|
Reference Chapter 1 1.1 M. Forster, U. Mantz, S. Ramminger, K. Thonke, R. Sauer, H. Kibbel, F. Schoffler, and H. J. Herzog, “Electroluminescence, photoluminescence, and photocurrent studies of Si/SiGe p-i-n heterostructures,” J. Appl. Phys. 80, 3017-3023 (1996). 1.2 A Richiter, P. Steiner, F. Kozlowski, and W. Lang, “Current-induced light emission from a porous silicon device,” IEEE Electron Device Lett. 12, 691-692. (1991) 1.3 H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki and T. Nakagiri, “Quantum size effects on photoluminescence in ultrafine Si particles,” Appl. Phys. Lett. 56, 2379-2380 (1990). 1.4 G. R. Lin, C. J. Lin, L. J. Chou, and Y. L. Chueh, “Nanotechnology-Microphotoluminescence and Microphotoreflectance Analyses of CO2 Laser Rapid-Thermal-Annealed SiOx Surface With Buried Si Nanocrystals,” IEEE Trans. Nanotechnol. 5, 511 (2006). 1.5 H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, “1.54-µm luminescence of erbium-implanted III-V semiconductors and silicon,” Appl. Phys. Lett. 43, 943-945(1983). 1.6 J. Michel, J. L. Benton, R. F. Ferrante, D. C. Jacobson, D. J. Eaglesham, E. A. Fitzgerald, Y.-H. Xie, J. M. Poate, and L. C. Kimerling, “Impurity enhancement of the 1.54-µm Er3 + luminescence in silicon,” J. Appl. Phys. 70, 2672-2678 (1991). 1.7 H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-µm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 46, 381-383 (1985). 1.8 B. Zheng, J. Michel, F. Y. G.. Ren, L. C. Kimerling, D. C. Jacobson, and J. M. Poate, “Room-temperature sharp line electroluminescence at =1.54 µm from an erbium-doped, silicon light-emitting diode,” Appl. Phys. Lett. 64, 2842-2844 (1994). 1.9 D. J. Lockwood, Z. H. Lu, and J.M. Baribeau, “Quantum Confined Luminescence in Si/SiO2 Superlattices,” Phys. Rev. Lett. 76, 539-541 (1996). 1.10 H. Von Kanel, N. Onda, H. Sirringhaus, E. Mullergubler, S. Goncalvesconto, and C. Schwarz, “Epitaxial Phase Transitions in the Iron Silicon System,” Appl. Surf. Sci. 70/71, 559-56 (1993). 1.11 J. Desimoni, H. Bernas, M. Behar, X. W. Lin, S. Washburn, and Z. Lilientalweber, “Ion-Beam Synthesis of Cubic FeSi2,” Appl. Phys. Lett. 62, 306-308 (1993). 1.12 J. Alvarez, J. J. Hinarejos, E. G. Michel, and R. Miranda, “Determination of the Fe/Si(111) Phase Diagram by Means of Photoelectron Spectroscopies,” Surf. Sci. 287/288, 490-494 (1993). 1.13 N. E. Christensen, “Electronic-Structure of Beta-FeSi2,” Phys. Rev. B 42, 7148-7153 (1990). 1.14 M. Libezny, J. Poortmans, T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, and M. Powalla, , “Book of Abstracts of 13th European Photovoltaic Solar Energy Conference and Exhibition,” PO8B., 49 (1995). 1.15 H. Katsumata, Y. Makita, N. Kobayashi, H. Shibata, M. Hasegawa, S Uekusa, I. Aksenov, S. Kimura, A. Obara, and S. Uekusa, “Optical Absorption and Photoluminescence Studies of Beta-FeSi2 Prepared by Heavy Implantation of Fe+ Ions into Si,” J. Appl. Phys. 80, 5955-5962 (1996). 1.16 Katsumata, H., Makita, Y., Kobayashi, N., Shibata, H., Hasegawa, M., and Uekusa, S., “Effect of Multiple Step Annealing on the Formation of Semiconducting Beta-FeSi2 and Metallic Alpha-Fe2Si5 on Si(100) by Ion-Beam Synthesis,” Jpn. J. Appl. Phys. 36(5), 2802-2812 (1997). 1.17 M. Libezny, J. Poortmans, T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, and M. Powalla, Proc. Of 13th European Photovoltaic Solar Energy Conf. 1326 (1995). 1.18 M. Riffel, E. Gross, and U. Stohrer, “Electrical Contacts for FeSi2 and Higher Manganese Silicide Thermoelectric Elements”, J. Mater. Sci.-Mater. Electron 6, 182-185 (1995). 1.19 R. Eppenga, “ab initio band-structure calculation of the semiconductor ��-FeSi2,” J. Appl. Phys. 68, 3027-3029 (1990). 1.20 Z. Yang, K. P. Homewood, M. S. Finney, M. A. Harry, and K. J. Resson, “Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2,” J. Appl. Phys. 78, 1958-1963 (1995). 1.21 C. A. Dimitriadis, J. H. Werner, S. Logothtidis, M. Stutzmann, J. Weber, and R. Nesper, “Electronic properties of semiconducting FeSi2 films,” J. Appl. Phys. 68, 1726-1734 (1990). 1.22 M. C. Bost and J. E. Mahan, “A clarification of the index of refraction of beta-iron disilicide,” J. Appl. Phys. 64, 2034-2037(1988). 1.23 E. Arushanov, E. Bucher, Ch. Kloc, O. Kulikova, L. Kulyuk, and A. Siminel, “Photoconductivity in n-type beta -FeSi2 single crystals,” Phys. Rev. B 52, 20-23 (1995). 1.24 T. Miya, Y. Terunuma, T. Hosaka and T. Miyashita, Electron. Lett. 15, 106-109 (1979). 1.25 J. Derrien, J. Chevrier, V. Le Thanh, and J. E. Mahan, “Semiconducting Silicide Silicon Heterostructures - Growth, Properties and Applications,” Appl. Surf. Sci. 56-58, 382-393 (1992). 1.26 H. Lange, “Electronic Properties of Semiconducting Silicides,” Phys. Stat. Sol. (b) 201, 3-66 (1997). 1.27 E. Grob., M. Riffel, and U. Stohrer, “Thermoelectric Generators Made of FeSi2 and HMS - Fabrication and Measurement,” J. Mater. Res. 10, 34-40 (1995). 1.28 H. Katsumata, H. L. Shen, N. Kobayashi, Y. Makita, M. Hasegawa, H. Shibata, S. Kimura, A. Obara, and S. Uekusa, Proc. 9th International Conference on Ion Beam Modification of Materials, Elserier Science, New York, 943 (1996). 1.29 M. Libezny, J. Poortmans, T. Vermeulen, J. Nijs, P. H. Amesz, K. Herz, and M. Powalla, Proceedings of 13th European Photovoltaic Solar Energy Conference, 1326 (1995). 1.30 D. Leong, M. Harry, K. J. Reeson, and K. P. Homewood, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 �慆”, Nature 387, 686-688(1997). 1.31 T. Suemasu, Y. Negishi, K. Takakura and F. Hasegawa, “Room Temperature 1.6 �慆 Electroluminescence from a Si-based Light Emitting Diode with beta-FeSi2 Active Region”, Jpn. J. Appl. Phys. 39, 1013-1015(2000). Chapter 2 2.1 P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, 933-937 (1996). 2.2 C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci. 30, 545-610 (2000). 2.3 J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. deJongh, “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature 375, 767-769 (1995). 2.4 K. K. Likharev and T. Claeson, “Single Electronics,” Sci. Am. 266, 80-85 (1992). 2.5 G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, “Architectonic Quantum Dot Solids,” Acc. Chem. Res. 32, 415-423 (1999). 2.6 M. Narihiro, G. Yusa, Y. Nakamura, T. Noda, and H. Sakaki, “Resonant Tunneling of Electrons via 20 nm Scale InAs Quantum Dot and Magnetotunneling Spectroscopy of its Electronic States,” Appl. Phys. Lett. 70, 105-107 (1996). 2.7 J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science 286, 1550-1552 (1999). 2.8 C. Papadopoulos, A. Rakitin, J. Li, A. S. Vedeneev, and J. M. Xu, “Electronic Transport in Y-Junction Carbon Nanotubes,” Phys. Rev. Lett. 85, 3476-3479 (2000). 2.9 M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, “Nanowire Resonant Tunneling Diodes,” Appl. Phys. Lett. 81, 4458-4460 (2002). 2.10 J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on Silicon Nanoelectronics for Terascale Integration,” Science 293, 2044-2049 (2001). 2.11 C. M. Lieber, “The Incredible Shrinking Circuit,” Sci. Am. 285(3), 58-65 (2001). 2.12 V. Balzani, A. Credi, and M. Venturi, “The Bottom-Up Approach to Molecular-Level Devices and Machines,” Chem. Eur. J. 8, 5524-5532 (2002). 2.13 K. E. Drexler, “Engines of Creation, The Coming Era of Nanotechnology,” Anchor Press, New York (1986). 2.14 K. E. Drexler, “Machine-Phase Nanotechnology,” Sci. Am. 285(3), 74-75 (2001). 2.15 P. Yang, Y. Wu and R. Fan, “Inorganic Semiconductor Nanowires,” Inter. J. Nano. 1, 1-39 (2002). 