasu, and F. Hasegawa, “Reactive deposition epitaxial growth of beta-FeSi2 layers on Si(001),” Appl. Surf. Sci. 117, 303-307 (1997).
4.24 J. Wu, and S. Shimizu, “Formation of iron silicides on Si(110) by reactive deposition epitaxy,” Thin Solid Films 290-291, 525-530 (1996).
4.25 C. Detavernier, C. Lavoie, and R. L. Van Meirhaeghe, Thin Solid Film, 468 (2004) 174.
4.26 C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “Influence of mixing entropy on the nucleation of CoSi2,” Phys. Rev., B 62, 12045-12051 (2000).
4.27 O. S. Gorelkin, S. V. Russ. Mikhailov, J. Phys. Chem. 45 (1971)1523.
4.28 M. Rühle, L. J. Ma, and W. Wunderlich, “TEM studies on phases and pahse stabilities of zirconia ceramics,” Physica A and C 150, 86-98 (1988).
4.29 H. Lange, “Electronic properties of semiconducting silicides,” Phys. Status Solidi B 201, 3-65 (1997).
4.30 N. E. Christensen, “Electronic structure of beta -FeSi2,”Phys. Rev. B 42, 7148-7153 (1990).
4.31 R. Eppenga, J. Appl. Phys. 68 (1990) 3027.
4.32 Z. Yang, K. P. Homewood, M. S. Finney, M. A. Harry, and K. J. Resson, “Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2,” J. Appl. Phys. 78, 1958-1963 (1995).
4.33 E. Arushanov, E. Bucher, Ch. Kloc, O. Kulikova, L. Kulyuk, and A. Siminel, “Photoconductivity in n-type beta-FeSi2 single crystals,” Phys. Rev. B 52, 20-23 (1995).
4.44 M. Sugiyama and Y. Maeda, “Microstructure characterization of ion-beam synthesized β-FeSi2 phase by transmission electron microscopy,” Thin Solid Films 381, 225-230 (2001).
4.45 Z. Yang and K. P. Homewood, “Effect of annealing temperature on optical and structural properties of ion-beam-synthesized semiconducting FeSi2 layers,” J. Appl. Phys. 79, 4312-4317 (1996).
4.46 Z. Yang, K. P. Homewood, K. J. Resson, M. S. Finney, and M. A. Harry, “TEM investigation of ion-beam synthesized semicoudcting FeSi2,” Mater. Lett. 23, 215-220 (1995).
447. Z. Yang, G. Shao, K. P. Homewood, K. J. Resson, M. S. Finney, and M. Harry, “Order domain boundaries in ion beam synthesized semiconducting FeSi2 layers,” Appl. Phys. Lett. 67, 667 (1995).
4.47 A. Terrasi, S. Ravesi, M. G. Grimaldi, C. Spinella, J. Vac. Sci. Technol. A 12, 667-669 (1994).
4.49 D. Gerthsen, K. Radermacher, Ch. Dieker, and S. Mantl, “Structural properties of ion-beam-synthesized β-FeSi2 in Si(111),” J. Appl. Phys. 71, 3788-3794 (1992).
4.50 N. Cherief, C. D. Anterroches, R. C. Cinti, T. A. Nguyen-Tan, and J. Derrien, “Semiconducting silicide-silicon heterojunction elaboration by solid phase epitaxy,” Appl. Phys. Lett. 55, 1671-1673 (1989).
4.51 J. Tavares, H. Bender, and K. Meax, “Transmission electron microscopy characterisation of ion beam synthesised FeSi2 layers,” Thin Solid Films 277, 90-97 (1996).
4.52 D. Leong, M. Harry, K. J. Resson, and K. P. Homewood, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm,” Nature 387, 686-688 (1997).
4.53 T. Suemasu, Y. Negishi, K. Takakura, and F. Hasegawa, “Room temperature 1.6 um m electroluminescence from a Si-based light emitting diode with beta-FeSi2 active region,” Jpn. J. Appl. Phys., Part 2 39, L1013-L1015 (2000).
4.54 T. Jarmar, J. Seger, F. Ericson, D. Mangelinck, U. Smith, and S. L. Zhang, “Morphological and phase stability of nickel–germanosilicide on Si1–xGex under thermal stress,” J. Appl. Phys. 92, 7193-7199 (2002).
4.55 W. W. Wu, T. F. Chiang, S. L. Cheng, S. W. Lee, and L. J. Chen, “Enhanced growth of CoSi2 on epitaxial Si0.7Ge0.3 with a sacrificial amorphous Si interlayer,” Appl. Phys. Lett. 81, 820-822 (2002).
4.56 V. Aubry-Fortuna, O. Chaix-Pluchery, F. Fortuna, C. Hernandez, Y. Campidelli, and D. Bensahel, “Structural properties and stability of Zr and Ti germanosilicides formed by rapid thermal annealing,” J. Appl. Phys. 91, 5468-5473 (2002).
4.57 H. Chen, P. Han, X. D. Huang, L. Q. Hu, Y. Shi, and Y. D. Zheng, “Semiconducting Ge–Si–Fe alloy grown on Si(100) substrate by reactive deposition epitaxy,” Appl. Phys. Lett. 69, 1912-1914 (1996).
4.58 A. Zenkevich, P. I. Gaiduk, H. P. Gunnlaugsson, and G. Weyer, “On the role of Ge in the growth of β-FeSi2 on silicon (100) surfaces,” Appl. Phys. Lett. 81, 904-906 (2002).
4.59 H. T. Lu, L. J. Chen, Y. L. Chueh, and L. J. Chou, “Formation of light-emitting FeSi2 in Fe thin films on ion-implanted (111)Si,” J. Appl. Phys. 93, 1468-1471 (2003).
4.60 D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Ozturk, “Stability of C54 titanium germanosilicide on a silicon-germanium alloy substrate,” J. Appl. Phys. 77, 5107-5114 (1995).
4.61 Z. Wang, D. B. Aldrich, Y. L. Chen, D. E. Sayers, and R. J. Nemanich, “Silicide formation and stability of Ti/SiGe and Co/SiGe,” Thin Solid Films 270, 555-560 (1995).
4.62 J. F. Chen and L. J. Chen, “Morphological stability of TiSi2 on polycrystalline silicon” Thin Solid Films 293, 34-36 (1997).
Chapter 5
5.1. K. Eberl, M. O. Lipinski, Y.M. Maznz, W. Winter, N.Y. Jin-Phillipp, and O.G. Schmidt, “Self-assembling quantum dots for optoelectronic devices on Si and GaAs,” Physica E 9, 164-174 (2001).
