|
[1] A. Lavoisier, “Elements of Chemistry”, Dover Publications (1772) [2] H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages”, Noyes (1995) [3] R. F. Davis, “Diamond films and coating: development, properties, and applications”, Noyes Publications (1993) [4] B. Dischler and C. Wild, “Low pressure synthetic diamond: manufacturing and applications”, Springer (1998) [5] M. H. Nazare and A. J. Neves, “Properties, growth and applications of diamond”, INSPEC Inc. (2000) [6] T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond”, Encyclopedia of Nanoscience and Nanotechnology, X, 1 (2003) [7] A. R. Krauss, O. Auciello, D. N. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mmancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices”, Diamond and Related Materials, 10, 1952 (2001) [8] L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structure in nanocrystalline diamond”, Applied Physics Letters, 81 (23), 4455 (2002) [9] K. Yamanouchi, N. Sakurai, and T. Satoh, “SAW propagation characteristics and fabrication technology of piezoelectric thin film/diamond structure”, 1989 IEEE Ultrasonics Symposium, 351 (1989) [10] H. Nakahata, A. Hachigo, K. Itakura, and S. Shikata, “Fabrication of high frequency SAW filters from 5 to 10 GHz using SiO2/ZnO/Diamond structure”, 2000 IEEE Ultrasonics Symposium, 349 (2000) [11] B. Bi, W. S. Huang, J. Asmussen, and B. Golding, “Surface acoustic waves on nanocrystalline diamond”, Diamond and Related Materials, 11, 677 (2002) [12] F. Benedic, M. B. Assouar, F. Mohasseb, O. Elmazria, P. Alnot, and A. Gicquel, “Surface acoustic wave devices based on nanocrytalline diamond and aluminium nitride”, Diamond and Related Materials, 13, 347 (2004) [13] J. Wang, M. A. Firestone, O. Auciello, and J. A. Carlisle, “Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of Aryldiazonium salts”, Langmuir, 20, 11450 (2004) [14] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High carrier mobility in single-crystal plasma-deposited diamond”, Science, 297, 1670 (2002) [15] W. Yang and R. J. Hamers, “Fabrication and characterization of a biologically sensitive field-effect transistor using a nanocrystalline diamond thin film”, Applied Physics Letters, 85 (16), 3626 (2004) [16] F. J. Himpsel, J. A. Knapp, J. A. VanVechten, and D. E. Eastman, “Quantum photoyield of diamond (111) – A stable negative-affinity emitter”, Physical Review B, 20 (2), 624 (1979) [17] W. Zhu, G. P. Kochanski, and S. Jin, “Low-field electron emission from undoped nanostructured diamond”, Science, 282 (5393), 1471 (1998) [18] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, and V. V. Zhirnov, “Electron field emission for ultrananocrystalline diamond films”, Journal of Applied Physics, 89 (5), 2958 (2001) [19] W. P. Kang, J. L. Davidson, Y. M. Wong, and K. Holmes, “Diamond vacuum field emission device”, Diamond and Related Materials, 13, 975 (2004) [20] P. W. Bridgman, "Synthetic diamonds", Scientific American, 193 (5), 42 (1955) [21] W. G. Eversole, U.S. Patent No. 3,030,188, (1962) [22] J. C. Angus, H. A. Will, and W. S. Stanko, Journal of Applied Physics, 39 (6), 2915 (1968) [23] B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces”, Journal of Crystal Growth, 52, 219 (1981) [24] S. Matzumoto, Y. Sato, M. Kamo, and N. Setaka, “Vapor deposition of diamond particles from methane”, Japanese Journal of Applied Physics 2, 21, L183 (1982) [25] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, Journal of Crystal Growth, 62, 642 (1983) [26] D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, and X. Pan, “Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions”, Applied Physics Letters, 64 (12), 1502 (1994) [27] T. D. McCauley, D. M. Gruen, and A. R. Krauss, “Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma”, Applied Physics Letters, 73 (12), 1646 (1998) [28] D. M. Gruen, “Nanocrystalline diamond films”, Annual Review Material Science, 29, 211 (1999) [29] A. P. Malshe, B. S. Park, W. D. Brown, and H. A. Naseem, “A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates”, Diamond and Related Materials, 8, 1198 (1999) [30] T. Sharda, T. Soga, T. Jimbo, and M. Umeno, “Biased enhanced growth of nanocrystralline diamond films by microwave plasma chemical vapor deposition”, Diamond and Related Materials, 9, 1331 (2000) [31] N. Jiang, K. Nishimura, Y. Shintani, and A. Hiraki, “Field electron emission of diamond films grown on the ultrasonically scratched and nano-seeded Si substrates”, Journal of Crystal Growth, 255, 102 (2003) [32] L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, Y. Chen, and G. Hu, “Nanocrystalline diamond from carbon nanotubes”, Applied Physics Letters, 84 (15), 2901 (2004) [33] N. Park, S. Park, N. M. Hwang, J. Ihm, S. Tejima, and H. Nakamura, “First principles study of the effect of charge on the stability of a diamond nanocluster surface”, Physical Review B, 69, 195411 (2004) [34] G. Lombardi, K. Hassouni, F. Benedic, F. Mohasseb, J. Ropcke, and A. Gicquel, “Spectroscopic diagnostics and modeling of Ar/H2/CH4 microwave discharges used for nanocrystalline diamond deposition”, Journal of Applied Physics, 96 (11), 6739 (2004) [35] J. R. Rabeau, P. John, J. I. B. Wilson, and Y. Fan, “The role of C2 in nanocrystalline diamond growth”, Journal of Applied Physics, 96 (11), 6724 (2004) [36] X. Xiao, J. W. Elam, S. Trasobares, O. Auciello, and J. A. Carlisle, “Synthesis of a self-assembled hybrid of ultrananocrystalline diamond and carbon nanotubes”, Advanced Materials, 17, 1496 (2005) [37] N. Dubrovinskaia, L. Dubrovinsky, F. Langenhorst, S. Jacobsen, and C. Liebske, “Nanocrystalline diamond synthesized from C60”, Diamond and Related Materials, 14, 16 (2005) [38] M. Stapa, J. Szmidt, A. Szczesny, P. Sniecikowski, W. Czarnacki, M. Dudek, M. Traczyk, and A. Werbowy, “Ultra-thin nanocrystalline diamond detectors”, Diamond and Related Materials, 14, 125 (2005) [39] G. N. Yushin, S. Osswald, V. I. Padalko, G. P. Bogatyreva, and Y. Gogotsi, “Effect of sintering on structure of nanodiamond”, Diamond and Related Materials, 14, 1721 (2005) [40] A. Erdemir, C. Bindal, G. R. Fenske, C. Zuiker, A. R. Krauss, and D. M. Gruen, “Friction and wear properties of smooth diamond films grown in fullerence + argon plasmas”, Diamond and Related Materials, 5, 923 (1996) [41] A. V. Sumant, D. S. Grierson, J. E. Gerbi, J. Birrell, U. D. Lanke, O. Auciello, J. A. Carlisle, and R. W. Carpick, “Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond”, Advanced Materials, 17 (8), 1039 (2005) [42] S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, and P. Zapol, “Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films”, Applied Physics Letters, 79 (10), 1441 (2001) [43] J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond”, Applied Physics Letters, 81 (12), 2235 (2002) [44] T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapol, and R. P. H. Chang, “The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond”, Diamond and Related Materials, 11, 43 (2002) [45] S. G. Wang, Q. Zhang, S. F. Yoon, J. Ahn, Q. Wang, Q. Zhou, and D. J. Yang, “Electron field emission properties of nano-, submicro- and micro-diamond films”, Physics of Solid State (a), 193 (3), 546 (2002) [46] N. Jiang, K. Nishimura, Y. Shintani, and A. Hiraki, “Field electron emission of diamond films grown on the ultrasonically scratched and nano-seeded Si substrates”, Journal of Crystal Growth, 255, 102 (2003) [47] K. Subramanian, W. P. Kang, J. L. Davidson, and W. H. Hofmeister, “Growth aspects of nanocrystalline diamond films and their effects on electron field emissions”, Journal of Vacuum Science Technology B, 23 (2), 786 (2005) [48] S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar-CH4 plasma chemical vapor deposition with or without added H2”, Journal of Applied Physics, 90 (1), 118 (2001) [49] L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, “TEM characterization of