2.16 Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song, and P. Yang, “Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties,” J. Chemistry, Euro. 81260-1268 (2002). 2.17 P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, and H. J. Choi, “Controlled Growth of ZnO Nanowires and Their Optical Properties,” Adv. Func. Mater. 12, 323-331 (2002) 2.18 E. W. Wang, P. E. Sheehan, and C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes,” Science 277, 1971-1975 (1997). 2.19 J. D. Holmes, K. P. Johnston, R. C. Doty, and B. A. Korgel, “Control of Thickness and Orientation of Solution-Grown Silicon Nanowires,” Science 287, 1471-1473 (2000). 2.20 L. D. Hicks and M. S. Dresselhaus, “Thermoelectric Figure of Merit of a One-Dimensional Conductor,” Phys. Rev. B 47, 16631-16634 (1993). 2.21 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897-1899 (2001). 2.22 Y. Wu and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, 605-607 (2000). 2.23 Y. Wu, B. Messer and P. Yang, “Superconducting MgB2 Nanowires,” Adv. Mater. 13, 1487-1489 (2001). 2.24 Y. Wu and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc. 123, 3165-3166 (2001). 2.25 C. C. Chen and C. C. Yeh, “Large-Scale Catalytic Synthesis of Crystalline Gallium Nitride Nanowires,” Adv. Mater. 12, 738-741 (2000). 2.26 M. H. Huang, Y. Wu, H. Feick, W. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater. 13, 113-116 (2001). 2.27 M. Yazawa, M. Koguchi, A. Muto, M. Ozawa, and K. Hiruma, “Effect of One Monolayer of Surface Gold Atoms on the Epitaxial Growth of InAs Nanowhiskers,” Appl. Phys. Lett. 61, 2051-2053 (1992). 2.28 Y. Wu, R. Fan, and P. Yang, “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires,” Nano Lett. 2, 83-86 (2002). 2.29 Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic Growth of β-Ga2O3 Nanowires by Arc Discharge,” Adv. Mater. 12, 746-750 (2000). 2.30 X. F. Duan and C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12, 298-302 (2000). 2.31 A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, 208-211 (1998). 2.32 T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth,” Science 270, 1791-1794 (1995). 2.33 M. H. Huang, A. Choudrey, and P. Yang, “Ag Nanowire Formation within Mesoporous Silica,” Chem. Commum. 12, 1603-1604 (2000). 2.34 J. Zhu and S. Fan, “Nanostructure of GaN and SiC Nanowires Based on Carbon Nanotubes,” J. Mater. Res. 14, 1175-1177 (1999). 2.35 Y. Li, G. W. Meng, L. D. Zhang, and F. Philipp, “Ordered Semiconductor ZnO Nanowire Arrays and Their Photoluminescence Properties,” Appl. Phys. Lett. 76, 2011-2013 (2000). 2.36 R. S. Wagner and W. C. Ellis, “Vapor-Solid-Liquid Mechanism of Single Crystal Growth,” Appl. Phys. Lett. 4, 89-90 (1964). 2.37 Y. Y. Wu and P. D. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth” J. Am. Soc. 123, 3165-3166 (2001). 2.38 J. Westwater, D. P. Gosain, S. Tomiya, and S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction,” J. Vac. Sci. Technol. B, 15, 554-557 (1997). 2.39 Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto, and D. R. M. Walton, “3D Silicon Oxide Nanostructures: from Nanoflowers to Radiolaria,” J. Mater. Chem. 8, 1859-1864 (1998). 2.40 Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zhou, and G. Wang, “Synthesis of a-SiO2 Nanowires Using Au Nanoparticle Catalysts on a Silicon Substrate,” J. Mater. Res. 16, 683-686 (2001). 2.41 Skuja, “Optically Active Oxygen-Deficiency-Related Centers in Amorphous Silicon Dioxide,” J. Non-Cryst. Solids. 239, 16-48 (1998). 2.42 Lu, T. Hanrath, K. P. Johnston, and B. A. Korgel, “Growth of Single Crystal Silicon Nanowires in Supercritical Solution from Tethered Gold Particles on a Silicon Substrate,” Nano Lett. 3, 93-99 (2003). 2.43 H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett. 323, 224-228 (2000). 2.44 P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism,” Physica E 9, 305-309 (2001). 2.45 N. D. Zakharov , P. Werner , G. Gerth , L. Schubert, L. Sokolov , U. Gosele, “ Growth phenomena of Si and Si/Ge nanowires on Si(111) by molecular beam epitaxy,” J. Cryst. Growth 290, 6-10 (2006). 2.46 S. Kar , B. N. Pal , S. Chaudhuri , D. Chakravorty, “One-dimensional ZnO nanostructure arrays: Synthesis and characterization,” J. Phys. Chem. B 110 (10), 4605-4611 (2006). 2.47 Z. H. Lan , C. H. Liang, C. W. Hsu , C. T. Wu , H. M. Lin , S. Dhara , K. H. Chen, L. C. Chen , C. C. Chen, “Nanohomojunction (GaN) and nanoheterojunction (InN) nanorods on one-dimensional GaN nanowire substrates,” adv. Funct. Mater. 14 (3), 233-237 (2004). 2.48 S. K. Chan , N. Liu , Y. Cai , N. Wang , G.. K. L. Wong , I. K. Sou, “Molecular beam epitaxy-grown ZnSe nanowires,” J. Electron. Mater. 35 (6), 1246-1250 (2006) 2.49 Y. D. Yin, D. G. Zhang, and Y. N. Xia, “Synthesis, and Characterization of MgO Nanowires through a Vapor-Phase Precusor Mthod,” Adv. Funct. Mater. 12, 293-298 (2002). 2.50. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P, Yu, Y. Ding, Q. L. Hang, and S.Q. Feng, “Ga2O3 Nanowires Prepared by Physical Evaporation,” Solid State Comm. 109, 677-682 (1999). 2.51 R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-Assisted Semiconductor Nanowire Growth,” Adv. Mater. 15, 635-640 (2003). 2.52 Q. Zhang, Y. Lifshitz and S. T. Lee, “Oxide-Assisted Semiconductor Nanowire Growth,” Adv. Mater. 15, 635-640 (2003). 2.53 W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish, and S. T. Lee, “Free-Standing Single Crystal Silicon Nanoribbons,” J. Am. Chem. Soc. 123, 11095-11096 (2001). 2.54 S. T. Lee, N. Wang, and C. S. Lee, “Semiconductor Nanowires: Synthesis, Structure and Properties,” Mater. Sci. Eng. A 286, 16-23 (2000). 2.55 N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si Nanowires Grown from Silicon Oxide,” Chem. Phys. Lett. 29923, 7-242 (1999). Chapter 3 3.1 D. Shindo, T. Oikawa, “Analytical Electron Microscopy for Materials Science,” Springer Japan (2002). Chapter 4 4.1 H. C. Cheng, T. R. Yew, and L. J. Chen, “Interfacial reactions of iron thin films on silicon,” J. Appl. Phys. 57, 5246-5250(1985). 4.2 P. Y. Dusausy, J. Protas, R. Wandji, and B. Roques, Acta. Cryst. B 27 (1971) 1209. 4.3 W. B. Person, “Handlook of Lattice Spacing and Structure of Metals and Alloys,” (Pergamon, New York, 1967). 4.4 C. A. Dimitriadis, J. H. Werner, S. Logothetids, M. Stutamann, J. Weber, R. Nesper, J Weber, and R. Nesper, ” Electronic properties of semiconducting FeSi2 films,” J. Appl. Phys. 68, 1726-1734(1990) . 4.5 J. E. Mahan, K. M. Geib, G.. Y. Robinson, R. G. Long, X. Yan, G. Baj, M. A. Nicolet, and M. Nathan, “Effect of the oxide-desorption temperature on the substrate–epilayer interface charge in organometallic vapor-phase epitaxy of GaAs,” Appl. Phys. Lett. 56, 2126-2129 (1990). 4.6 K. M. Geib, J. E. Mahan, R. G. Long, M. Nathan, and G. Bai, “Epitaxial orientation and morphology of β-FeSi2 on (001) silicon” J. Appl. Phys. 70, 1730-1736 (1991). 4.7 A. H. Reader, J. P. W. B. Duchateaum, J. Timmers, and F. J. G. Hakkens, “Epotaxial beta-FeSi2, formed by Fe deposition on hot Si(001),” Appl. Surf. Sci. 73, 131-134(1993). 4.8 H. Sirrighaus, N. Onda, E. Muller-Gubler, P. Muller, R. Stalder, and H. Von Kanel, “Phase transition from pseudomorphic FeSi2 to beta -FeSi2/Si(111) studied by in situ scanning tunneling microscopy,” Phys. Rev. B 47, 10567-10577 (1993). 4.9 M. Tanaka, Y. Kumagat, T. Suemasu, and F. Hasegawa, “Formation of beta-FeSi2 layers on Si(001) substrates,” Jap. J. Appl. Phys. 36, 3620-3624 (1997). 4.10 C. M. Osbum, J. Y. Tsai, and J. Sun, “Metal silicides: Active elements of ULSI contacts,” J. Electron Mater. 