5.2. N. Chiodini, F. Meinardi, F. Morazzoni, A. Paleari, and R. Scotti, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76, 22-24 (2000).
5.3. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bla¨sing, “ Electrochromic semiconductor nanocrystal films,” Appl Phys. Lett. 80, 4-6 (2002)
5.4. W. Henley, Y. Koshka, J. Lagowski, and J. Siejka, “Infrared photoluminescence from Er doped porous Si,” J. Appl. Phys. 87, 7848-7852 (2000).
5.5. Z. Yang, K. P. Homewood, M. S. Finney, M. A. Harry, K., and J. Resson, “Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2,” J. Appl. Phys. 78, 1958-1963 (1995).
5.6. T. Suemasu, Y. Negishi, K. Takakura, and F. Hasegawa, “Room temperature 1.6 um electroluminescence from a Si-based light emitting diode with beta-FeSi2 active region,” Jpn. J. Appl. Phys., Part 2 39, L1013-L1015 (2000).
5.7. Tanaka, Y. Kumagai, T. Suemasu, and F. Hasegawa, “Reactive deposition epitaxial growth of β-FeSi2 layers on Si(001),” Applied Surface Science, 117/118, 303-307 (1997).
5.8. Nikolai. IEEE J. Selected Topics in quantum electrons, 6, 3 (2000).
5.9. K. Ismail, F. K. LeGoues, K. L. Saenger, M. Arafa, J. O. Chu, P. M. Mooney, and B. S. Meyerson, “Identification of a Mobility-Limiting Scattering Mechanism in Modulation-Doped Si/SiGe Heterostructures,” Phys. Rev. Lett. 73, 3447–3450 (1994).
5.10. Y. H. Xie, D. Monroe, E. A. Fitzgerald, P. J. Silverman, F. A. Theil, and G. P. Watson, “Very high mobility two-dimensional hole gas in Si/GexSi1–x/Ge structures grown by molecular beam epitaxy,” Appl. Phys. Lett. 63, 2263-2264 (1993).
5.11. J. W. Matthews, A.E. Blakeslee, J. Cryst. Growth, 27, 118 (1997) pp. 283-287.
5.12. C. H. Yu, Y. L. Chueh, S. W. Lee, S. L. Cheng, L. J. Chen, and L. J. Chou, “Solid phase reactions between Fe thin films and Si-Ge layers on Si,” Thin Solid films 461, 81-85 (2004).
5.13. T. Jarmar, J. Seger, F. Ericson, D. Mangelinck, U. Smith, and S. L. Zhang, “Morphological and phase stability of nickel–germanosilicide on Si1–xGex under thermal stress,” J. Appl. Phys. 92, 7193-7199 (2002).
5.14. D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Ozturk, “Stability of C54 titanium germanosilicide on a silicon-germanium alloy substrate,” J. Appl. Phys. 77, 5107-5114 (1995).
5.15. Z. Wang, D. B. Aldrich, Y. L. Chen, D. E. Sayers, and R. J. Nemanich, “Silicide formation and stability of Ti/SiGe and Co/SiGe,” Thin Solid Films 270, 555-560 (1995).
5.16. Z. Wang. Y. L. Chen, H. Ying, R. J. Nemonich, and D. E. Sayer, Mater. Res. Soc. Sym. Proc. 320, 397 (1994).
5.17. S. S. Lau, J. S.-Y. Feng, J. O. Olowolafe and M.-A. Nicolet, Thin Solid Films, 25, 415 (1975).
5.18. The Materials Science of Thin Films”, Milton Ohring academic
Press, INC P198 (1992).
5.19. W. Frank, Def. Forum, 75, 121 (1991).
5.20. S. Coffa, J. M. Poate, D. C. Jacobson, W. Frank, and W. Gustin, “Determination of diffusion mechanisms in amorphous silicon,” Phys. Rev. B 45, 8355–8358(1992).
5.21. V. E. Borisenko, “Semiconducting Silicide,” Springer, New York, 94-95 (1999).
5.22. K. Takarabe, T. Ikai, and Y. Mori, “Structural study of FeSi2 under pressure,” J. Appl. Phys., 96, 4903-4908 (2004).
5.23. N. E. Christensen, “Electronic structure of beta -FeSi2,” Phys. Rev. B 42, 7148-7153 (1990).
5.24. A. B. Filonov, D. B. Migas, V. L. Shaposhnikov, N. N. Drozhkin, G. V. Petrov, and V. E. Borizenko, “Electronic and related properties of crystalline semiconducting iron disilicide,” J. Appl. Phys. 79, 7708-7712 (1996).
5.25. G. Davies, Phys. Rep.,176, 83 (1989).
5.26. Ronald C. Newman Mat. Res. Soc. Symp., Proc., 59, 403 (1986).
5.27. H. Chen, P. Han, X. D. Huang, L. Q. Hu, Y. Shi, and Y. D. Zheng, “Semiconducting Ge–Si–Fe alloy grown on Si(100) substrate by reactive deposition epitaxy,” Appl. Phys. Lett. 69, \1912-1914 (1996)
Chapter 6
6.1 A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, 271, 933-937 (1996).
6.2 Q. H. Wang, M. Yan, and R. P. H.Chang, “Flat panel display prototype using gated carbon nanotube field emitters,” Appl. Phys. Lett. 78, 1294-1296 (2001) .
6.3 A. M. Morales, and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science, 279, 208-211 (1998).
6.4 Y. Y. Wu, P. D.Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Soc. 123, 3165-3166 (2001).
6.5 T. J. Trentler, “Solution-liquid-solid growth of crystalline III-V semiconductors-an analogy to vapor-liquid-solid growth,” Science, 270, 1791-1794 (1995).
6.5 N. Wang, Y. F. Zhang, Y. H. Tang, C. S.Lee, and S. T. Lee, “SiO2-enhanced synthesis of Si nanowires by laser ablation,” Appl. Phys. Lett. 73, 3902-3904 (1998).
6.7 R. Q. Zhang , Y. Lifshitz, S. T. Lee, “Oxide-assisted growth of semiconducting nanowires” Adv. Mater. (2003), 15, 635-640.
6.8 H. Y. Peng, Z. W. Pan, L. Xu, X. H. Fan, N. Wang, C. S. Lee, and S. T. Lee, “Temperature dependence of Si nanowire morphology,” Adv. Mater. 5, 317-320 (2001).