nanodiamond thin films”, Nanostructured Materials, 10 (4), 649 (1998) [50] D. Zhou, D. M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss, “Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas”, Journal of Applied Physics, 84 (4), 1981 (1998) [51] D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss, and D. M. Gruen, “Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma”, Journal of Applied Physics, 83 (1), 540 (1998) [52] D. M. Gruen, A. R. Kraus, C. D. Zuiker, R. Csencsits, L. J. Terminello, J. A. Carlisle, I. Jimenez, D. G. J. Sutherland, D. K. Shuh, W. Tong, and F. J. Himpsel, “Characterization of nanocrystalline diamond films by core-level photoabsoption”, Applied Physics Letters, 68 (12), 1640 (1996) [53] X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “Low temperature growth of ultrananocrystalline diamond”, Journal of Applied Physics, 96 (4), 2232 (2004) [54] R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, “Raman scattering characterization of carbon bonding in diamond and diamondlike thin films”, Journal of Vacuum Science and Technology A, 6 (3), 1783 (1988) [55] A. C. Ferrari and J. Robertson, “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond”, Physical Review B, 63, 121405(R) (2001) [56] R. Pfeiffer, H. Kuzmany, N. Salk, and B. Gunther, “Evidence for trans-polyacetylene in nanocrystalline diamond films from H-D isotropic substitution experiments”, Applied Physics Letters, 82 (23), 4149 (2003) [57] S. R. Sails, D. J. Gardiner, M. Bowden, J. Savage, and D. Rodway, “Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm”, Diamond and Related Materials, 5, 589 (1996) [58] P. Zapol, M. Sternberg, L. A. Curtiss, T. Frauenheim, and D. M. Gruen, “Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries”, Physical Review B, 65, 045403 (2001) [59] D. L. Smith, “Thin-film deposition: principles and practice”, McGraw-Hill Professional (1995) [60] X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, "Epitaxial diamond thin films on (001) silicon substrate", Applied Physics Letters, 62, 3438 (1993) [61] S. T. Lee and Y. Lifshitz, “The road to diamond wafers”, Nature, 424, 500 (2003) [62] S. Gsell, T. Bauer, J. Goldfu��, M. Schreck, and B. Stritzker, “A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers”, Applied Physics Letters, 84 (22), 4541(2004) [63] J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor-deposition”, Journal of Materials Science, 27 (23), 6324 (1992) [64] D. K. Sood, W. R. Drawl, and R. Messier, ”The effect of carbon ion-implantation on the nucleation of diamond on Ti-6Al-4V alloy”, Surface and Coatings Technology, 51 (1-3), 307 (1992) [65] S. M. Pimenov, A. A. Smolin, V. G. Ralchenko, V. I. Konov, S. V. Likhanski, and I. A. Veselovski, “UV laser processing of diamond films - effects of irradiation conditions on the properties of laser-treated diamond film surfaces”, Diamond and Related Materials, 2, 291 (1993) [66] S. Iijima, Y. Aikawa, and K. Baba, "Early formation of chemical vapor deposition diamond films", Applied Physics Letters, 57 (25), 2646 (1990) [67] J. L. Valdes, J. W. Mitchel, J. A. Mucha, L. Seibles, and H. Huggins, “Selected area nucleation and patterning of diamond thin films by electrophoretic seeding”, Journal of the Electrochemical Society, 138 (2), 635 (1991) [68] Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz Pirouz, "Orientation relationship between chemical vapor deposited diamond and graphite substrates", Journal of Applied Physics, 73(2), 711 (1993) [69] R. Meilunas, R. P. H. Chang, S. Z. Liu, and M. M. Kappes, “Activated C70 and Diamond”, Nature, 354, 271 (1991) [70] Z. Feng, M. A. Brewer. K. Komvopoulos, I. G. Brown, and D. B. Bogy, “Diamond nucleation on unscratched silicon substrates coated with various non-diamond carbon films by microwave plasma-enhanced chemical vapor deposition”, Journal of Materials Research, 10 (1), 165 (1995) [71] M. Ece, B. Oral, J. Patscheider, and K. H. Ernst, “Effect