25, 1725-1739 (1996). 4.11 J. Y. Tsai, C. M. Osbum, and S. L. Hsia, Mater. Res. Soc. Symp. Proc. 402, 245-248 (1996). 4.12 T. Iinuma, H. Akutsu, K. Ohuchi, K. Miyahshita, Y. T. Shima, and K. Suguro, “Symposium VLSI Technical,” Digest Honolulu, P188 (1998). 4.13 G. B. Kim and H. K. Baik, “Control of Co flux through ternary compound for the formation of epitaxial CoSi2 using Co/Ti/Si system,” Appl. Phys. Lett 69, 3498-3500 (1998). 4.14 G. B. Kim, J. S. Kwak, H. K. Baik, and S.M. Lee, “Interfacial reaction and formation mechanism of epitaxial CoSi2 by rapid thermal annealing in Co/Ti/Si(100) system,” J. Appl. Phys. 82, 2323-2328 (1997). 4.15 K. K. Larsen, J. Tavares, H. Bender, R. A. Donaton, A. Lanwers, and K. Maex, “Growth of epitaxial β-FeSi2 on (100) silicon using Fe-Ti-Si diffusion couples,” J. Appl. Phys. 78, 599-601 (1995). 4.16 K. Radermacher, S. Mantl, Ch. Dieker, and H. Lüth, “Growth-kinetices of iron silicides fabricated by solid-phase epitaxy or ion-bean synthesis,” Thin solid Films 215, 76-83 (1992). 4.17 Charalabos A. Dimitriadis, and Jurgen H. Werner, “Growth mechanism, and morphology of semiconducting FeSi2 films,” J. Appl. Phys. 68, 93-96 (1990). 4.18 G. V. Raynor and V. G. Rivlin, “Phase equilibria in iron ternary alloys,”(The institute of Metals, 1988). 4.19 A. Yu. Kuzenetsov and B. G. Svensson, “Nickel atomic diffusion in amorphous silicon,” Appl. Phys. Lett. 66, 2229-2231 (1995). 4.20 E. R. Weber, “Transition-metals in silicon,” Appl. Phys. A: materials science & processing 30, 1-22 (1983). 4.21 D. Hesse, P. Werner, J. Heydenreich, and R. Mattheis, Mater, Res. Soc. Symp. Proc. 320, 221 (1994). 4.22 L. Haderbache, P. Wetzel, C. Pirri, J. C. Peruchetti, D. Bolmont, and G. Gewinner, “Epitaxy of CoSi2 on Si (111) at low temperature ( 400 °C),” Appl. Phys. Lett. 53, 1384-1386 (1988). 4.23 M. Tanaka, Y. Kumagai, T. Suemasu, and F. Hasegawa, “Reactive deposition epitaxial growth of beta-FeSi2 layers on Si(001),” Appl. Surf. Sci. 117, 303-307 (1997). 4.24 J. Wu, and S. Shimizu, “Formation of iron silicides on Si(110) by reactive deposition epitaxy,” Thin Solid Films 290-291, 525-530 (1996). 4.25 C. Detavernier, C. Lavoie, and R. L. Van Meirhaeghe, Thin Solid Film, 468 (2004) 174. 4.26 C. Detavernier, R. L. Van Meirhaeghe, F. Cardon, and K. Maex, “Influence of mixing entropy on the nucleation of CoSi2,” Phys. Rev., B 62, 12045-12051 (2000). 4.27 O. S. Gorelkin, S. V. Russ. Mikhailov, J. Phys. Chem. 45 (1971)1523. 4.28 M. Rühle, L. J. Ma, and W. Wunderlich, “TEM studies on phases and pahse stabilities of zirconia ceramics,” Physica A and C 150, 86-98 (1988). 4.29 H. Lange, “Electronic properties of semiconducting silicides,” Phys. Status Solidi B 201, 3-65 (1997). 4.30 N. E. Christensen, “Electronic structure of beta -FeSi2,”Phys. Rev. B 42, 7148-7153 (1990). 4.31 R. Eppenga, J. Appl. Phys. 68 (1990) 3027. 4.32 Z. Yang, K. P. Homewood, M. S. Finney, M. A. Harry, and K. J. Resson, “Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2,” J. Appl. Phys. 78, 1958-1963 (1995). 4.33 E. Arushanov, E. Bucher, Ch. Kloc, O. Kulikova, L. Kulyuk, and A. Siminel, “Photoconductivity in n-type beta-FeSi2 single crystals,” Phys. Rev. B 52, 20-23 (1995). 4.44 M. Sugiyama and Y. Maeda, “Microstructure characterization of ion-beam synthesized β-FeSi2 phase by transmission electron microscopy,” Thin Solid Films 381, 225-230 (2001). 4.45 Z. Yang and K. P. Homewood, “Effect of annealing temperature on optical and structural properties of ion-beam-synthesized semiconducting FeSi2 layers,” J. Appl. Phys. 79, 4312-4317 (1996). 4.46 Z. Yang, K. P. Homewood, K. J. Resson, M. S. Finney, and M. A. Harry, “TEM investigation of ion-beam synthesized semicoudcting FeSi2,” Mater. Lett. 23, 215-220 (1995). 447. Z. Yang, G. Shao, K. P. Homewood, K. J. Resson, M. S. Finney, and M. Harry, “Order domain boundaries in ion beam synthesized semiconducting FeSi2 layers,” Appl. Phys. Lett. 67, 667 (1995). 4.47 A. Terrasi, S. Ravesi, M. G. Grimaldi, C. Spinella, J. Vac. Sci. Technol. A 12, 667-669 (1994). 4.49 D. Gerthsen, K. Radermacher, Ch. Dieker, and S. Mantl, “Structural properties of ion-beam-synthesized β-FeSi2 in Si(111),” J. Appl. Phys. 71, 3788-3794 (1992). 4.50 N. Cherief, C. D. Anterroches, R. C. Cinti, T. A. Nguyen-Tan, and J. Derrien, “Semiconducting silicide-silicon heterojunction elaboration by solid phase epitaxy,” Appl. Phys. Lett. 55, 1671-1673 (1989). 4.51 J. Tavares, H. Bender, and K. Meax, “Transmission electron microscopy characterisation of ion beam synthesised FeSi2 layers,” Thin Solid Films 277, 90-97 (1996). 4.52 D. Leong, M. Harry, K. J. Resson, and K. P. Homewood, “A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 μm,” Nature 387, 686-688 (1997). 4.53 T. Suemasu, Y. Negishi, K. Takakura, and F. Hasegawa, “Room temperature 1.6 um m electroluminescence from a Si-based light emitting diode with beta-FeSi2 active region,” Jpn. J. Appl. Phys., Part 2 39, L1013-L1015 (2000). 4.54 T. Jarmar, J. Seger, F. Ericson, D. Mangelinck, U. Smith, and S. L. Zhang, “Morphological and phase stability of nickel–germanosilicide on Si1–xGex under thermal stress,” J. Appl. Phys. 92, 7193-7199 (2002). 4.55 W. W. Wu, T. F. Chiang, S. L. Cheng, S. W. Lee, and L. J. Chen, “Enhanced growth of CoSi2 on epitaxial Si0.7Ge0.3 with a sacrificial amorphous Si interlayer,” Appl. Phys. Lett. 81, 820-822 (2002). 4.56 V. Aubry-Fortuna, O. Chaix-Pluchery, F. Fortuna, C. Hernandez, Y. Campidelli, and D. Bensahel, “Structural properties and stability of Zr and Ti germanosilicides formed by rapid thermal annealing,” J. Appl. Phys. 91, 5468-5473 (2002). 4.57 H. Chen, P. Han, X. D. Huang, L. Q. Hu, Y. Shi, and Y. D. Zheng, “Semiconducting Ge–Si–Fe alloy grown on Si(100) substrate by reactive deposition epitaxy,” Appl. Phys. Lett. 69, 1912-1914 (1996). 4.58 A. Zenkevich, P. I. Gaiduk, H. P. Gunnlaugsson, and G. Weyer, “On the role of Ge in the growth of β-FeSi2 on silicon (100) surfaces,” Appl. Phys. Lett. 81, 904-906 (2002). 4.59 H. T. Lu, L. J. Chen, Y. L. Chueh, and L. J. Chou, “Formation of light-emitting FeSi2 in Fe thin films on ion-implanted (111)Si,” J. Appl. Phys. 93, 1468-1471 (2003). 4.60 D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Ozturk, “Stability of C54 titanium germanosilicide on a silicon-germanium alloy substrate,” J. Appl. Phys. 77, 5107-5114 (1995). 4.61 Z. Wang, D. B. Aldrich, Y. L. Chen, D. E. Sayers, and R. J. Nemanich, “Silicide formation and stability of Ti/SiGe and Co/SiGe,” Thin Solid Films 270, 555-560 (1995). 4.62 J. F. Chen and L. J. Chen, “Morphological stability of TiSi2 on polycrystalline silicon” Thin Solid Films 293, 34-36 (1997). Chapter 5 5.1. K. Eberl, M. O. Lipinski, Y.M. Maznz, W. Winter, N.Y. Jin-Phillipp, and O.G. Schmidt, “Self-assembling quantum dots for optoelectronic devices on Si and GaAs,” Physica E 9, 164-174 (2001). 5.2. N. Chiodini, F. Meinardi, F. Morazzoni, A. Paleari, and R. Scotti, “Blue InGaN-based laser diodes with an emission wavelength of 450 nm,” Appl. Phys. Lett. 76, 22-24 (2000). 5.3. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Bla¨sing, “ Electrochromic semiconductor nanocrystal films,” Appl Phys. Lett. 80, 4-6 (2002) 5.4. W. Henley, Y. Koshka, J. Lagowski, and J. Siejka, “Infrared photoluminescence from Er doped porous Si,” J. Appl. Phys. 87, 7848-7852 (2000). 5.5. Z. Yang, K. P. Homewood, M. S. Finney, M. A. Harry, K., and J. Resson, “Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi2,” J. Appl. Phys. 78, 1958-1963 (1995). 