6.9 N. Grobert, M. Terrones, A. J.Osborne, H. Terrones, W. K. Hsu, S. Trasobares, Y. Q. Zhu, J. P. Hare, H.W. Kroto, and D. R. M. Walton, “Thermolysis of C-60 thin films yields Ni-filled tapered nanotubes,” Appl. Phys. A: materials science & processing 67, 595-598 (1998).
6.10 Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, “Efficient field emission from ZnO nanoneedle arrays,” Appl. Phys. Lett. 83, 144-146(2003).
6.11 X. Liu, C. Li, S. Han, J. Han, and C. Zhou, “Synthesis and electronic transport studies of CdO nanoneedles,” Appl. Phys. Lett. 82, 1950-1952 (2003).
6.12 Y. M. Liang, C. S. Hsieh, D. S. Tsai, and K. K. Tiong, “Field emission from vertically aligned conductive IrO2 nanorods” Appl. Phys. Lett. 84, 1552-1554 (2004).
6.13 A. N. Goldstein, C.M. Echer, and A. P. Alivisatos, “Melting in semiconductor nanocrystals” Science, 256, 1425-1427 (1992).
6.14 D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73, 3076-3078 (1998).
6.15 L. S. Liao, X. M. Bao, X. Q. Zheng, N. . Li, and N. B. Min, “Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon,” Appl. Phys. Lett. 68, 850-852 (1996).
6.16 T. Shimizulwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide-films on crystalline Si,” Appl. Phys. Lett. 65, 1814-1816 (1994).
6.17 S. Q. Feng, D. P. Yu, H. Z. Zhang, Z. G. Bai, and Y. Ding, “The growth mechanism of silicon nanowires and their quantum confinement effect,” J. Crystal Growth. 209, 513-517 (2000).
6.18 Q. H. Wang, A. A.Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, and R. P. H. Chang, “A nanotube-based field-emission flat panel display,” Appl. Phys. Lett. 72, 2912-2913 (1998).
6.19 R. H. Fowler; L. W. Nordheim, Proc. R. Soc. London, Ser. A, 1928, 119, 173.
6.20 C. X. Xu, and X. W. Sun, “Field emission from zinc oxide nanopins,” Appl. Phys. Lett. 83, 3806-3808 (2003).
6.21 Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires,” Appl. Phys. Lett. 75, 1700-1702 (1999).
Chapter 7
7.1 K. A. Dean and B. R. Chalamala, “The environmental stability of field emission from single-walled carbon nanotubes,” Appl. Phys. Lett. 75, 3017-3019 (1999).
7.2 W. Zhu, G. P.Kochanski, S. Jin, L. Seibles, D. Jacobson, C. M. McCormack, and A. E. White, “Defect-enhanced electron field-emission from chemical-vapor-deposited diamond,” J. Appl. Phys. 78, 2707-2711 (1995).
7.3 L. J. Chen, “Metal silicides: An integral part of microelectronics,” JOM, 57 (9), 24-30(2005).
7.4 H. Kiyota, H.Araki, H. Kobayashi, T. Shiga, K. Kitaguchi, M. Lida, H. Wang, T. Miyo, T. Takida, T. Kurosu, K. Lnoue, I. Saito, M. Nishitan-Gamo, I. Sakaguchi, and T. Ando, “Electron field emission from diamond-like carbon films deposited by electrolysis of methanol liquid,” Appl. Phys. Lett. 75, 2331-2333 (1999).
7.5 C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers, D. R. Evans, “Directed growth of nickel silicide nanowires,” Appl. Phys. Lett. 84, 1389-1391 ( 2004).
7.6 K. S. Lee, Y. H. Mo, K. S. Nahm, H. W. Shim, E. K. Suh, J. R. Kim, and J. J. Kim, “Anomalous growth and characterization of carbon-coated nickel silicide nanowires,” Chem. Phys. Lett. 384, 215-218 (2004).
7.7 Q. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, “Synthesis and field emission properties of TiSi2 nanowires” Appl. Phys. Lett. 86, 243103-243106 (2005).
7.8 Y. L. Chueh, L. J. Chou, S. L. Cheng, L. J. Chen, C. J. Tsai, C. M. Hsu, and S. C. Kung , “Synthesis and characterization of metallic TaSi2 nanowires,” Appl. Phys. Lett. 87, 223113-223116 (2005).
7.9 Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures” Nature, 430, 704-704 (2004).
7.10 L. J. Chen, Tu, K. N. Mater. Sci. report 1996, 6, 53.
7.11 L. W. Cheng, S. L. Cheng, L. J. Chen, H. C. Chien, H. L. Lee, and F. M. Pan, “Formation of Ni silicides on (001)Si with a thin interposing Pt layer,” J. Vac. Sci. Technol. A 18, 1176-1179 (2000).
7.12 C. Colliex, T. Manoubi, and C. Ortiz, Phys. Rev. B 44, 11402.
7.13 L. A. Garie and A. J. Craven, American Mineralogist 79, 411 (1994).
7.14 R. D. Leapamn, L. A. Grunes, and P. L Fejes,“study of the L23 edges in the 3D transition-metals and their oxides by electron-energy-loss spectroscopy with comparison to theory,” Phys. Rev. B, 26, 614-635 (1982).
7.15 D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism,” Physica E 9, , 305-309 (2001).
7.16 J. M. Gallego and R. Miranda, “The Fe/Si(100) interface,” J. App. Phys. 69, 1377-1383 (1990).
7.17 S. Abhaya, G. Amarendra, P. Gopalan, G. L. N. Reddt, and S. Saroja, “Study of surface segregation of Si on palladium silicide using Auger electron spectroscopy,” J. Phys. D: Appl. Phys. 37, 3140-3144 (2004).
7.18 F. Liu, “Self-assembly of three-dimensional metal islands: Nonstrained versus strained islands,” Phys. Rev. Lett. 89, 246105-246109 (2002).
7.19 V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Epitaxy of Nanostrucutre” (Springer, 2003), P.199.
7.20 A. N. Goldstein, C. M. Echer, A. P. Alivisatos, “melting in semiconductor nanocrystals,” Science 256, 1425-1427 (1992).
7.21 R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928).
7.22 S. P. Murarka, “Silicide for VLSI Application” (Academic, New York, 1983)
7.23 J. M. Bonard, F. Maier, T. Stockli, W. A. de Heer, J. P. Salvetat, and L. Forro, “Field emission properties of multiwalled carbon nanotubes,” Ultramicroscopy, 73, 7-15. (1998).