of Organic Precursors on Diamond Nucleation on Silicon”, Diamond and Related Materials, 4, 720 (1995) [72] D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, "In situ characteristic of diamond nucleation and growth", Applied Physics Letters, 54(5), 416 (1989) [73] N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, "Nucleation and initial growth of diamond film on Si substrate", Journal of Materials Research, 9 (10), 2695(1994) [74] R. Haubner, A. Lindlbauer, and B. Lux, “Diamond nucleation and growth on refractory metals using microwave plasma deposition”, Int. J. of Refractory Metals & Hard Materials, 14, 119 (1996) [75] M. L. Terranova, M. Rossi, and G. Vitali, “Structural investigation of the titanium/diamond films interface”, Journal of Applied Physics, 80 (6), 3552 (1996) [76] W. L. Wang, K. J. Liao, L. Fang, J. Esteve, and M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition”, Diamond and Related Materials, 10, 383 (2001) [77] S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Applied Physics Letters, 58 (10), 1036 (1991) [78] B. R. Stoner, G. H. M. Ma, S. D. Woltor, and J. T. Glass, “Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy”, Physical Review B, 45, 11067 (1992) [79] J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on silicon”, Journal of Applied Physics, 79 (8), 4388 (1996) [80] P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films”, Physical Review B, 56 (4), 2183 (1997) [81] R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films”, Journal of Applied Physics, 79 (2), 768 (1996) [82] R. Stöckel, M. Stammler, K. Janischowsky, L. Ley, M. Albrecht, and H. P. Strunk, “Diamond nucleation under bias conditions”, Journal of Applied Physics, 83 (1), 531 (1998) [83] Sz. Kátai, Z. Tass, Gy. Hárs, and P. Deák, “Measurement of ion energy distributions in the bias enhanced nucleation of chemical vapor deposited diamond”, Journal of Applied Physics, 86 (10), 5549 (1999) [84] J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si”, Applied Physics Letters, 66 (24), 3287 (1995) [85] S. P. McGinnis, M. A. Kelly, and S. B. Hagström, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond”, Applied Physics Letters, 66 (23), 3117 (1995) [86] L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond (100)”, Journal of Applied Physics, 76 (11), 7483 (1994) [87] S. Barrat, S. Saada, I. Dieguez, and E. Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”, Journal of Applied Physics, 84 (4), 1870 (1998) [88] Q. Chen and Z. Lin, “Electron-emission-enhanced diamond nucleation on Si by hot filament chemical vapor deposition”, Applied Physics Letters, 68 (17), 2450 (1996) [89] P. K. Bachmann, D. Leers, and H. Lydtin, “Towards a general concept of diamond chemical vapour deposition”, Diamond and Related Materials, 1, 1(1991) [90] Y. Mitsuda, K. Tanaka, and T. Yoshida, “In situ emission and mass spectroscopic measurement of chemical species responsible for diamond growth in a microwave plasma jet”, Journal of Applied Physics, 67 (8), 3604 (1990) [91] T. Mitomo, T.Ohta, E. Kondoh, and K. Ohtsuka, “An investigation of product distributions in microwave plasma for diamond growth”, Journal of Applied Physics, 70 (8), 4532 (1991) [92] S. J. Harris, “Gas-phase kinetics during diamond growth: CH4 as-growth species”, Journal of Applied Physics, 65 (8), 3044 (1989) [93] M. Frenklach and H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition”, Physical Review B, 43 (2), 1520 (1991) [94] D. G. Goodwin, “Simulation of high-rate diamond synthesis: Methyl as growth species”, Applied Physics Letters, 59 (3), 277 (1991) [95] C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D'Evelyn, "Growth kinetics of (100), (110), and (111) homoepitaxial diamond films", Applied Physics Letters, 61 (12), 1393 (1992) [96] M. C. McMaster, W. L. Hsu, M. E. Coltrin, and D. S. Dandy, “Experimental measurements and numerical simulations of the gas composition in a