5.6. T. Suemasu, Y. Negishi, K. Takakura, and F. Hasegawa, “Room temperature 1.6 um electroluminescence from a Si-based light emitting diode with beta-FeSi2 active region,” Jpn. J. Appl. Phys., Part 2 39, L1013-L1015 (2000). 5.7. Tanaka, Y. Kumagai, T. Suemasu, and F. Hasegawa, “Reactive deposition epitaxial growth of β-FeSi2 layers on Si(001),” Applied Surface Science, 117/118, 303-307 (1997). 5.8. Nikolai. IEEE J. Selected Topics in quantum electrons, 6, 3 (2000). 5.9. K. Ismail, F. K. LeGoues, K. L. Saenger, M. Arafa, J. O. Chu, P. M. Mooney, and B. S. Meyerson, “Identification of a Mobility-Limiting Scattering Mechanism in Modulation-Doped Si/SiGe Heterostructures,” Phys. Rev. Lett. 73, 3447–3450 (1994). 5.10. Y. H. Xie, D. Monroe, E. A. Fitzgerald, P. J. Silverman, F. A. Theil, and G. P. Watson, “Very high mobility two-dimensional hole gas in Si/GexSi1–x/Ge structures grown by molecular beam epitaxy,” Appl. Phys. Lett. 63, 2263-2264 (1993). 5.11. J. W. Matthews, A.E. Blakeslee, J. Cryst. Growth, 27, 118 (1997) pp. 283-287. 5.12. C. H. Yu, Y. L. Chueh, S. W. Lee, S. L. Cheng, L. J. Chen, and L. J. Chou, “Solid phase reactions between Fe thin films and Si-Ge layers on Si,” Thin Solid films 461, 81-85 (2004). 5.13. T. Jarmar, J. Seger, F. Ericson, D. Mangelinck, U. Smith, and S. L. Zhang, “Morphological and phase stability of nickel–germanosilicide on Si1–xGex under thermal stress,” J. Appl. Phys. 92, 7193-7199 (2002). 5.14. D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, and M. C. Ozturk, “Stability of C54 titanium germanosilicide on a silicon-germanium alloy substrate,” J. Appl. Phys. 77, 5107-5114 (1995). 5.15. Z. Wang, D. B. Aldrich, Y. L. Chen, D. E. Sayers, and R. J. Nemanich, “Silicide formation and stability of Ti/SiGe and Co/SiGe,” Thin Solid Films 270, 555-560 (1995). 5.16. Z. Wang. Y. L. Chen, H. Ying, R. J. Nemonich, and D. E. Sayer, Mater. Res. Soc. Sym. Proc. 320, 397 (1994). 5.17. S. S. Lau, J. S.-Y. Feng, J. O. Olowolafe and M.-A. Nicolet, Thin Solid Films, 25, 415 (1975). 5.18. The Materials Science of Thin Films”, Milton Ohring academic Press, INC P198 (1992). 5.19. W. Frank, Def. Forum, 75, 121 (1991). 5.20. S. Coffa, J. M. Poate, D. C. Jacobson, W. Frank, and W. Gustin, “Determination of diffusion mechanisms in amorphous silicon,” Phys. Rev. B 45, 8355–8358(1992). 5.21. V. E. Borisenko, “Semiconducting Silicide,” Springer, New York, 94-95 (1999). 5.22. K. Takarabe, T. Ikai, and Y. Mori, “Structural study of FeSi2 under pressure,” J. Appl. Phys., 96, 4903-4908 (2004). 5.23. N. E. Christensen, “Electronic structure of beta -FeSi2,” Phys. Rev. B 42, 7148-7153 (1990). 5.24. A. B. Filonov, D. B. Migas, V. L. Shaposhnikov, N. N. Drozhkin, G. V. Petrov, and V. E. Borizenko, “Electronic and related properties of crystalline semiconducting iron disilicide,” J. Appl. Phys. 79, 7708-7712 (1996). 5.25. G. Davies, Phys. Rep.,176, 83 (1989). 5.26. Ronald C. Newman Mat. Res. Soc. Symp., Proc., 59, 403 (1986). 5.27. H. Chen, P. Han, X. D. Huang, L. Q. Hu, Y. Shi, and Y. D. Zheng, “Semiconducting Ge–Si–Fe alloy grown on Si(100) substrate by reactive deposition epitaxy,” Appl. Phys. Lett. 69, \1912-1914 (1996) Chapter 6 6.1 A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots,” Science, 271, 933-937 (1996). 6.2 Q. H. Wang, M. Yan, and R. P. H.Chang, “Flat panel display prototype using gated carbon nanotube field emitters,” Appl. Phys. Lett. 78, 1294-1296 (2001) . 6.3 A. M. Morales, and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science, 279, 208-211 (1998). 6.4 Y. Y. Wu, P. D.Yang, “Direct observation of vapor-liquid-solid nanowire growth,” J. Am. Soc. 123, 3165-3166 (2001). 6.5 T. J. Trentler, “Solution-liquid-solid growth of crystalline III-V semiconductors-an analogy to vapor-liquid-solid growth,” Science, 270, 1791-1794 (1995). 6.5 N. Wang, Y. F. Zhang, Y. H. Tang, C. S.Lee, and S. T. Lee, “SiO2-enhanced synthesis of Si nanowires by laser ablation,” Appl. Phys. Lett. 73, 3902-3904 (1998). 6.7 R. Q. Zhang , Y. Lifshitz, S. T. Lee, “Oxide-assisted growth of semiconducting nanowires” Adv. Mater. (2003), 15, 635-640. 6.8 H. Y. Peng, Z. W. Pan, L. Xu, X. H. Fan, N. Wang, C. S. Lee, and S. T. Lee, “Temperature dependence of Si nanowire morphology,” Adv. Mater. 5, 317-320 (2001). 6.9 N. Grobert, M. Terrones, A. J.Osborne, H. Terrones, W. K. Hsu, S. Trasobares, Y. Q. Zhu, J. P. Hare, H.W. Kroto, and D. R. M. Walton, “Thermolysis of C-60 thin films yields Ni-filled tapered nanotubes,” Appl. Phys. A: materials science & processing 67, 595-598 (1998). 6.10 Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang, and D. P. Yu, “Efficient field emission from ZnO nanoneedle arrays,” Appl. Phys. Lett. 83, 144-146(2003). 6.11 X. Liu, C. Li, S. Han, J. Han, and C. Zhou, “Synthesis and electronic transport studies of CdO nanoneedles,” Appl. Phys. Lett. 82, 1950-1952 (2003). 6.12 Y. M. Liang, C. S. Hsieh, D. S. Tsai, and K. K. Tiong, “Field emission from vertically aligned conductive IrO2 nanorods” Appl. Phys. Lett. 84, 1552-1554 (2004). 6.13 A. N. Goldstein, C.M. Echer, and A. P. Alivisatos, “Melting in semiconductor nanocrystals” Science, 256, 1425-1427 (1992). 6.14 D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73, 3076-3078 (1998). 6.15 L. S. Liao, X. M. Bao, X. Q. Zheng, N. . Li, and N. B. Min, “Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon,” Appl. Phys. Lett. 68, 850-852 (1996). 6.16 T. Shimizulwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide-films on crystalline Si,” Appl. Phys. Lett. 65, 1814-1816 (1994). 6.17 S. Q. Feng, D. P. Yu, H. Z. Zhang, Z. G. Bai, and Y. Ding, “The growth mechanism of silicon nanowires and their quantum confinement effect,” J. Crystal Growth. 209, 513-517 (2000). 6.18 Q. H. Wang, A. A.Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, and R. P. H. Chang, “A nanotube-based field-emission flat panel display,” Appl. Phys. Lett. 72, 2912-2913 (1998). 6.19 R. H. Fowler; L. W. Nordheim, Proc. R. Soc. London, Ser. A, 1928, 119, 173. 6.20 C. X. Xu, and X. W. Sun, “Field emission from zinc oxide nanopins,” Appl. Phys. Lett. 83, 3806-3808 (2003). 6.21 Frederick C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello, and S. T. Lee, “Electron field emission from silicon nanowires,” Appl. Phys. Lett. 75, 1700-1702 (1999). Chapter 7 7.1 K. A. Dean and B. R. Chalamala, “The environmental stability of field emission from single-walled carbon nanotubes,” Appl. Phys. Lett. 75, 3017-3019 (1999). 7.2 W. Zhu, G. P.Kochanski, S. Jin, L. Seibles, D. Jacobson, C. M. McCormack, and A. E. White, “Defect-enhanced electron field-emission from chemical-vapor-deposited diamond,” J. Appl. Phys. 78, 2707-2711 (1995). 7.3 L. J. Chen, “Metal silicides: An integral part of microelectronics,” JOM, 57 (9), 24-30(2005). 7.4 H. Kiyota, H.Araki, H. Kobayashi, T. Shiga, K. Kitaguchi, M. Lida, H. Wang, T. Miyo, T. Takida, T. Kurosu, K. Lnoue, I. Saito, M. Nishitan-Gamo, I. Sakaguchi, and T. Ando, “Electron field emission from diamond-like carbon films deposited by electrolysis of methanol liquid,” Appl. Phys. Lett. 75, 2331-2333 (1999). 7.5 C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers, D. R. Evans, “Directed growth of nickel silicide nanowires,” Appl. Phys. Lett. 84, 1389-1391 ( 2004). 7.6 K. S. Lee, Y. H. Mo, K. S. Nahm, H. W. Shim, E. K. Suh, J. R. Kim, and J. J. Kim, “Anomalous growth and characterization of carbon-coated nickel silicide nanowires,” Chem. Phys. Lett. 384, 215-218 (2004). 7.7 Q. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, “Synthesis and field emission properties of TiSi2 nanowires” Appl. Phys. Lett. 86, 243103-243106 (2005). 7.8 Y. L. Chueh, L. J. Chou, S. L. Cheng, L. J. Chen, C. J. Tsai, C. M. Hsu, and S. C. Kung , “Synthesis and characterization of metallic TaSi2 nanowires,” Appl. Phys. Lett. 87, 223113-223116 (2005). 7.9 Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures” Nature, 430, 704-704 (2004). 7.10 L. J. Chen, Tu, K. N. Mater. Sci. report 1996, 6, 53. 7.11 L. W. Cheng, S. L. Cheng, L. J. Chen, H. C. Chien, H. L. Lee, and F. M. Pan, “Formation of Ni silicides on (001)Si with a thin interposing Pt layer,” J. Vac. Sci. Technol. A 18, 1176-1179 (2000). 7.12 C. Colliex, T. Manoubi, and C. Ortiz, Phys. Rev. B 44, 11402. 7.13 L. A. Garie and A. J. Craven, American Mineralogist 79, 411 (1994). 7.14 R. D. Leapamn, L. A. Grunes, and P. L Fejes,“study of the L23 edges in the 3D transition-metals and their oxides by electron-energy-loss spectroscopy with comparison to theory,” Phys. Rev. B, 26, 614-635 (1982). 7.15 D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism,” Physica E 9, , 305-309 (2001). 7.16 J. M. Gallego and R. Miranda, “The Fe/Si(100) interface,” J. App. Phys. 69, 1377-1383 (1990). 7.17 S. Abhaya, G. Amarendra, P. Gopalan, G. L. N. Reddt, and S. Saroja, “Study of surface segregation of Si on palladium silicide using Auger electron spectroscopy,” J. Phys. D: Appl. Phys. 37, 3140-3144 (2004). 7.18 F. Liu, “Self-assembly of three-dimensional metal islands: Nonstrained versus strained islands,” Phys. Rev. Lett. 89, 246105-246109 (2002). 7.19 V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Epitaxy of Nanostrucutre” (Springer, 2003), P.199. 7.20 A. N. Goldstein, C. M. Echer, A. P. Alivisatos, “melting in semiconductor nanocrystals,” Science 256, 1425-1427 (1992). 7.21 R. H. Fowler and L. W. Nordheim, Proc. R. Soc. London, Ser. A 119, 173 (1928). 7.22 S. P. Murarka, “Silicide for VLSI Application” (Academic, New York, 1983) 7.23 J. M. Bonard, F. Maier, T. Stockli, W. A. de Heer, J. P. Salvetat, and L. Forro, “Field emission properties of multiwalled carbon nanotubes,” Ultramicroscopy, 73, 7-15. (1998). 7.24 C. Liu, Y. Tong, H. M. Cheng, D. Golberg, and Y. Bando, “Field emission properties of macroscopic single-walled carbon nanotube strands,” Appl. Phys. Lett., 86, 223114-223117 (2005). 7.25 Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, “Synthesis of taperlike Si nanowires with strong field emission” Appl. Phys. Lett. 86, 133112-133115 (2005). 7.26 S. Q. Li, Y. X. Liang, and T. H. Wang, “Electric-field-aligned vertical growth and field emission properties of In2O3 nanowires,” Appl. Phys. Lett. 87, 143104-143107 (2005). 7.27 J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, and Z. L. Wang, “Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties,” Adv. Mater., 15, 1835-1840 (2003). 7.28 C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett. 81, 3648-3650 (2002). 7.29 B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, and D. P. Yu, “Synthesis and field emission properties of TiSi2 nanowires,” Appl. Phys. Lett. 86, 243103-243106 (2005). 7.30 J. Zhou, L.Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R.Yang, and Z. L. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays,” Appl. Phys. Lett. 87, 223108-223111 (2005). 7.31 C. T. Hsieh, J. M. Chen, H. H. Lin, and H. C. Shih, “Field emission from various CuO nanostructures,” Appl. Phys. Lett. 83, 3383-3385 (2003). 7.32 Y. K. Tseng, C. J. Huang, H. M. Cheng, I. N. Kin, K. S. Liu, and I. C. Chen, “Characterization and field-emission properties of needle-like zinc oxide nanowires grown vertically on conductive zinc oxide films,” Adv. Funct. Mater. 13, 811-814 (2003). 7.33 J. H. He, T. H. Wu, C. L.vHsin, K. M. Li, L. J. Chen, Y. L. Chueh, and L. J. Chou, Z. L. Wang, “Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties” Small 2, 116-120 (2006). 7.34 C. X. Xu and X. W.Sun, “Field emission from zinc oxide nanopins,” Appl. Phys. Lett. 83, 3806-3808 (2003). 7.35 Y. L. Chueh, L. J. Chou, C. M. Hsu, and S. C. Kung, “Synthesis and characterization of taper- and rodlike Si nanowires on SixGe1-x substrate,” J. Phys. Chem. B, 109, 21831-21835 (2005). 7.36 S. P. Murarka, “Silicide for VLSI Application,” (Academic, New York, 1983). 7.37 Y. W. Ok, T. Y. Seong, C. J. Choi, and K. N. Tu, “Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing,” Appl. Phys. Lett. 88, 043106-043109 (2006). 7.38 J. H. He, R. S. Yang, Y. L. Chueh, L. J. Chou, L. J.Chen, and Z. L. Wang, “Aligned AlN nanorods with multi-tipped surfaces - Growth, field-emission, and cathodoluminescence properties,” Adv. Mater. 18, 650-655 (2006). 7.39 Barbour, J. P.; Dolan, W. W.; Trolan, J. K.; Martin, E. E.; Dyke, W. P. Phys. Rev. 1953, 92, 45. 7.40 V. Filip, D. Nicolaesu, M.Tanemura, and F. Okuyama, “Modeling the electron field emission from carbon nanotube films,” Ultramicroscopy, 89, 39-49 (2001). 7.41 D. Gabor, Proc. Roy. Soc. London A, 197, 454 (1949). 7.42 G. Möllenstedt, M. Keller, Z. Phys. 1957, 148, 34 7.43 E. Krimmel, W. Rothemund,G. Möllenstedt, Appl. Phys. Lett. 1964, 5, 209 7.44 Aharanov, Y.; Bohm, D. Phys. Rev. 1959, 115, 485. 7.45 P. A. Midgley, “An introduction to off-axis electron holography,” micron, 32, 167-184 (2001). 7.46 D. Shindo, Y. G. Park, Y. Murakami, Y. Gao, H. Kanekiyo, and S. Hirosawa, “Electron holography of Nd-Fe-B nanocomposite magnets,” Script Mater, 48, 851-856 (2003). 7.47 Z. L.Wang, P. Poncharal, and W. A. de Heer, “Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM,” J. Phys. Chem. Solid, 61, 1025-1030 (2000). 7.48 Z. L. Wang, P. Poncharal, and W. A. de Heer, “ Nanomeasurements in transmission electron microscopy,” Microsc. Microanal. 6, 224-230 (2000). 7.49 W. K. Lo and J. C. H. Spence, “Investigation of STM image artifices by in-suit reflection electon-microscpoy” Ultramicroscopy, 48, 433-444 (1993). 7.50 D. Shindo and T. Oikawa, “Analytical Electron Microscopy for Materials Science” (Springer-Verlag, Tokyo, 2002) 7.51 J. Cumings, A. Zettl, M. R. McCarteny, and J. C. H. Spence, “Electron holography of field-emitting carbon nanotubes,” Phys. Rev. Lett. 88, 056804-056808 (2002). 7.52 P. Becker and P. Coppens, “About the coulcom potential in crystals” Acta Cryst. A46, 254-258 Part 4 (1990). 7.53 G. Matteucci, G. F. Missiroli, E. Nichelatti, A. Migliori, M. Vanzi, and G. Pozzi, “electon holography of longer-range electric and magnetic-fileds,” J. Appl. Phys. 69, 1835-1842 (1991). 7.54 G. Matteucci, M. Muccini, and Hartmann, “Flux mesurements on ferromagnetic microprobes by elecrton holography,” Phys. Rev. B. 50, 6823-6828 (1994). 7.55 G. Matteucci, G. F. Missiroli, M. Muccini, and G. Pozzi,“electron holography in the study of the electrostatic fields-the case of charged microtips” Ultramicrospcoy, 45, 77-83 (1992). 7.56 Y. F. Hsiou, Y. J. Yang, L. Stobinski, W. Kuo, and C. D. Chen,“ Controlled placement and electrical contact properties of individual multiwalled carbon nanotubes on patterned silicon chips”Appl. Phys. Lett. 84, 984-986 (2003). 7.57 F. Nava, K. N. Tu, E. Mazzega, M. Michelini, and G Queirolo, “Electrical transport-properties of transition-metal disilicide films,” J. Appl. Phy. 61, 1085-1093 (1987). 7.58 K. Maex and M. V. Rossum, „Properties of Metal Silicides,“ (INSPEC, London, UK, 1995). 7.59 F. Nava, O. Bisi, K. N.Tu, “Electrical transport-properties of V3Si, V5Si3, and VSi2 thin-films,” Phys. Rev. B, 34, 6143-6150 (1986). 