7.24 C. Liu, Y. Tong, H. M. Cheng, D. Golberg, and Y. Bando, “Field emission properties of macroscopic single-walled carbon nanotube strands,” Appl. Phys. Lett., 86, 223114-223117 (2005).
7.25 Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, “Synthesis of taperlike Si nanowires with strong field emission” Appl. Phys. Lett. 86, 133112-133115 (2005).
7.26 S. Q. Li, Y. X. Liang, and T. H. Wang, “Electric-field-aligned vertical growth and field emission properties of In2O3 nanowires,” Appl. Phys. Lett. 87, 143104-143107 (2005).
7.27 J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, and Z. L. Wang, “Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties,” Adv. Mater., 15, 1835-1840 (2003).
7.28 C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett. 81, 3648-3650 (2002).
7.29 B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, “Synthesis and field emission properties of TiSi2 nanowires,” Appl. Phys. Lett. 86, 243103-243106 (2005).
7.30 J. Zhou, L.Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R.Yang, and Z. L. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays,” Appl. Phys. Lett. 87, 223108-223111 (2005).
7.31 C. T. Hsieh, J. M. Chen, H. H. Lin, and H. C. Shih, “Field emission from various CuO nanostructures,” Appl. Phys. Lett. 83, 3383-3385 (2003).
7.32 Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Kin, K. S. Liu, and I. C. Chen, “Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films,” Adv. Funct. Mater. 13, 811-814 (2003).
7.33 J. H. He, T. H. Wu, C. L.vHsin, K. M. Li, L. J. Chen, Y. L. Chueh, and L. J. Chou, Z. L. Wang, “Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties” Small 2, 116-120 (2006).
7.34 C. X. Xu and X. W.Sun, “Field emission from zinc oxide nanopins,” Appl. Phys. Lett. 83, 3806-3808 (2003).
7.35 Y. L. Chueh, L. J. Chou, C. M. Hsu, and S. C. Kung, “Synthesis and characterization of taper- and rodlike Si nanowires on SixGe1-x substrate,” J. Phys. Chem. B, 109, 21831-21835 (2005).
7.36 S. P. Murarka, “Silicide for VLSI Application,” (Academic, New York, 1983).
7.37 Y. W. Ok, T. Y. Seong, C. J. Choi, and K. N. Tu, “Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing,” Appl. Phys. Lett. 88, 043106-043109 (2006).
7.38 J. H. He, R. S. Yang, Y. L. Chueh, L. J. Chou, L. J.Chen, and Z. L. Wang, “Aligned AlN nanorods with multi-tipped surfaces - Growth, field-emission, and cathodoluminescence properties,” Adv. Mater. 18, 650-655 (2006).
7.39 Barbour, J. P.; Dolan, W. W.; Trolan, J. K.; Martin, E. E.; Dyke, W. P. Phys. Rev. 1953, 92, 45.
7.40 V. Filip, D. Nicolaesu, M.Tanemura, and F. Okuyama, “Modeling the electron field emission from carbon nanotube films,” Ultramicroscopy, 89, 39-49 (2001).
7.41 D. Gabor, Proc. Roy. Soc. London A, 197, 454 (1949).
7.42 G. Möllenstedt, M. Keller, Z. Phys. 1957, 148, 34
7.43 E. Krimmel, W. Rothemund,G. Möllenstedt, Appl. Phys. Lett. 1964, 5, 209
7.44 Aharanov, Y.; Bohm, D. Phys. Rev. 1959, 115, 485.
7.45 P. A. Midgley, “An introduction to off-axis electron holography,” micron, 32, 167-184 (2001).
7.46 D. Shindo, Y. G. Park, Y. Murakami, Y. Gao, H. Kanekiyo, and S. Hirosawa, “Electron holography of Nd-Fe-B nanocomposite magnets,” Script Mater, 48, 851-856 (2003).
7.47 Z. L.Wang, P. Poncharal, and W. A. de Heer, “Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM,” J. Phys. Chem. Solid, 61, 1025-1030 (2000).
7.48 Z. L. Wang, P. Poncharal, and W. A. de Heer, “ Nanomeasurements in transmission electron microscopy,” Microsc. Microanal. 6, 224-230 (2000).
7.49 W. K. Lo and J. C. H. Spence, “Investigation of STM image artifices by in-suit reflection electon-microscpoy” Ultramicroscopy, 48, 433-444 (1993).
7.50 D. Shindo and T. Oikawa, “Analytical Electron Microscopy for Materials Science” (Springer-Verlag, Tokyo, 2002)
7.51 J. Cumings, A. Zettl, M. R. McCarteny, and J. C. H. Spence, “Electron holography of field-emitting carbon nanotubes,” Phys. Rev. Lett. 88, 056804-056808 (2002).
7.52 P. Becker and P. Coppens, “About the coulcom potential in crystals” Acta Cryst. A46, 254-258 Part 4 (1990).
7.53 G. Matteucci, G. F. Missiroli, E. Nichelatti, A. Migliori, M. Vanzi, and G. Pozzi, “electon holography of longer-range electric and magnetic-fileds,” J. Appl. Phys. 69, 1835-1842 (1991).
7.54 G. Matteucci, M. Muccini, and Hartmann, “Flux mesurements on ferromagnetic microprobes by elecrton holography,” Phys. Rev. B. 50, 6823-6828 (1994).
7.55 G. Matteucci, G. F. Missiroli, M. Muccini, and G. Pozzi,“electron holography in the study of the electrostatic fields-the case of charged microtips” Ultramicrospcoy, 45, 77-83 (1992).
7.56 Y. F. Hsiou, Y. J. Yang, L. Stobinski, W. Kuo, and C. D. Chen,“ Controlled placement and electrical contact properties of individual multiwalled carbon nanotubes on patterned silicon chips”Appl. Phys. Lett. 84, 984-986 (2003).
7.57 F. Nava, K. N. Tu, E. Mazzega, M. Michelini, and G Queirolo, “Electrical transport-properties of transition-metal disilicide films,” J. Appl. Phy. 61, 1085-1093 (1987).
7.58 K. Maex and M. V. Rossum, „Properties of Metal Silicides,“ (INSPEC, London, UK, 1995).
7.59 F. Nava, O. Bisi, K. N.Tu, “Electrical transport-properties of V3Si, V5Si3, and VSi2 thin-films,” Phys. Rev. B, 34, 6143-6150 (1986).
7.60 J. F. Lin, J. P. Bird, L. Rotkina, and P. A. Bennett, “Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects,” Appl. Phys. Lett., 82, 802-804 (2003).