hot-filament-assisted diamond chemical-vapor-deposition reactor”, Journal of Applied Physics, 76 (11), 7567 (1994) [97] A. Y. Vul, V. G. Golubev, S. A. Grudinkin, A. Kruger, and H. Naramoto, “Diamond films: initial CVD growth stage using nanodiamonds as nucleation centers”, Technical Physcis Letters, 28 (9), 787 (2002) [98] X. T. Zhou, Q. Li, F. Y. Meng, I. Bello, C. S. Lee, S. T. Lee, and Y. Lifshitz, “Manipulation of the equilibrium between diamond growth and renucleation to form a nanodiamond/amorphous carbon composite”, Applied Physics Letters, 80 (18), 3307 (2002) [99] S. N. Kundu, M. Basu, A. B. Maity, S. Chaudhuri, and A. K. Pal, “Nanocrystalline diamond films deposited by high pressure sputtering of vitreous carbon”, Materials Letters, 31, 303 (1997) [100] I. Gouzman and A. Hoffman, “Chemical stability of nano-diamond films deposited by the dc-glow discharge process”, Diamond and Related Materials, 9, 378 (2000) [101] W. Tang, C. Zhu, W. Yao, Q. Wang, C. Li, and F. Lu, “Nanocrystalline diamond films produced by direct current arc plasma jet process”, Thin Solid Films, 429, 63 (2003) [102] T. Hara, T. Yoshitake, T. Fukugawa, L. Y. Zhu, M. Itakura, N. Kuwano, Y. Tomokiyo, and K. Nagayama, “Nanocrystalline diamond film prepared by pulsed laser deposition in a hydrogen atmosphere”, Diamond and Related Materials, 13, 679 (2004) [103] D. A. Horner, L. A. Curtiss, and D. M. Gruen, “A theoretical study of the energetics of insertion of dicarbon (C2) and vinylidene into methane C-H bonds”, Chemical Physics Letters, 233, 243 (1995) [104] P. C. Redfern, D. A. Horner, L. A. Curtiss, and D. M. Gruen, “Theoretical studies of growth of diamond (110) from dicarbon”, Journal of Physics and Chemistry, 100, 11654 (1996) [105] H. Yoshikawa, C. Morel, and Y. Koga, “Synthesis of nanocrystalline diamond films using microwave plasma CVD“, Diamond and Related Materials, 10, 1588 (2001) [106] J. Lee, R. W. Collins, R. Messier, and Y. E. Strausser, “Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition”, Applied Physics Letters, 70 (12), 1527 (1997) [107] N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, Journal of Crystal Growth, 242, 362 (2002) [108] T. Sharda, M. Umeno, T. Soga, and T. Jimbo, “Growth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth”, Applied Physics Letters, 77 (26), 4304 (2000) [109] T. Sharda, T. Soga, T. Jimbo, and M. Umeno, “Highly stressed carbon film coatings on silicon: Potentail applications”, Applied Physics Letters, 80 (16), 2880 (2002) [110] W. Zhu, G. P. Kochanski, and S. Jin, “Low-field emission from undoped nanostructured diamond”, Science, 282, 1471 (1998) [111] A. Göhl, A. N. Alimova, T. Habermann, A. L. Mescheryakova, D. Nau, V. V. Zhirnov, and G. Huller, “Integral and local field emission analyses of nanodiamond coating for power applications” Journal of Vacuum Science and Technology B, 17, 670 (1999) [112] S. Prawer, J. L. Peng, J. O. Orwa, J. C. McCallum, D. N. Jamieson, and L. A. Bursill, “Size dependence of structural stability in nanocrystalline diamond”, Physical Review B, 62 (24), R16360 (2000) [113] Z. Sun, X. Shi, B. K. Tay, D. Flynn, X. Wang, Z. Zheng, and Y. Sun, “Low pressure polymer precursor process for synthesis of hard glassy carbon and diamond films”, Diamond and Related Materials, 6, 230 (1997) [114] L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, Y. Chen, and G. Hu, “Nanocrystalline diamond from carbon nanotubes”, Applied Physics Letters, 84 (15), 2901 (2004) [115] C. Campbell, “Surface acoustic wave devices and their signal processing applications”, Academic Press (1989) [116] H. Nakahata, A. Hachigo, S. Shikata, and N. Fujimori, “High frequency surface acoustic wave filter using ZnO/Diamond/Si structure”, 1992 Ultrasonics Symposium, 377 (1992) [117] H. Nakahata and N. Fujimori, “Surface acoustic wave device”, U.S. Patent No. 5,221,870, (1993) [118] A. Springer, F. Hollerweger, R. Weigel, S. Berek, R. Thomas, W. Ruile, C. W. Ruppel, and