7.60 J. F. Lin, J. P. Bird, L. Rotkina, and P. A. Bennett, “Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects,” Appl. Phys. Lett., 82, 802-804 (2003). 7.61 Z. Yao, C. L. Kane, and C. Dekker, “ High-field electrical transport in single-wall carbon nanotubes” Phys. Rev. Lett., 84, 2941-2944 (2000). 7.62 C. Cheng, R. K. Gonela, Q. Gu, D. T. Haynie, Nano Lett. 2004, 5, 175. 7.63 S. O. Kasap, ”Principle Of Electronic Materials and Devcies,”, 2nd. Ed. Mcgraw-Hill Companies, Inc. (2002). 7.64 R. H. Kodama, S. A. Makhlouf, and A. E. Berkowitz, “Finite size effects in antiferromagnetic NiO nanoparticles,” Phys. Rev. Lett. 79, 1393-1396 (1997). 7.65 F. Jentzsch, R. Schad, S. Heun, and M. Henzler, “Magnetoconductivity of thin epitaxial NiSi2 films in UHV at low-temperature,” Phys. Rev. B 44, 8984-8989 (1991). 7.66 C. A. Ross, M. Hwang, M. Shima, J. Y. Cheng, M. Farhoud, T. A. Savas, Henry, I. Smith, W. Schwarzacher, F. M. Ross, M. Redjdal, and F. B. Humphrey, “Micromagnetic behavior of electrodeposited cylinder arrays,” Phys. Rev. B, 65, 144417-144425 (2002). 7.67 F. C. Fonsea, G. F. Goya, R. F. Jardim, R. Muccillo, N. L. Carreňo, E. Longo, and E. R. Leite, “Superparamagnetism and magnetic properties of Ni nanoparticles embedded in SiO2,” Phys. Rev. B, 66, 104406-104411 (2002). 7.68 Y. Z. Jiu, W. K. Hsu, Y. L. Chueh, L. J. Chou, Y. Q. Zhu, K. Brigatti, H. W. Kroto, and D. R. M. Walton, “Large-scale production of NbS2 nanowires and their performance in electronic field emission,” Angew. Chem. Int. Ed. 43, 5670 (2004). 7.69 J. h. Song, X. D. Wangm E. Riedo, and Z. L. Wang, “Elastic property of vertically aligned nanowires,” Nano Lett. 5, 1954 (2005). 7.70 S. I. Sidorenko, Y. N. Makogon, D. L. Beke, A. Csik, S. N. Dub, E. P. Pavlova, and O. V. Zelenin, “Formation of nanocrystalline structure of TaSi2 films on silicon,” Power Metall. Met. Ceram. 42, 14-18 (2003). 7.71 C. Q. Chen, Y. Shi, Y. S. Zhang, J. Zhu, and Y. J. Yan, Phys. Rev. Lett. 96, 075505 (2006). 7.72 S. Cuenot, C. Fretigny, S. Demoustier-Champagne, and B. Nysten, “Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy,” Phys. Rev. B 69, 165410-165415 (2004). 7.73 P. Poncharel, Z. L. Wang, D. Ugarte, and W. A. de Heer, “Electrostatic deflections and electromechanical resonances of carbon nanotubes,” Science 283, 1513-1516 (1999). 7.74 S. G. Nilsson, X. Borrise, and L. Montelius, “Size effect on Young's modulus of thin chromium cantilevers,” Appl. Phys. Lett. 85, 3555-3557 (2004). 7.75 X. Li, T. Ono, Y. Wang, and M. Esashi, “Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects,” Appl. Phys. Lett. 83, 3081-3083 (2003). 7.76 E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes,” Science 277, 1971-1975 (1997). 7.77 B. Wu, A. Heidelberg, and J. J. Boland, “Mechanical properties of ultrahigh-strength gold nanowires,” Nat. Mater. 4, 525-529 (2005). 7.78 C. Y. Nam, P. Jaroenapibal, D. Tham, D. E. Luzzil, S. Evoy, and J. E. Fischer, “Diameter-dependent electromechanical properties of GaN nanowires,” Nano Lett. 6, 153-158 (2006). 7.79 M. Tabib-Azar, M. Nassirou, R. Wang, S. Sharma, T. L. Kamins, M. S. Islam, and R. S. Williams, “Mechanical properties of self-welded silicon nanobridges,” Appl. Phys. Lett. 87, 113102-113105 (2005). 7.80 . Hoffmann, I. Utke, B. Moser, J. Michler, S. H. Christiansen, V. Schmidt, S. Senz, P. Werner, U. Gösele, and C. Ballit, “Measurement of the bending strength of vapor-liquid-solid grown silicon nanowires,” Nano Lett. 6, 622-625 (2006). Chapter 8 8.1. C. Yu., Q. Hao., S. Saha, L. Shi, X. Kong, and Z. L. Wang, “Integration of metal oxide nanobelts with microsystems for nerve agent detection,” Appl. Phys. Lett. 86, 063101-063104 (2005). 8.2 C. S. Lao, J. Liu, P. X. Gao, L. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang, “ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes,” Nano Lett. 6, 263-266 (2006). 8.3 A. B. Greytak, C. J. Barrelet, Y. Li, and C. M. Lieber, “Semiconductor nanowire laser and nanowire waveguide electro-optic modulators,” Appl. Phys. Lett. 87, 151103 (2005). 8.4 Y. L. Chueh, L. J. Chou, C. M. Hsu, and S. C. Kung, “Broadband ZnO single-nanowire light-emitting diode,” J. Phys. Chem. B 109, 21831-21835 (2005). 8.5 Z. L. Wang, “Nanobelts, nanowires, and nanodiskettes of semiconducting oxides - from materials to nanodevices,” Adv. Matter. 15, 432-436 (2003). 8.6 M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, “Field-effect transistors based on single semiconducting oxide nanobelts,” J. Phys. Chem. B 107, 659-663 (2004). 8.7 Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides,” Science 291, 1947 (2001). 8.8 P. M. Gao, Y. Ding, W. J. Mai, W. L. Hughes, C. S. Lao, and Z. L. Wang, “Conversion of zinc oxide nanobelts into superlattice-structured nanohelices,” Science 309, 1700-1704 (2005). 8.9 J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J. Chen, Y. L. Chueh, L. J. Chou, and Z. L. Wang, “Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties,” small 1, 116-120 (2006). 8.10 M. H. Cao, T. F. Liu, S. Gao, G. B. Sun, X. L. Wu, C. W. Hu, and Z. L. Wang, “Single-crystal dendritic micro-pines of magnetic alpha-Fe2O3: Large-scale synthesis, formation mechanism, and properties,” Angew. Chem. Int. Ed. 44, 4197-4201 (2005). 8. 11 J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, and Z. L. Wang, “Three-dimensional tungsten oxide nanowire networks,” Adv. Mater. 17, 2107-2110 (2005). 8.12 Z. F. Zhu, F. Yu, Y. Man, Q. Y. Tian, Y. He, and N. Z. Wu, “Preparation and performances of nanosized Ta2O5 powder photocatalyst,” J. Solid State Chem. 178, 224-229 (2005). 8.13 H. Schulz, L. Mädler, S. E. Pratsinis, P. Burtscher, and N. Moszner, “Transparent nanocomposites of radiopaque, flame-made Ta2O5/SiO2 particles in an acrylic matrix,” Adv. Funct. Mater. 15, 830-837 (2005). 8.14 A. Arranz, V. P’erez-Dieste, and C. Palacio, “Electronic structure of stoichiometric and reduced Ta2O5 surfaces determined by resonant photoemission,” Phys. Rev. B 66, 0754201-0754205 (2002). 8.15 A. M. Morales, and C. M. Lieber, “A laser ablation method for the synthesis of crystalline semiconductor nanowires,” Science 279, 208-211 (1998). 8.16 T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-liquid-solid growth of crystalline III-V semiconductors – an analogy to vapor-liquid-solid growth,” Science 270, 1791-1794 (1995). 8.17 P. D.Yang, and C. M. Lieber, “Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites,” J. Mater. Res. 12, 2981-2996 (1997). 8.18 Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430, 704-704 (2004). 8.19 J. Y. Zhang, L. J. Bie, and I. W. Boyd, “Formation of high quality tantalum oxide thin films at 400 degrees C by 172 nm radiation,” J. J. Appl. Phys. 37, L27-L29 (1998). 8.20 R. T. Webb, “Ten years of TWT Progess Electron Power,” electronic and power, 2, 120-124 (1985). 8.21 S. Ezhilvalavan and T. Y. Tseng, “Preparation and properties of tantalum pentoxide (Ta2O5) thin films for ultra large scale integrated circuits (ULSIs) application-A review,” J. Mater. Sci.-Mater. Electron. 10, 9-31 (1999). 8.22 D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiang, and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett. 73, 3076-3078 (1998). 8.23 J. H. He, T. H. Wu, C. L. Hsin, L. J. Chen, and Z. L. Wang, “Synthesis of Si-Ge oxide nanowires via the transformation of Si-Ge thin films with self-assembled Au catalysts,” Electrochem. Solid State Lett. 8, G254-G257 (2005). 8.24 K. H. Lee, S. W. Lee, R. R. Vanfleet, and W. Sigmund, “Amorphous silica nanowires grown by the vapor-solid mechanism,” Chem. Phys. Lett. 376, 498-503 (2003). 