7.61 Z. Yao, C. L. Kane, and C. Dekker, “ High-field electrical transport in single-wall carbon nanotubes” Phys. Rev. Lett., 84, 2941-2944 (2000).
7.62 C. Cheng, R. K. Gonela, Q. Gu, D. T. Haynie, Nano Lett. 2004, 5, 175.
7.63 S. O. Kasap, ”Principle Of Electronic Materials and Devcies,”, 2nd. Ed. Mcgraw-Hill Companies, Inc. (2002).
7.64 R. H. Kodama, S. A. Makhlouf, and A. E. Berkowitz, “Finite size effects in antiferromagnetic NiO nanoparticles,” Phys. Rev. Lett. 79, 1393-1396 (1997).
7.65 F. Jentzsch, R. Schad, S. Heun, and M. Henzler, “Magnetoconductivity of thin epitaxial NiSi2 films in UHV at low-temperature,” Phys. Rev. B 44, 8984-8989 (1991).
7.66 C. A. Ross, M. Hwang, M. Shima, J. Y. Cheng, M. Farhoud, T. A. Savas, Henry, I. Smith, W. Schwarzacher, F. M. Ross, M. Redjdal, and F. B. Humphrey, “Micromagnetic behavior of electrodeposited cylinder arrays,” Phys. Rev. B, 65, 144417-144425 (2002).
7.67 F. C. Fonsea, G. F. Goya, R. F. Jardim, R. Muccillo, N. L. Carreňo, E. Longo, and E. R. Leite, “Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2,” Phys. Rev. B, 66, 104406-104411 (2002).
7.68 Y. Z. Jiu, W. K. Hsu, Y. L. Chueh, L. J. Chou, Y. Q. Zhu, K. Brigatti, H. W. Kroto, and D. R. M. Walton, “Large-scale production of NbS2 nanowires and their performance in electronic field emission,” Angew. Chem. Int. Ed. 43, 5670 (2004).
7.69 J. h. Song, X. D. Wangm E. Riedo, and Z. L. Wang, “Elastic property of vertically aligned nanowires,” Nano Lett. 5, 1954 (2005).
7.70 S. I. Sidorenko, Y. N. Makogon, D. L. Beke, A. Csik, S. N. Dub, E. P. Pavlova, and O. V. Zelenin, “Formation of nanocrystalline structure of TaSi2 films on silicon,” Power Metall. Met. Ceram. 42, 14-18 (2003).
7.71 C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Phys. Rev. Lett. 96, 075505 (2006).
7.72 S. Cuenot, C. Fretigny, S. Demoustier-Champagne, and B. Nysten, “Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy,” Phys. Rev. B 69, 165410-165415 (2004).
7.73 P. Poncharel, Z. L. Wang, D. Ugarte, and W. A. de Heer, “Electrostatic deflections and electromechanical resonances of carbon nanotubes,” Science 283, 1513-1516 (1999).
7.74 S. G. Nilsson, X. Borrise, and L. Montelius, “Size effect on Young's modulus of thin chromium cantilevers,” Appl. Phys. Lett. 85, 3555-3557 (2004).
7.75 X. Li, T. Ono, Y. Wang, and M. Esashi, “Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects,” Appl. Phys. Lett. 83, 3081-3083 (2003).
7.76 E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes,” Science 277, 1971-1975 (1997).
7.77 B. Wu, A. Heidelberg, and J. J. Boland, “Mechanical properties of ultrahigh-strength gold nanowires,” Nat. Mater. 4, 525-529 (2005).
7.78 C. Y. Nam, P. Jaroenapibal, D. Tham, D. E. Luzzil, S. Evoy, and J. E. Fischer, “Diameter-dependent electromechanical properties of GaN nanowires,” Nano Lett. 6, 153-158 (2006).
7.79 M. Tabib-Azar, M. Nassirou, R. Wang, S. Sharma, T. L. Kamins, M. S. Islam, and R. S. Williams, “Mechanical properties of self-welded silicon nanobridges,” Appl. Phys. Lett. 87, 113102-113105 (2005).
7.80 . Hoffmann, I. Utke, B. Moser, J. Michler, S. H. Christiansen, V. Schmidt, S. Senz, P. Werner, U. Gösele, and C. Ballit, “Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires,” Nano Lett. 6, 622-625 (2006).
Chapter 8
8.1. C. Yu., Q. Hao., S. Saha, L. Shi, X. Kong, and Z. L. Wang, “Integration of metal oxide nanobelts with microsystems for nerve agent detection,” Appl. Phys. Lett. 86, 063101-063104 (2005).
8.2 C. S. Lao, J. Liu, P. X. Gao, L. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang, “ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes,” Nano Lett. 6, 263-266 (2006).
8.3 A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87, 151103 (2005).
8.4 Y. L. Chueh, L. J. Chou, C. M. Hsu, and S. C. Kung, “Broadband ZnO single-nanowire light-emitting diode,” J. Phys. Chem. B 109, 21831-21835 (2005).
8.5 Z. L. Wang, “Nanobelts, nanowires, and nanodiskettes of semiconducting oxides - from materials to nanodevices,” Adv. Matter. 15, 432-436 (2003).
8.6 M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect transistors based on single semiconducting oxide nanobelts,” J. Phys. Chem. B 107, 659-663 (2004).
8.7 Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947 (2001).
8.8 P. M. Gao, Y. Ding, W. J. Mai, W. L. Hughes, C. S. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science 309, 1700-1704 (2005).
8.9 J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J. Chen, Y. L. Chueh, L. J. Chou, and Z. L. Wang, “Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties,” small 1, 116-120 (2006).
8.10 M. H. Cao, T. F. Liu, S. Gao, G. B. Sun, X. L. Wu, C. W. Hu, and Z. L. Wang, “Single-crystal dendritic micro-pines of magnetic alpha-Fe2O3: Large-scale synthesis, formation mechanism, and properties,” Angew. Chem. Int. Ed. 44, 4197-4201 (2005).
8. 11 J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, and Z. L. Wang, “Three-dimensional tungsten oxide nanowire networks,” Adv. Mater. 17, 2107-2110 (2005).
8.12 Z. F. Zhu, F. Yu, Y. Man, Q. Y. Tian, Y. He, and N. Z. Wu, “Preparation and performances of nanosized Ta2O5 powder photocatalyst,” J. Solid State Chem. 178, 224-229 (2005).
8.13 H. Schulz, L. Mädler, S. E. Pratsinis, P. Burtscher, and N. Moszner, “Transparent nanocomposites of radiopaque, flame-made Ta2O5/SiO2 particles in an acrylic matrix,” Adv. Funct. Mater. 15, 830-837 (2005).
