跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:8005:376a:2d98:48cd) 您好!臺灣時間:2025/01/18 08:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭昶毅
研究生(外文):Kuo Chaug Yi
論文名稱:生物可分解性高分子薄膜微觀機械性質與水解之研究
指導教授:楊長謀
指導教授(外文):Arnold Chang-Mou Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:94
中文關鍵詞:生物可分解性高分子結晶性高分子聚乳酸纖化區
外文關鍵詞:biodegradable polymersemicrystalline polymerpoly lactic acidcraze
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗主要觀察PLLA微變形區之表貌微觀結構,研究其受力變形的基本機制。觀察發現,在原子力顯微鏡(AFM)下,PLLA薄膜乃由密佈的微小lamellae所覆蓋,顯示PLLA薄膜是由細碎的微小晶粒與非晶態(amorphous)區域所組成,但是craze的成核則總是由非晶質區域開始。依據不同的製程,結晶度可以控制craze成長的寬度。然而當lamellae被拉伸進入craze會被解構,形成鏈狀結構。當結晶度提高時則會限制craze成長的寬度。90℃水解對PLLA薄膜則會有兩種顯著的影響,水解初期會有在結晶的效應,到水解後期水解會使薄膜產生孔洞進而降低PLLA的機械性質。
PHA因為其Tg在零度附近,使得PHA薄膜拉伸時高分子可坐大規模的運動形成寬大的craze,但是因為其是共聚合物,因為溶劑的差別溶解度的關係,薄膜表面佈滿孔洞,這些孔洞進而使PHA薄膜形成craze後容易在孔洞形成破裂。
Poly(L-lactic acid)(PLLA)is biodegradable and biocompatible polymer extensively used in bone fixation, drug delivery, and tissue engineering. The purpose of this study attempted to find the mechanical properties by PLLA thin film stretched. It was revealed that there is distinctive nano-mechanical behavior. First, crystallites disperse in PLLA thin film which was observed by atomic force microscope(AFM)and nucleation of crazes is always in the amorphous region between crystallites. Crystallinity could control craze widening, and it depends on PLLA films preparation. In low crystallinity, as strain increases, crystallites deform slightly and some of them were probed in crazes. As crazes growth most crystallites arrangement in crazes is parallel to stretching direction to form chain structure. This chain structure seems due to lamella cleavage arises from stress induced local melting. Violently, high crystallinity limits crazes width almost under 2μm which is smaller than in low crystallite density. The growth of craze sometimes is by small crazes merged together and PLLA film is very though showing no micro fracture at large strains beyond 20%. After stretched, crystallites outside of crazes region deform slightly which was intra-lamellae slip, but the amorphous region is the major deformation region. The craze formation was amorphous dominated but lamellae limit craze extend.
第一章 簡介..............................................1
第二章 文獻回顧..........................................3
2-1聚乳酸的結晶構造...................................3
2-1-1 PLLA fibers...................................3
2-1-2 PLLA single crystal...........................7
2-2聚乳酸的降解......................................12
2-3 PHAs的來源、結構、特性與應用......................17
2-4 高分子的降伏機制.................................21
2-3-1纖化區(craze)..............................21
2-3-2剪切形變區(SDZ) .............................24
第三章 實驗方法.........................................26
3-1實驗材料..........................................26
3-2實驗方法與步驟....................................26
3-2-1 PLLA薄膜製作方式與拉伸試驗..................26
3-2-2 PLLA薄膜水解方式與拉伸試驗..................29
3-2-3 PHA薄膜製作方式與拉伸試驗...................30