8.25 Z. W. Pan, Z. R. Dai, C. Ma, and Z. L. Wang, “Molten gallium as a catalyst for the large-scale growth of highly aligned silica nanowires,” J. Am. Chem. Soc. 124, 1817-1822 (2002). 8.26 S. H. Li, X. F. Zhu, and Y. P. Zhao, “Carbon-Assisted Growth of SiOx Nanowires,” J. Phys. Chem. B, 108, 17032-17041 (2005). 8.27 M. Zhang, E. Ciocan, Y. Bando, K. Wada, L. L. Cheng, and P. Pirouz, “Bright visible photoluminescence from silica nanotube flakes prepared by the sol-gel template method,” Appl. Phys. Lett. 80, 491493-491496 (2002). 8.28 F. M. F. de Groot, M. Grioni, J. C. Fuggle, J. Chijsen, G. A. Sawatzky, and H. Petersen, “Oxygen 1s x-ray-absorption edges of transition-metal oxides,” Phys. Rev. B 40, 5715-5723 (1989). 8.29 C. Colliex, T. Manoubi, and C. Ortiz, “Electron-energy-loss- spectroscopy near-edge fine-structures in the iron-oxygen system,” Phys. Rev. B 44, 11402-11411 (1991). 8.30 H. Kurata, E. lefe’vre, C. Collies, and R. Brgdson, “Electron-energy-loss near-edge structures in the oxygen k-edge spectra of transition-metal oxides,” Phys. Rev. B 47, 13763-13768 (1993). 8.31 S. P. Murarka, “Refractory silicides for integrated-circuits,” J. Vac. Sci. Technol. 17, 775-792 (1980). 8.32 S. P. Murarka, “Silicides For VULS Application,” Academic press, INC. P107 (1983). 8.33 D. P. Yu, Q. L. Hang, Y. Ding, H. Z. Zhang, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, and S. Q. Feng, “Amorphous silica nanowires: Intensive blue light emitters,” Appl. Phys. Lett.73, 3076-3078 (1998). 8.34 L. S. Liao, X. M. Bao, X. Q. Zheng, N. S.Li, and N. B. Min, “Blue luminescence from Si+-implanted SiO2 films thermally grown on crystalline silicon,” Appl. Phys. Lett. 68, 850-852 (1996). 8.35 T. Shimizu-lwayama, S. Nakao, and K. Saitoh, “Visible photoluminescence in Si+-implanted thermal oxide-films on crystalline Si,” Appl. Phys. Lett. 65, 1814-1816 (1994). 8.36 H. Nishikawa, T. Shiroyama, R. Nakamura, Y. Ohk, K. Nagasawa, and Y. Hama, “Photoluminescence from defect centers in high-purity silica glasses observed under 7.9-eV excitation,” Phys. Rev. B, 45, 586-591 (1992). 8.37 W. H. Knausenberger, R. N. Tauber, J. Electrochem. Soc. 1973, 120, 927. 8.38 A. G. Revesz, J. J. Reynolds, J. F. Allison, J. Electrochem. Soc. 1976, 123, 889. 8.39 J. Jasapara, A. V. V. Nampoothir, and W. Rudolph, “Femtosecond laser pulse induced breakdown in dielectric thin films,” Phys. Rev. B, 63, 0451171-0451175 (2001). 8.40 Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, “Synthesis of taperlike Si nanowires with strong field emission,” Appl. Phys. Lett, 86, 1331121-1331123 (2005). 8.41 Y. L. Chueh, L. J. Chou, S. L. Cheng, and C. J. Tasi, “Synthesis and characterization of metallic TaSi2 nanowires,” Appl. Phys. Let., 87, 2231131-2231133 (2005). 8.42 C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, and H. J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” Appl. Phys. Lett., 81,3648-3650 ( 2002). 8.43 J. Zhou, L. Gong, S. Z. Deng, J. Chen, J. C. She, N. S. Xu, R.S. Yang, and Z. L. Wang, “Growth and field-emission property of tungsten oxide nanotip arrays,” Appl. Phys. Lett. 87, 2231081-22310813 (2005). Chapter 9 9.1 C. S. Lao, P. X. Gao, L. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang, “ZnO nanobelt/nanowire Schottky diodes formed by dielectrophoresis alignment across Au electrodes,” Nano Lett. 6, 263-266 (2006). 9.2 J. Zhou, S. Z. Deng, L. Gong, Y. Ding, J. Chen, J. X. Huang, J. Chen, N. S. Xu, and Z. L. Wang, “Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition: Synthesis, growth mechanism, and device application,” J. Phys. Chem. B 110,10296-10302 (2006). 9.3 A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, and Z. L. Wang, “Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks,” Appl. Phys. Lett. 88, 203101-203104 (2006) 9.4 Y. Zhang, L. Li, GH. Li, and L. D. Zhang, “Electrical transport properties of single-crystal antimony nanowire arrays,” Phy. Rev. B , 73113403-73113405 (2006). 9.5 B. Y. Geng, Q. B. Du, X. W. Liu, X. W. Wei, and L. D. Zhang, “One-step synthesis and enhanced blue emission of carbon-encapsulated single-crystalline ZnSe nanoparticles,” Appl. Phys. Lett. 89,033115 (2006). 9.6 S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang, Y. W. Du, and J. Magn. “Preparation and magnetic property of Fe nanowire array,” Magn. Mater. 222, 97-100 (2000). 9.7 D. H. Zhang, Z. Q. Liu, S. Hau, C. Li, B. Lei, M. D. Stewart, J. M. Tour, and C. W. Zhou, “Magnetite (Fe3O4) core-shell nanowires: Synthesis and magnetoresistance,” Nano Lett. 4, 2151-2155 (2004). 9.8 P. Chauhan, S. Annapoorni, and S. K. Trikha, Thin Solid Films, “Humidity-sensing properties of nanocrystalline haematite thin films prepared by sol-gel processing,” 346, 266-268 (1999). 9.9 T. Ohmori, H. Takahashi, H. Mametsuka, and E. Suzuki, “Photocatalytic oxygen evolution on alpha-Fe2O3 films using Fe3+ ion as a sacrificial oxidizing agent ,”Chem. Phys. 2, 3519-3522 (2000). 9.10 W. Weiss, D. Zscherpel, and R. Schlogl, “On the nature of the active site for the ethylbenzene dehydrogenation over iron oxide catalysts,”Catal. Lett. 52, 215-220 (1998). 9.11 Y. Y. Fu, J. Chen, and H. Zhang, “ Synthesis of Fe2O3 nanowires by oxidation of iron,” Chem. Phys. Lett. 350, 491-494(2001). 9.12 R. M. Cornell and U. Schwertmann, “The Iron Oxide: Structure, Properties, Reactions, Occurrence, and Uses” VCH publisher, New York, NY, (1996). 9.13 Y.Y. Fu, RM. Wang, J. Xu, Chen. J, Y. Yan, A. Narlikar, and H. Zhang, “Synthesis of large arrays of aligned alpha-Fe2O3 nanowires , ” Chem. Phys. Lett. 379, 373-379 (2003). 9.14 X. G. Wen, S. H. Wang, Y. Ding ,Z. L. Wang, and S. Yang, “Controlled growth of large-area, uniform, vertically aligned arrays of alpha-Fe2O3 nanobelts and nanowires,” J. Phys. Chem. B 109, 215-220 (2005).
9.15 J. Wang, Q. W. Chen, C. Zheng, and B.Y.Hou“Magnetic-field, -induced growth of single-crystalline Fe3O4 nanowires ,” Adv. Mater.16,137 (2004). 9.16 J. X. Wan, X. Y. Chen, Z. H. Wang, X. G. Yang, and Y. T. Qian, “ A soft-template-assisted hydrothermal approach to single-crystal Fe3O4 nanorods,” J. Cryst. Growth. 276, 571-576 (2005). 9.17 D. S. Xue, L. Y. Zhang, C. X. Gao, X. F. Xu, and A. B. Gui, “ Synthesis, Mossbauer spectra and magnetic properties of quasi-one-dimensional Fe3O4 nanowires,” Chen. Phys. Lett. 21, 733-736 (2004). 9.18 J. B. Yang, H. Xu, S. X. You, X. D. Zhou, C. S. Wang, W. B. Yelon, and W. J. James, “ Large scale growth and magnetic properties of Fe and Fe3O4 nanowires,” J. Appl. Phys. 99, 08Q507 (2006). 9.19 F. Liu, P. J. Cao, H. U. Zhang, J. F. Tian, C. W. Xiao, C. M. Shen, J. Q. Li, and H. J. Gao, “ Novel nanopyramid arrays of magnetite,” Adv. Mater. 17, 1893 (2005). 9.20 C. H. Ye, X. S. Fang, Y. F. Hao, X. M. Teng, and L. D. Zhang, “Zinc oxide nanostructures: Morphology derivation and evolution,” J. Phys. Chem. B 109,19758-19765 (2005). 9.21 Y. F. Hao, G. W. Meng, C. H. Ye, X. R. Zhang, and L. D. Zhang, “Kinetics-driven growth of orthogonally branched single-crystalline magnesium oxide nanostructures,” J. Phys. Chem. B, 109 (2005). 9.22 Y. F. Hao, G. W. Meng, C. H. Ye, and L. D. Zhang, “Controlled synthesis of In2O3 octahedrons and nanowires,” Cryst. Growth Des. 5 , 1617-1621(2005) 9.23 E. I. Givargizov “Highly Anisotropic Crystal, 8th ed.” Terra, Scientific, Tokyo, (1987). 9.24 R. Takagi, J. Phys. Soc. Jpn. 1957, 12, 1212. 