8.14 A. Arranz, V. P’erez-Dieste, and C. Palacio, “Electronic structure of stoichiometric and reduced Ta2O5 surfaces determined by resonant photoemission,” Phys. Rev. B 66, 0754201-0754205 (2002).
8.15 A. M. Morales, and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208-211 (1998).
8.16 T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors – an analogy to vapor-liquid-solid growth,” Science 270, 1791-1794 (1995).
8.17 P. D.Yang, and C. M. Lieber, “Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites,” J. Mater. Res. 12, 2981-2996 (1997).
8.18 Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430, 704-704 (2004).
8.19 J. Y. Zhang, L. J. Bie, and I. W. Boyd, “Formation of high quality tantalum oxide thin films at 400 degrees C by 172 nm radiation,” J. J. Appl. Phys. 37, L27-L29 (1998).
8.20 R. T. Webb, “Ten years of TWT Progess Electron Power,” electronic and power, 2, 120-124 (1985).
8.21 S. Ezhilvalavan and T. Y. Tseng, “Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application-A review,” J. Mater. Sci.-Mater. Electron. 10, 9-31 (1999).
8.22 D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiang, and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73, 3076-3078 (1998).
8.23 J. H. He, T. H. Wu, C. L. Hsin, L. J. Chen, and Z. L. Wang, “Synthesis of Si-Ge oxide nanowires via the transformation of Si-Ge thin films with self-assembled Au catalysts,” Electrochem. Solid State Lett. 8, G254-G257 (2005).
8.24 K. H. Lee, S. W. Lee, R. R. Vanfleet, and W. Sigmund, “Amorphous silica nanowires grown by the vapor-solid mechanism,” Chem. Phys. Lett. 376, 498-503 (2003).
8.25 Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817-1822 (2002).
8.26 S. H. Li, X. F. Zhu, and Y. P. Zhao, “Carbon-Assisted Growth of SiOx Nanowires,” J. Phys. Chem. B, 108, 17032-17041 (2005).
8.27 M. Zhang, E. Ciocan, Y. Bando, K. Wada, L. L. Cheng, and P. Pirouz, “Bright visible photoluminescence from silica nanotube flakes prepared by the sol-gel template method,” Appl. Phys. Lett. 80, 491493-491496 (2002).
8.28 F. M. F. de Groot, M. Grioni, J. C. Fuggle, J. Chijsen, G. A. Sawatzky, and H. Petersen, “Oxygen 1s x-ray-absorption edges of transition-metal oxides,” Phys. Rev. B 40, 5715-5723 (1989).
8.29 C. Colliex, T. Manoubi, and C. Ortiz, “Electron-energy-loss- spectroscopy near-edge fine-structures in the iron-oxygen system,” Phys. Rev. B 44, 11402-11411 (1991).
8.30 H. Kurata, E. lefe’vre, C. Collies, and R. Brgdson, “Electron-energy-loss near-edge structures in the oxygen k-edge spectra of transition-metal oxides,” Phys. Rev. B 47, 13763-13768 (1993).
8.31 S. P. Murarka, “Refractory silicides for integrated-circuits,” J. Vac. Sci. Technol. 17, 775-792 (1980).
8.32 S. P. Murarka, “Silicides For VULS Application,” Academic press, INC. P107 (1983).
8.33 D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett.73, 3076-3078 (1998).
8.34 L. S. Liao, X. M. Bao, X. Q. Zheng, N. S.Li, and N. B. Min, “Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon,” Appl. Phys. Lett. 68, 850-852 (1996).
8.35 T. Shimizu-lwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide-films on crystalline Si,” Appl. Phys. Lett. 65, 1814-1816 (1994).
8.36 H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohk, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B, 45, 586-591 (1992).
8.37 W. H. Knausenberger, R. N. Tauber, J. Electrochem. Soc. 1973, 120, 927.
8.38 A. G. Revesz, J. J. Reynolds, J. F. Allison, J. Electrochem. Soc. 1976, 123, 889.
8.39 J. Jasapara, A. V. V. Nampoothir, and W. Rudolph, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B, 63, 0451171-0451175 (2001).
8.40 Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, “Synthesis of taperlike Si nanowires with strong field emission,” Appl. Phys. Lett, 86, 1331121-1331123 (2005).
8.41 Y. L. Chueh, L. J. Chou, S. L. Cheng, and C. J. Tasi, “Synthesis and characterization of metallic TaSi2 nanowires,” Appl. Phys. Let., 87, 2231131-2231133 (2005).
8.42 C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown
at low temperature,” Appl. Phys. Lett., 81,3648-3650 ( 2002).
8.43 J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R.S. Yang, and Z. L. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays,” Appl. Phys. Lett. 87, 2231081-22310813 (2005).
Chapter 9
9.1 C. S. Lao, P. X. Gao, L. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang, “ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes,” Nano Lett. 6, 263-266 (2006).
9.2 J. Zhou, S. Z. Deng, L. Gong, Y. Ding, J. Chen, J. X. Huang, J. Chen, N. S. Xu, and Z. L. Wang, “Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition: Synthesis, growth mechanism, and device application,” J. Phys. Chem. B 110,10296-10302 (2006).
9.3 A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, and Z. L. Wang, “Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks,” Appl. Phys. Lett. 88, 203101-203104 (2006)
9.4 Y. Zhang, L. Li, GH. Li, and L. D. Zhang, “Electrical transport properties of single-crystal antimony nanowire arrays,” Phy. Rev. B , 73113403-73113405 (2006).
9.5 B. Y. Geng, Q. B. Du, X. W. Liu, X. W. Wei, and L. D. Zhang, “One-step synthesis and enhanced blue emission of carbon-encapsulated single-crystalline ZnSe nanoparticles,” Appl. Phys. Lett. 89,033115 (2006).
9.6 S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang, Y. W. Du, and J. Magn. “Preparation and magnetic property of Fe nanowire array,” Magn. Mater. 222, 97-100 (2000).
9.7 D. H. Zhang, Z. Q. Liu, S. Hau, C. Li, B. Lei, M. D. Stewart, J. M. Tour, and C. W. Zhou, “Magnetite (Fe3O4) core-shell nanowires: Synthesis and magnetoresistance,” Nano Lett. 4, 2151-2155 (2004).
9.8 P. Chauhan, S. Annapoorni, and S. K. Trikha, Thin Solid Films, “Humidity-sensing properties of nanocrystalline haematite thin films prepared by sol-gel processing,” 346, 266-268 (1999).