3-3 儀器介紹與分析...................................32
3-3-1掃描式電子顯微鏡(SEM)分析....................32
3-3-2 穿透式電子顯微鏡(TEM)分析...................34
3-3-3霍氏轉換紅外線光譜儀(FTIR)分析...............36
3-3-4原子力顯微鏡(Atomic Force microscopy, AFM ) ...38
第四章 結果與討論.......................................48
4-1 不同製程之PLLA薄膜物性分析.......................48
4-1-1 DSC結晶度測試...............................48
4-1-2 低掠角X-ray繞射............................51
4-1-3 紅外光譜(FTIR)分析..........................54
4-2 PLLA薄膜的微觀形變與機械性質......................56
4-2-1 A組的微觀形變與機械性質.....................56
4-2-2 B1組的微觀形變與機械性質....................63
4-2-3 B2組的微觀形變與機械性質....................66
4-3 PLLA薄膜水解之研究與對機械性質之影響..............68
4-3-1 水解對結晶度之影響..........................68
4-3-2 水解對A組機械性質之影響....................74
4-3-3 水解對B1組機械性質之影響...................78
4-3-4 拉伸完再水解之影響..........................81
4-4 PHA薄膜的微觀形變與機械性質......................83
第五章 結論.............................................88
第六章 參考文獻..........................................90
1. Ray E. Drumright;Patrick R. Gruber;David E. Henton, Adv. Mater. 2000, 12, No. 23, December 1
2. J.W.Leenslag;A.J.Penning;R.R.M.Bos;F.R.Rozema;G.Boering, Biomaterials. 8, 311.(1987)
3. T.Nakamura;S.Hitomi;S.Watanabe;Y.Shimizu;K.Jameshidi;S.H.Hyon;Y.Ikada, J.Biomed.Mater.Res.,207, 290(1989)
4. De Santis;P. Kovacs, Biopolymers. 6, 299-306(1968)
5. Eling, B.; Gogolewski, S.; Pennings, A. J. Polymer 1982, 23, 1587. W. Hoogsteen, A. R. Postema, A. J. Pennings, and G. ten Brinke, Macromolecules 1990,23, 634-642
6. Kobayashi, J., T., Ichiki, M., Oikawa, A., Suzuki, H., Watanabe, T., Fukada, E., Shikinami, Y. J., Appl. Phys. 77 (7), 1 April 1995
7. B. Kalb, A. J. Pennings, POLYMER, 1980, Vol 21, June 607
8. Tadakazu Miyata” and Toru Masukot,Polymer Vol. 38 No. 16, pp. 4003-4009, 1997
9. Tadahisa Iwata and Yoshiharu Doi, Macromolecules 1998, 31, 2461-2467
10. S. Li;M. Vert, ”Global Chinese Symposium on Biomaterials and Controlled Release“ ,1999, 333.
11. M. Singh;A. Singh;G.P. Talwar, Pharm. Res., 1991, 8, 958
12. Y. Kimura;Y. Matsuzaki;H. Yamane;T. Kitao, Polymer, 1989, 30, 1342
13. F.G. Hutchinson;B.J.A. Furr, Biochem. Soc. Trans., 1985, 13, 520
14. L.M. Sanders;G.I. McRae;K.M. Vitale;B.A. Kell, J. Controlled Release, 1985, 2, 187.
15. R.A. Kenley;M.O. Lee;T.R. Mahoney;L.M. Sanders, Macromolecules, 1987, 20, 2398.
16. J.M. Schakenraad et al., J. Biomed. Mater. Res., 1989, 23,1271.
17. J. Helder;P.J. Dijkstra;J. Feijen, J. Biomed. Mater. Res., 1990, 24, 1005.
18. S. Cohen et al., Pharm. Res., 1991,8, 713.
19. C.G. Pitt et al., Biomaterials, 1981, 2, 215
20. C.G. Pitt,“Biodegradable Polymers and Plastics“, 1992, M. Vert et al. eds.,Royal Society of Chemistry, Lodon, 7.
21. S. Li;H. Garreau;M. Vert, J. Mater. Sci.:Mater. Med., 1990, 1, 123.
22. K.R. Huffman;D.J. Casey, J. Polym. Sci.:Polym. Chem. Ed., 1985,23, 1939.
23. S. Li;H. Garreau;M. Vert, J. Mater. Sci.:24. S. Li;H. Garreau;M. Vert, J. Mater. Sci.:25. M. Vert;S. Li;H. Garreau, J. Controlled Release, 1991,16,15.