M. Guglielmi, “Design and performance of a SAW ladder-type filter at 3.15 GHz using SAW mass-production technology”, IEEE Transactions on Microwave Theory and Techniques, 47 (12), 2312 (1999) [119] G. Fischerauer, T. Ebner, P. Kruck, K. Morozumi, R. Thomas, and M. Pitschi, “SAW filter solutions to the needs of 3G cellular phones”, IEEE MTT-S Digest, 351 (2001) [120] D. Marsh, “Safety check: Wireless sensors eye tire pressure”, EDN Europe, Reed Electronics Group, 30 (2004) [121] Y. Hur, J. Han, J. Seon, Y. E. Pak, and Y. Roh, “Development of an SH-SAW sensor for the detection of DNA hybridization”, Sensors and Actuators A-Physical, 120 (2), 462 (2005) [122] A. J. Moulson and J. M. Herbert, “Electroceramics: Materials, Properties, Applications”, Springer (1990) [123] C. Hammond, “The basics of crystallography and diffraction”, Oxford University Press (2001) [124] http://www.keramverband.de/keramik/englisch/fachinfo/eigenschaften/eigenschaften_piezo.htm [125] T. E. Parker and M. B. Schulz, “Temperature stable surface acoustic wave delay lines with SiO2 film overlays”, 1974 Ultrasonics Symposium Proceedings, 295 (1974) [126] K. Yamanouchi, N. Sakural, and T. Satoh, “SAW propagation characteristics and fabrication technology of piezoelectric thin film/ diamond structure”, 1989 Ultrasonics Symposium, 351 (1989) [127] H. Nakahata, A. Hachigo, K. Higaki, S. Fujii, S. Shikata, and N. Fujimori, “Theoretical study on SAW characteristics of layered structures including a diamond layer”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 42 (2), 362 (1995) [128] H. Nakahata, A. Hachigo, K. Itakura, S. Fujii, and S. Shikata, “SAW resonators of SiO2/ZnO/Diamond structure in GHz range”, 2000 IEEE/EIA International Frequency Control Symposium and Exhibition, 315 (2000) [129] C. Caliendo, “Gigahertz-band eletroacoustic devices based on AlN thick films sputtered on Al2O3 at low temperature”, Applied Physics Letters, 83 (23), 4851 (2003) [130] K. Yamanouchi, Y. Cho, and T. Meguro, “SHF-range surface acoustic wave inter-digital transducers using electron beam exposure”, 1988 Ultrasonics Symposium, 115 (1988) [131] Y. Takagaki, P. V. Santos, E. Wiebicke, O. Brandt, H. P. Schönherr and K. H. Pliig, “Superhigh-frequency surface-acoustic-wave transducers using AlN layers grown on SiC substrates”, Applied Physics Letters, 81 (41), 2538 (2002) [132] H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, H. Kitabayashi, K. Tanabe, Y. Seki, and S. Shikata, “SAW devices on diamond”, 1995 IEEE Ultrasonics Symposium, 361 (1995) [133] K. Higaki, H. Nakahata, H. Kitabayashi, S. Fujii, K. Tanabe, Y. Seki, and S. Shikata, “High power durability of diamond surface acoustic wave filter”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44 (6), 1395 (1997) [134] O. Elmazria, V. Mortet, M. E. Hakiki, M. Nesladek, and P. Alnot, “High velocity SAW using aluminum nitride film on unpolished nucleation side of free-standing CVD diamond”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50 (6), 710 (2003) [135] T. Lamara, M. Belmahi, O. Elmazria, L. L. Brizoual, J. Bougdira, M. Rémy, P. Alnot, “Freestanding CVD diamond elaborated by pulsed-microwave-plasma for ZnO/diamond SAW devices”, Diamond and Related Materials, 13, 581 (2004) [136] B. Bi, W. S. Huang, J. Asmussen, B. Golding, “Surface acoustic waves on nanocrystalline diamond”, Diamond and Related Materials, 11, 677 (2002) [137] F. Bénédic, M. B. Assouar, F. Mohasseb, O. Elmzria, P. Alnot, and A. Gicquel, “Surface acoustic wave devices based on nanocrystalline diamond and aluminium nitride”, Diamond and Related Materials, 13, 347 (2004) [138] M. Benetti, D. Cannatá, F. D. Pietrantonio, and E. Verona, “Growth of AlN piezoelectric films on diamond for high frequency SAW devices”, 2003 IEEE Uultrasonics Symposium, 1738 (2003) [139] H. Nakahata and N. Fujimori, “Surface acoustic wave device”, U.S. Patent No. 5,160,869 (1992) [140] S. Yamamoto, K, “Surface acoustic