9.9 T. Ohmori, H. Takahashi, H. Mametsuka, and E. Suzuki, “Photocatalytic oxygen evolution on alpha-Fe2O3 films using Fe3+ ion as a sacrificial oxidizing agent ,”Chem. Phys. 2, 3519-3522 (2000).
9.10 W. Weiss, D. Zscherpel, and R. Schlogl, “On the nature of the active site for the ethylbenzene dehydrogenation over iron oxide catalysts,”Catal. Lett. 52, 215-220 (1998).
9.11 Y. Y. Fu, J. Chen, and H. Zhang, “ Synthesis of Fe2O3 nanowires by oxidation of iron,” Chem. Phys. Lett. 350, 491-494(2001).
9.12 R. M. Cornell and U. Schwertmann, “The Iron Oxide: Structure, Properties, Reactions, Occurrence, and Uses” VCH publisher, New York, NY, (1996).
9.13 Y.Y. Fu, RM. Wang, J. Xu, Chen. J, Y. Yan, A. Narlikar, and H. Zhang, “Synthesis of large arrays of aligned alpha-Fe2O3 nanowires , ” Chem. Phys. Lett. 379, 373-379 (2003).
9.14 X. G. Wen, S. H. Wang, Y. Ding ,Z. L. Wang, and S. Yang, “Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires,” J. Phys. Chem. B 109, 215-220 (2005).

9.15 J. Wang, Q. W. Chen, C. Zheng, and B.Y.Hou“Magnetic-field,
-induced growth of single-crystalline Fe3O4 nanowires ,” Adv. Mater.16,137 (2004).
9.16 J. X. Wan, X. Y. Chen, Z. H. Wang, X. G. Yang, and Y. T. Qian, “ A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods,” J. Cryst. Growth. 276, 571-576 (2005).
9.17 D. S. Xue, L. Y. Zhang, C. X. Gao, X. F. Xu, and A. B. Gui, “ Synthesis, Mossbauer spectra and magnetic properties of quasi-one-dimensional Fe3O4 nanowires,” Chen. Phys. Lett. 21, 733-736 (2004).
9.18 J. B. Yang, H. Xu, S. X. You, X. D. Zhou, C. S. Wang, W. B. Yelon, and W. J. James, “ Large scale growth and magnetic properties of Fe and Fe3O4 nanowires,” J. Appl. Phys. 99, 08Q507 (2006).
9.19 F. Liu, P. J. Cao, H. U. Zhang, J. F. Tian, C. W. Xiao, C. M. Shen, J. Q. Li, and H. J. Gao, “ Novel nanopyramid arrays of magnetite,”
Adv. Mater. 17, 1893 (2005).
9.20 C. H. Ye, X. S. Fang, Y. F. Hao, X. M. Teng, and L. D. Zhang,
“Zinc oxide nanostructures: Morphology derivation and evolution,” J. Phys. Chem. B 109,19758-19765 (2005).
9.21 Y. F. Hao, G. W. Meng, C. H. Ye, X. R. Zhang, and L. D. Zhang,
“Kinetics-driven growth of orthogonally branched single-crystalline magnesium oxide nanostructures,” J. Phys. Chem. B, 109 (2005).
9.22 Y. F. Hao, G. W. Meng, C. H. Ye, and L. D. Zhang, “Controlled synthesis of In2O3 octahedrons and nanowires,” Cryst. Growth Des. 5 , 1617-1621(2005)
9.23 E. I. Givargizov “Highly Anisotropic Crystal, 8th ed.” Terra, Scientific, Tokyo, (1987).
9.24 R. Takagi, J. Phys. Soc. Jpn. 1957, 12, 1212.
9.25 B. Million, J. Ruzickova,J. Velisek, and J. Verstal, “Diffusion-
Process in the Fe-Ni system,” Mater. Sci. Eng. 50, 43-52 (1981)
9.26 I. N. Franstevich, D. F. Kalinovich, I. I. Kovenskii, M. D. Smolin, J. Phys. Chem. Solids, 1969, 30, 947.
9.27 T. Ustad, H. Sorum, Phys. Stat. Sol. 1973, 20, 286.
9.28 B. Y. Zong, Y. H. Wu, G. H. Han, B. J. Yang, P. Luo, L. Wang, J. J. Oiu, and K. B. Li, “Synthesis of iron oxide nanostructures by annealing electrodeposited Fe-based fillms,” Chem. Mater. 17, 1515-1520 (2005).
9.29 G. Y. Yang, E. C. Dickey, C. A. Randall, M. S. Randall, and L. A. Mann, “Modulated and ordered defect structures in electrically degraded Ni-BaTiO3 multilayer ceramic capacitors,” J. Appl. Phys. 94, 5990-5996 (2003).
9.30 A. Travlos, N. Boukos, G. Apostolopoulos, and A. Dimoulas, “Oxygen vacancy ordering in epitaxial layers of yttrium oxide on Si (001),” Appl. Phys. Lett. 82, 4053 (2003).
9.31 Z. L. Wang, J. S. Yin, Y. D. Jiang, and J. Zhang, “Studies of Mn valence conversion and oxygen vacancies in La1-xCaxMnO3-y using electron energy-loss spectroscopy,” Appl. Phys. Lett. 70, 3362-3364 (1997).
9.32 C. Colliex, M. Tence, E. Lefe’vre, C. Mory, H. Gu, D. Bouchet, and C. Jeanguillaume, Mikrochim. Acta, 114/115, 71 (1995).
9.33 C.Colliex,T.Manoubi,andC.Ortiz,“Electron-Energy-Loss-Spectroscopy Near-Edge Fine-Structures in the Iron-Oxygen system,”Phys. Rev. B 44, 11402-11411(1991)
9.34 H.Kurata,E.lefe’vre,C.Collies,andR.Brgdson,“Electron-Energy-Loss-Spectroscopy Near-Edge Fine-Structures in the oxygen K-edge spectra of transition-metal oxides,”Phys. Rev. B 47, 13763-13768 (1993)
9.35 J. Jasinski, K. E. Pinkerton, I. M. Kennedy, and V. J. Leppert, “Surface oxidation state of combustion-synthesized gamma-Fe2O3 nanoparticles determined by electron energy loss spectroscopy in the transmission electron microscope,”Sensor and Actuator B, 10919-23 (2005).
9.36 D. H. Pearson, B. Fultz, and C. C. Ahn, “ Measurements of 3D state occupancy in transition-metals using Electron-Energy Loss Spectrometry,” Appl. Phys. Lett. 53, 1405-1407 (1988).