9.25 B. Million, J. Ruzickova,J. Velisek, and J. Verstal, “Diffusion- Process in the Fe-Ni system,” Mater. Sci. Eng. 50, 43-52 (1981) 9.26 I. N. Franstevich, D. F. Kalinovich, I. I. Kovenskii, M. D. Smolin, J. Phys. Chem. Solids, 1969, 30, 947. 9.27 T. Ustad, H. Sorum, Phys. Stat. Sol. 1973, 20, 286. 9.28 B. Y. Zong, Y. H. Wu, G. H. Han, B. J. Yang, P. Luo, L. Wang, J. J. Oiu, and K. B. Li, “Synthesis of iron oxide nanostructures by annealing electrodeposited Fe-based fillms,” Chem. Mater. 17, 1515-1520 (2005). 9.29 G. Y. Yang, E. C. Dickey, C. A. Randall, M. S. Randall, and L. A. Mann, “Modulated and ordered defect structures in electrically degraded Ni-BaTiO3 multilayer ceramic capacitors,” J. Appl. Phys. 94, 5990-5996 (2003). 9.30 A. Travlos, N. Boukos, G. Apostolopoulos, and A. Dimoulas, “Oxygen vacancy ordering in epitaxial layers of yttrium oxide on Si (001),” Appl. Phys. Lett. 82, 4053 (2003). 9.31 Z. L. Wang, J. S. Yin, Y. D. Jiang, and J. Zhang, “Studies of Mn valence conversion and oxygen vacancies in La1-xCaxMnO3-y using electron energy-loss spectroscopy,” Appl. Phys. Lett. 70, 3362-3364 (1997). 9.32 C. Colliex, M. Tence, E. Lefe’vre, C. Mory, H. Gu, D. Bouchet, and C. Jeanguillaume, Mikrochim. Acta, 114/115, 71 (1995). 9.33 C.Colliex,T.Manoubi,andC.Ortiz,“Electron-Energy-Loss-Spectroscopy Near-Edge Fine-Structures in the Iron-Oxygen system,”Phys. Rev. B 44, 11402-11411(1991) 9.34 H.Kurata,E.lefe’vre,C.Collies,andR.Brgdson,“Electron-Energy-Loss-Spectroscopy Near-Edge Fine-Structures in the oxygen K-edge spectra of transition-metal oxides,”Phys. Rev. B 47, 13763-13768 (1993) 9.35 J. Jasinski, K. E. Pinkerton, I. M. Kennedy, and V. J. Leppert, “Surface oxidation state of combustion-synthesized gamma-Fe2O3 nanoparticles determined by electron energy loss spectroscopy in the transmission electron microscope,”Sensor and Actuator B, 10919-23 (2005). 9.36 D. H. Pearson, B. Fultz, and C. C. Ahn, “ Measurements of 3D state occupancy in transition-metals using Electron-Energy Loss Spectrometry,” Appl. Phys. Lett. 53, 1405-1407 (1988). 9.37 Z. L. Wang, and J. S. Yin, “ Cobalt valence and crystal structure of La0.5Sr0.5CoO2.25 ,”Philos. Mag. B 77, 49-65 (1998). 9.38 J. H. Zhu, “office of Fossil Energy Fuel cell program,” FY annual report, III. A.16 P113 (2005). 9.39 J. Q. Liang, M. T. Chang, Y. L. Chueh, and L. J. Chou, submitted to Appl. Phys. Lett. (2006). 9.40 A. Grill “Cold Plasma In Materials Fabrication: From Fundamentals To Application” IEEE Press, New York, (1993). 9.41 M. Ohring “The Materials Science Of Thin Films” Academic Press, San Diego, 1992. 9.42 Z. L. Wang, J. S. Yin, W. D. Mo, and Z. J. Zhang, “In-situ analysis of valence conversion in transition metal oxides using electron energy-loss spectroscopy,”J. Phys. Chem B 101, 6793-6798 (1997). 9.43 M. F. Hansen, C. B. Koch, and S. Morup, “Magnetic dynamics of weakly and strongly interacting hematite nanoparticles,” Phys. Rev. B 62, 1124-1135 (2000). 9.44 S. O. Kasap, “Principle Of Electronic Materials and Devcies,” 2nd. Ed. Mcgraw-Hill Companies, Inc., (2002). 9.45 L. Q. Xu, W. Q. Zhang, Y. W. Ding, Y. Y. Peng, S. Y. Zhang, W. C. Yu, and Y. F. Qian, “Formation, characterization, and magnetic properties of Fe3O4 nanowires encapsulated in carbon microtubes,” J. Phys. Chem. B 108, 10859-10862 (2004). 9.46 J. Wang, Q. W. Chen, C. Zeng, and B. Y. Hou,“Magnetic-field-induced growth of single-crystalline Fe3O4 nanowires,” Adv. Mater. 16, 137 (2004). 9.47 W. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchanskyy, Y. Ding, Z. L. Wang, M. Swihart, and P. N. Prasad “A general approach to binary and ternary hybrid nanocrystals,” Nano Lett. 6, 875-881 (2006). 9.48 Y. L. Chueh, L. J. Chou, C. H. Hsu, and S. C. Kung, “ Synthesis and characterization of taper- and rodlike Si nanowires on SixGe1-x substrate,” J. Phys. Chem. B 109 , 21831-21835 (2005). 9.49 E. R. Batista, and R. A. Friesner, “A self-consistent charge-embedding methodology for ab initio quantum chemical cluster modeling of ionic solids and surfaces: Application to the (001) surface of hematite (alpha-Fe2O3),” J. Phys. Chem. B 106, 8136-8141 (2002). 9.50 Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, and L. J. Chen, “Synthesis of taperlike Si nanowires with strong field emission ,” Appl. Phys. Lett. 86, 133112 (2005). 9.51 Y. W. Ok, T. Y. Seong, C. J. Choi, and K. N. Tu, “Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing,” Appl. Phys. Lett. 88, 043106-043109 (2006). 9.52 B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, ,L. Q. Liu, J.Xu, and D. P. Yu, Synthesis and field emission properties of TiSi2 nanowires Appl. Phys. Lett. 86, 243103-243106 (2005). 9.53 J. H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J Chen, Y. L. Chueh, L. J. Chou, and Z. L. Wang, “Beaklike SnO2 nanorods with strong photoluminescent and field-emission properties,” Small 2,116-120 (2006). 9.54 J. H. He, R. S. Yang, Y. L. Chueh, L. J. Chou, L. J. Chen, and Z. L. Wang, “Aligned AlN nanorods with multi-tipped surfaces-Growth, field-emission, and cathodoluminescence properties,” Adv. Mater. 18, 650 (2006). Chapter 10 10.1 T. H. Moon, M. C. Jeong, B. Y. Oh, M. H. Ham, M. H. Jeun, W. Y. Lee, and J. M. Myoung, “Chemical surface passivation of HfO2 films in a ZnO nanowire transistor,” Nanotechnology 17, 2116-2121 (2006). 10.2 Z. L. Wang, and J. H. Song, “Piezoelectric nanogenerators based on zinc oxide nanowire arrays,” Science 312, 242-246 (2006). 10.3 P. Nguyen, H. T. Ng, T. Yamada, M. K. Smith, J. Li, J. Han and M. Meyyappan, “Direct integration of metal oxide nanowire in vertical field-effect transistor,” Nano Lett. 4, 651-657 (2004). 10.4 Y. R. Ryu, T. S. Lee, J. A. Lubguban, H. W. White, Y. S. Park, and C. Youn, “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,” J. Appl. Phys. Lett. 87, 153504-153506 (2005). 10.5 C. S. Lao, P. X. Gao, L. Zhang, D. Davidovic, R. Tummala, and Z. L. Wang, “ZnO nanobelt/nanowire schottky diodes formed by dielectrophoresis alignment across Au electrodes,” Nano Lett. 6, 263-266 (2006). 10.6 A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Z. Deng, N. S. Xu, Y. Ding, and Z. L. Wang, “Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks,” Appl. Phys. Lett., 88, 203106-203109 (2006). 10.7 C. Ronning, P. X. Gao, Z. L. Wang, and D. Schwen, “Manganese-doped ZnO nanobelts for spintronics,” Appl. Phys. Lett., 84, 783-785 (2004). 10.8 Bielanski, A.; Deren, J.; Haber, J. Nature, 179, 668 (1957). 10.9 B. W. Licznerski, K. Nitsch, H. Teterycz, and K. Wisniewski, “The influence of Rh surface doping on anomalous properties of thick-film SnO2 gas sensors,” Sens. Actuators B, 79, 157-162 (2001). 10.10 A. K. Prasad, D. J. Kubinski, and P. I. Gouma, “Comparison of sol-gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection,” Sens. Actuators B, 93, 25-30 (2003). 10.11 G. Korotcenkov, V. Brinzari, V. Golovanov, A. Cerneavshi, V. Matolin, and A. Todd, “Acceptor-like behavior of reducing gases on the surface of n-type In2O3,” Appl. Surf. Sci., 227, 122-131 (2004). 10.12 M. Catti, and G. Valerio, “Theoretical-study of electronic, magnetic, and structural-properties of alpha-Fe2O3 (hematite),” Phy. Rev. B, 51, 7441-7450 (1995). 10.13 J. Chen, L. Xu, W. Li, and X. Gou, “ -Fe2O3 Nanotubes in gas sensor and lithium-ion battery applications,” Adv. Mater., 17, 582-586 (2005). 10.14 A. Gurlo, N. Bârsan, A. Oprea, M. Sahm, T. Sahm, and U. Weimar, “An n- to p-type conductivity transition induced by oxygen adsorption on alpha-Fe2O3,” Appl. Phys. Lett., 85, 2280-2082 (2004). 10.15 S. Mathur, S. Barth, H. Shen, J. C. Pyun, and U. Werne
|