wave device”, U.S. Patent No. 5,235,233 (1993) [141] H. Nakahata, K. Higaki, S. Fujii, H. Kitabayashi, and S. Shikata, “Diamond-ZnO surface acoustic wave device”, U.S. Patent No. 5,814,918 (1998) [142] M. E. Hakiki, O. Elmazria, M. B. Assouar, V. Mortet, A. Talbi, and F. Sarry, “High SAW velocity and high electromechanical coupling coefficient with the new three layered structure: ZnO/AlN/diamond”, 2004 IEEE Ultrasonics Symposium, 195 (2004) [143] T. Imai, H. Nakahata, and N. Fujimori, “Surface acoustic wave device”, U.S. Patent No. 4,952,832 (1990) [144] H. Nakahata. A. Hachigo, K. Higaki, and S. Shikata, “Surface acoustic wave element”, U.S. Patent No. 5,446,329 (1995) [145] H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, and S. Shikata, “Surface acoustic wave device”, U.S. Patent No. 5,565,725 (1996) [146] H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, and S. Shikata, “Diamond-LiTaO3 surface acoustic wave device”, U.S. Patent No. 5,646,468 (1997) [147] H. Du, J. E. Graebner, S. Jin, D. W. Johnson, and W. Zhu, “Process for fabricating device comprising lead zirconate titanate”, U.S. Patent No. 6,248,394 (2001) [148] H. Nakahata, M. Narita, A. Hachigo, and S. Shikata, “Surface-acoustic-wave device”, U.S. Patent No. 6,337,531 (2002) [149] W. Zhu, “Vacuum microelectronics”, John Wiley & Sons (2001) [150] N. S. Xu and S. E. Huq, “Novel cold cathode materials and applications”, Materials Science and Engineering R, 48, 47 (2005) [151] D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Procedure Eastern Joint Computer Conference, 55 (1958) [152] C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, “Physical properties of thin field emission cathode with molybdenum cones”, Journal of Applied Physics, 47, 5248 (1976) [153] Y. Wei, C. Xie, K. A. Dean, and B. F. Coll, “Stability of carbon nanotubes under electric field studied by scanning electron microscopy”, Applied Physics Letters, 79 (27), 4527 (2001) [154] J. M. Bonard, C. Klinke, K. A. Dean, and B. F. Coll, “Degradation and failure of carbon nanotube field emitters”, Physical Review B, 67, 115406 (2003) [155] W. B. Choi, J. J. Cuomo, V. V. Zhirnov, A. F. Myers, and J. J. Hren, “Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis”, Applied Physics Letter, 68 (5), 720 (1996) [156] R. V. Latham and N. S. Xu, “’Electron pin-holes’: the limiting defect for insulating high voltage by vacuum, a basis for new cold cathode electron sources”, Vacuum, 42 (18), 1173 (1991) [157] Z. H. Huang, P. H. Culter, N. M. Miskovsky, and T. E. Sullivan, “Theoretical-Study of Field-Emission from Diamond”, Applied Physics Letter, 65 (20), 2562 (1994) [158] V. V. Zhirnov, E. I. Givargizov, and P. S. Plekhanov, “Field-Emission from Silicon Spikes with Diamond Coatings”, Journal of Vacuum Science and Technology B, 13 (2), 418 (1995) [159] A. V. Karabutov, S. K. Gordeev, V. G. Ralchenko, S. B. Korchagina, S. V. Lavrischev, S. V. Terekhov, K. I. Maslakov, and A. P. Dementjec, “Oxidized porous diamond/pyrocarbon nanocomposites as improved field electron emitters”, Diamond and Related Materials, 12, 1710 (2003) [160] W. I. Milne, “Field emission from tetrahedrally bonded amorphous carbon”, Applied Surface Science, 146, 262 (1999) [161] S. G. Wang, Q. Zhang, S. F. Yoon, J. Ahn, Q. Wang, Q. Zhou, and D. J. Yang, “Growth and electron field emission characteristics of nanodiamond films deposited in N2/CH4/H2 microwave plasma-enhanced chemical vapor deposition”, Journal of Vacuum Science and Technology B, 20 (5), 1982 (2002) [162] M. W. Geis, J. C. Twichell, N. N. Efremow, K. Krohn, and T. M. Lyszczarz, “Comparison of electron field emission from nitrogen-doped, type 1b diamond, and boron-doped diamond”, Applied Physics Letters, 68 (16), 2294 (1996) [163] W. P. Kang, A. Wisitsora-at, J. L. Davidson, D. V. Kerns, Q. Li, J. F. Xu, and C. K. Kim, “Effect of sp2 content and tip treatment on the field emission of micropatterned pyramidal diamond tips”, Journal