9.37 Z. L. Wang, and J. S. Yin, “ Cobalt valence and crystal structure of La0.5Sr0.5CoO2.25 ,”Philos. Mag. B 77, 49-65 (1998).
9.38 J. H. Zhu, “office of Fossil Energy Fuel cell program,” FY annual report, III. A.16 P113 (2005).
9.39 J. Q. Liang, M. T. Chang, Y. L. Chueh, and L. J. Chou, submitted to Appl. Phys. Lett. (2006).
9.40 A. Grill “Cold Plasma In Materials Fabrication: From Fundamentals To Application” IEEE Press, New York, (1993).
9.41 M. Ohring “The Materials Science Of Thin Films” Academic Press, San Diego, 1992.
9.42 Z. L. Wang, J. S. Yin, W. D. Mo, and Z. J. Zhang, “In-situ analysis of valence conversion in transition metal oxides using electron energy-loss spectroscopy,”J. Phys. Chem B 101, 6793-6798 (1997).
9.43 M. F. Hansen, C. B. Koch, and S. Morup, “Magnetic dynamics of weakly and strongly interacting hematite nanoparticles,” Phys. Rev. B 62, 1124-1135 (2000).
9.44 S. O. Kasap, “Principle Of Electronic Materials and Devcies,” 2nd. Ed. Mcgraw-Hill Companies, Inc., (2002).
9.45 L. Q. Xu, W. Q. Zhang, Y. W. Ding, Y. Y. Peng, S. Y. Zhang, W. C. Yu, and Y. F. Qian, “Formation, characterization, and magnetic properties of Fe3O4 nanowires encapsulated in carbon microtubes,” J. Phys. Chem. B 108, 10859-10862 (2004).
9.46 J. Wang, Q. W. Chen, C. Zeng, and B. Y. Hou,“Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires,” Adv. Mater. 16, 137 (2004).
9.47 W. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchanskyy, Y. Ding, Z. L. Wang, M. Swihart, and P. N. Prasad “A general approach to binary and ternary hybrid nanocrystals,” Nano Lett. 6, 875-881 (2006).
9.48 Y. L. Chueh, L. J. Chou, C. H. Hsu, and S. C. Kung, “ Synthesis and characterization of taper- and rodlike Si nanowires on SixGe1-x substrate,” J. Phys. Chem. B 109 , 21831-21835 (2005).
9.49 E. R. Batista, and R. A. Friesner, “A self-consistent charge-embedding methodology for ab initio quantum chemical cluster modeling of ionic solids and surfaces: Application to the (001) surface of hematite (alpha-Fe2O3),” J. Phys. Chem. B 106, 8136-8141 (2002).
9.50 Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, “Synthesis of taperlike Si nanowires with strong field emission ,” Appl. Phys. Lett. 86, 133112 (2005).
9.51 Y. W. Ok, T. Y. Seong, C. J. Choi, and K. N. Tu, “Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing,” Appl. Phys. Lett. 88, 043106-043109 (2006).
9.52 B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, ,L. Q. Liu, J.Xu, and D. P. Yu, Synthesis and field emission properties of TiSi2 nanowires Appl. Phys. Lett. 86, 243103-243106 (2005).
9.53 J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J Chen, Y. L. Chueh, L. J. Chou, and Z. L. Wang, “Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties,” Small 2,116-120 (2006).
9.54 J. H. He, R. S. Yang, Y. L. Chueh, L. J. Chou, L. J. Chen, and Z. L. Wang, “Aligned AlN nanorods with multi-tipped surfaces-Growth, field-emission, and cathodoluminescence properties,” Adv. Mater. 18, 650 (2006).
Chapter 10
10.1 T. H. Moon, M. C. Jeong, B. Y. Oh, M. H. Ham, M. H. Jeun, W. Y. Lee, and J. M. Myoung, “Chemical surface passivation of HfO2 films in a ZnO nanowire transistor,” Nanotechnology 17, 2116-2121 (2006).
10.2 Z. L. Wang, and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312, 242-246 (2006).
10.3 P. Nguyen, H. T. Ng, T. Yamada, M. K. Smith, J. Li, J. Han and M. Meyyappan, “Direct integration of metal oxide nanowire in vertical field-effect transistor,” Nano Lett. 4, 651-657 (2004).
10.4 Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, and C. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” J. Appl. Phys. Lett. 87, 153504-153506 (2005).
10.5 C. S. Lao, P. X. Gao, L. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang, “ZnO nanobelt/nanowire schottky diodes formed by dielectrophoresis alignment across Au electrodes,” Nano Lett. 6, 263-266 (2006).
10.6 A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, and Z. L. Wang, “Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks,” Appl. Phys. Lett., 88, 203106-203109 (2006).
10.7 C. Ronning, P. X. Gao, Z. L. Wang, and D. Schwen, “Manganese-doped ZnO nanobelts for spintronics,” Appl. Phys. Lett., 84, 783-785 (2004).
10.8 Bielanski, A.; Deren, J.; Haber, J. Nature, 179, 668 (1957).
10.9 B. W. Licznerski, K. Nitsch, H. Teterycz, and K. Wisniewski, “The influence of Rh surface doping on anomalous properties of thick-film SnO2 gas sensors,” Sens. Actuators B, 79, 157-162 (2001).
10.10 A. K. Prasad, D. J. Kubinski, and P. I. Gouma, “Comparison of sol-gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection,” Sens. Actuators B, 93, 25-30 (2003).
10.11 G. Korotcenkov, V. Brinzari, V. Golovanov, A. Cerneavshi, V. Matolin, and A. Todd, “Acceptor-like behavior of reducing gases on the surface of n-type In2O3,” Appl. Surf. Sci., 227, 122-131 (2004).
10.12 M. Catti, and G. Valerio, “Theoretical-study of electronic, magnetic, and structural-properties of alpha-Fe2O3 (hematite),” Phy. Rev. B, 51, 7441-7450 (1995).
10.13 J. Chen, L. Xu, W. Li, and X. Gou, “ -Fe2O3 Nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater., 17, 582-586 (2005).
10.14 A. Gurlo, N. Bârsan, A. Oprea, M. Sahm, T. Sahm, and U. Weimar, “An n- to p-type conductivity transition induced by oxygen adsorption on alpha-Fe2O3,” Appl. Phys. Lett., 85, 2280-2082 (2004).
10.15 S. Mathur, S. Barth, H. Shen, J. C. Pyun, and U. Werne
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top