26. M. Therin et al., Biomaterials, 1992, 13, 594.
27. M. Vert;S. Li.;H. Garreau, Clin. Mater., 1992, 10, 3.
28. S. Li.;M. Vert, Macromolecules, 1994, 33, 37.
29. R.K. Kulkarni;E.G. Moore;A.F. Hegyeli;F. Leonard, J. Biomed. Mater. Res., 1971, 30, 344
30. L. Getter;D.E. Cutright;S.N. Bhaskar;J.K. Augsburg, J. Oral Surg., 1972, 30, 344.
31. J.M. Brady;D.E. Cutright;R.A. Miller;G.C. Battistone, J. Biomed. Mater. Res., 1973, 7, 155.
32. D.E. Cutright;J.D. Beasley;W.J. Larson;W.R. Posey, Oral Surg., 1974, 37, 142.
33. C.G. Pitt;M.M. Gratzl;G.L. Kimmel;J. Surels;A. Schindler, Biomaterials, 1981, 2, 215.
34. J.O. Hollinger;G.C. Battistone, Clin. Orthop., 1986, 207, 290
35. J.W. Leenslag;A.J. Penning;R.R.M. Bos;F.R. Rozema;G. Boering, Biomaterials, 1987, 8,311
36. T. Nakamura;S. Hitomi;S. Watanabe;Y. Shimizu;K. Jameshidi;S.H. Hyon;Y. Ikada, J. Biomed. Mater. Res., 1989, 23, 1115
37. Y. Matsusue;T. Yamamuro;M. Oka;Y. Ikada;S.H. Hyon;Y. Shikinami, J. Appl. Biomater., 1991,2,1.
38. Robert W. Lenz and Robert H. Marchessault (2005), Bacterial Polyesters: Biosynthesis, Biodegradable Plastics and Biotechnology, Biomacromolecules , v.6 , P. 1~8
39. Markus Potter and Alexander Steinbuchel (2005), Biomacromolecules, v.6 , P. 552~560
40. Jumpei Kawada, Tina Lu¨tke-Eversloh, Alexander Steinbu¨ chel, and Robert H. Marchessault (2003), Biomacromolecules, v.4 , P. 1698~1702
41. M. AVELLA, E. MARTUSCELLI, M. RAIMO (2000), JOURNAL OF MATERIALS SCIENCE , v.35 , P. 523~545
42. C.S.K. Reddy, R. Ghai, Rashmi, V.C. Kalia (2003), Bioresource Technology , v.87 , P. 137~146
43. L. Jurasek and R. H. Marchessault (2002), Biomacromolecules, v.3 , P. 256~261
44. Colin W. Pouton , Saghir Akhtar (1996), Advanced Drug Delivery Review, v.18 , P. 133~162
45. Dieter Jendrossek (2005), Biomacromolecules , v.6 , P. 598~603
46. Manfred Zinn, Bernard Witholt, Thomas Egli (2001), Advanced Drug Delivery Reviews, v.53 , P. 5~21
47. Guocheng Du and Jian Yu (2002), Environmental Science & Technology, v.36 , P. 5511~5516
48. Kramer, E. J.; Berger, L. L. Adv. Polym. Sci. 1990, 91/92,1.
49. Lin, J.–H.; Yang, A. C.–M., Macromolecules 2001, 34, 4865.
50. Kramer, E. J. Adv. polym. Sci., 1983, 52/53, 1.
51. Gent, A. N. In The Mechanics of fracture, AMD; Erdogon, F., Ed.; ASME: New York, 1976, 19, 55
52. Yang, A. C.-M.; Kramer, E. J. J. Polym. Sci., Polym. Phys. Ed. 1985, 23, 1353.
53. Yang, A. C.-M.; Kramer, E. J.; Kuo, C. C.; Phoenix, S. L. Macromolecules, 1986, 19, 2010.
54. Yang, A. C.-M.; Kramer, E. J.; Kuo, C. C.; Phoenix, S. L. Macromolecules, 1986, 19, 2020.
55. B.D. Lauterwasser;E.J. Kramer, Philos. Mag., 1979, A245, 312
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top