of Vacuum Science and Technology B, 16 (2), 684 (1998) [164] M. Q. Ding, D. M. Gruen, A. R. Krauss, O. Auciello, T. D. Corrigan, and R. P. H. Chang, “Studies of field emission from bias-grown diamond thin films”, Journal of Vacuum Science and Technology B, 17 (2), 705 (1999) [165] C. Gu, X. Jiang, Z. Jin, and W. Wang, “Electron emission from nanocrystalline diamond films”, Journal of Vacuum Science and Technology B, 19 (3), 962 (2001) [166] O. Gröning, L-O. Nilsson, P. Gröning, L. Schlapbach, “Properties and characterization of chemical vapor deposition diamond field emitters”, Solid State Electronics, 45, 929 (2001) [167] S. G. Wang, Q. Zhang, S. F. Yoon, J. Ahn, Q. Wang, Q. Zhou, and D. J. Yang, “Electron field emission properties of nano-, submicro- and micro-diamond films”, Physical State of Solids (a), 193 (3), 546 (2002) [168] S. Bhattacharyya, “Mechanism of high n-type conduction in nitrogen-doped nanocrystalline diamond”, Physical Review B, 70, 125412 (2004) [169] T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapol, and R. P. H. Chang, “The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond”, Diamond and Related Materials, 11, 43 (2002) [170] W. P. Kang, A. Wisitsora-at, J. L. Davidson, M. Howerll, D. V. Kerns, Q. Li, and F. Xu, “Subvolt turn-on voltage self-align gate diamond emitter fabricated by self-align-gate-sharpened molding technique”, Journal of Vacuum Science and Technology B, 17 (2), 740 (1999) [171] Y. Ando, Y. Nishibayashi, H. Furuta, K. Kobashi, T. Hirao, and K. Oura, “Spiky diamond field emitters”, Diamond and Related Materials, 12, 1681 (2003) [172] W. J. Zhang, Y. Wu, C. Y. Chan, W. K. Wong, X. M. Meng, I. Bello, Y. Lifshitz, and S. T. Lee, “Structure single- and nano-crystalline diamond cones”, Diamond and Related Materials, 13, 1037 (2004) [173] A. N. Stepanova, E. I. Givargizov, L. V. Bormatova, V. V. Zhirnov, E. S. Mashkova, and A. V. Molchanov, “Preparation of ultrasharp diamond tip emitters by ion-beam etching”, Journal of Vacuum Science and Technology B, 16 (2), 678 (1998) [174] B. Günther, A. Göhl, G. Müller, E. Givargizov, L. Zadorozhnaya, A. Stepanova, B. Spitsyn, A. N. Blaut-Bachev, B. Seleznev, and N. Suetin, “Microscopic field emission investigation of nanodiamond and AlN coated Si tips”, Journal of Vacuum Science and Technology B, 19 (3), 942 (2001) [175] A. V. Sumant, D. S. Grierson, J. E. Gerbi, J. Birrell, U. D. Lanke, O. Auciello, J. A. Carlisle, and R. W. Carpick, “Toward the ultimate tribological interface: Surface chemistry and nanotribology of ultrananocrystalline diamond”, Advanced Materials, 17 (8), 1039 (2005) [176] J. Philip, P. Hess, T. Feygelson, J. E. Butler, S. Chattopadhyay, K. H. Chen, and L. C. Chen, “Elastic, mechanical, and thermal properties of nanocrystalline diamond films”, Journal of Applied Physics, 93 (4), 2164 (2003) [177] L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond”, Applied Physics Letters, 81 (23), 4455 (2002) [178] A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, M. Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices”, Diamond and Related Materials, 10, 1952 (2001) [179] J. Wang, M. A. Firestone, O. Auciello, and J. A. Carlisle, “Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of arldiazonium salts”, Langmuir, 20, 11450 (2004) [180] W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Berbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates”, Nature Materials, 1, 253 (2002) [181] M. D. Fries, Y. K. Vohra, “Properties of nanocrystalline diamond thin films grown by MPCVD fro biomedical implant purposes”, Diamond and Related Materials, 13, 1740 (2004) [182] http://www.msd.anl.gov/groups/sc/research/ntf/docs/electrochemical.pdf [183] G.. F. Iriarte, F. Engelmark, M. Ottosson, and I. V. Katardjiev, “Influence of deposition parameters on the stress of magnetron sputter-deposited AlN thin films on Si(100) substrates”, Journal of Material Research, 18 (2), 423 (2003)
|