跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李彥志
研究生(外文):Yen-Chih Lee
論文名稱:元件用奈米晶鑽石薄膜
論文名稱(外文):Ultra-nancrystalline diamond for device application
指導教授:林樹均林諭男林諭男引用關係
指導教授(外文):Su-Jien LinI-Nan Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:226
中文關鍵詞:奈米晶鑽石表面聲波元件電子場發射
外文關鍵詞:nano-diamondsurface acoustic wavefield emission
相關次數:
  • 被引用被引用:3
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
由於鑽石具有許多無與倫比的物理及化學特性,因此有極高的應用潛力。但是傳統人工鑽石膜粗糙的刻面(facet)表面是應用上最大的問題之一。為了克服表面粗糙度的問題,近幾年來合成奈米晶鑽石(nano-diamond)成為相當熱門的研究主題,這是因為奈米晶鑽石不但可以大輻降低表面粗糙度,而且在許多方面具備了比微米晶鑽石更卓越的特性,因此在各種領域的應用上具有很大的潛力。元件用自然平坦的奈米晶鑽石膜,除了必須在孕核(nucleation)及成長(growth)階段分別具備高的孕核密度及高的二次再孕核(second order nucleation)密度外,為了達到商業應用的價值,也必須開發大面積、均勻高的奈米鑽石薄膜。
  本論文研究的第一章為序論及技術背景,將針對研究動機及目前的技術發展做一完整的描述;第二章為實驗方法及分析方法的介紹;第三章將探討如何製備不同晶粒大小的人工鑽石膜,以及它們在表面形貌(SEM, AFM)、結晶結構(Raman, NEXAFS)及場發射(electron field emission)特性上的差異;第四章將探討不同前處理(pre-nucleation)步驟對於成長奈米晶鑽石膜孕核密度(SEM)、表面型態(AFM)以及附著力(nano-indentor)的影響;第五章為大面積、高均勻度奈米晶鑽石薄膜製備的研究,以光譜儀(optical emission spectroscopy, OES)分析不同成長條件對於成長速率(SEM)、薄膜應力、均勻度、結晶結構(Raman)等特性的影響,並以電磁場模擬來解釋腔體設計對電漿均勻度的重要性;第六章為奈米鑽石層狀結構高頻表面聲波(surface acoustic wave, SAW)元件研究;第七章為奈米鑽石膜的場發射特性研究;第八章為總結及未來展望;第九章為參考文獻。
Diamond and related materials grown have enormous potential applications due to their marvelous combination of physical and chemical properties. However, large roughness of microcrystalline diamond films makes them inapplicable in some specific applications. Recently, nanocrystalline diamond films with naturally smooth surface have been synthesized, which make low prime cost diamond wafer is possible for commercial applications.
The mortification of this research is looking for a possible method to fabricate low cost and applicable diamond wafer for commercial applications. In order to achieve this goal, a suitable nucleation and growth method is necessary. In this study, a very high nucleation density (>1011 sites/cm2) and good adhesion (~ 67 mN) are achieved successfully by modified ultrasonication method and BEN method. By controlling deposition parameters, reasonable deposition rate ~ 1.3 �慆/hr, and less than 50% thickness variation could be achieved for 4” wafer without substrate temperature control. With good microwave plasma reactor design and suitable substrate temperature controlling system, naturally smooth diamond film with large area (4”) uniformity is possible.
Diamond layered SAW resonator and electron field emission measurements are performed successfully by using nanocrysatlline diamond films without any post-processing for demonstrating the practicability of these naturally smooth artificial diamond films.
In brief, we develop a reliable and low cost processing procedure for depositing large area, uniform nanocrystalline diamond wafer with naturally smooth surface for commercial applications without expensive and time consuming post-processing.
摘要 I
致謝 III
目錄 IV
表目錄 X
圖目錄 XI
第一章 序論及技術背景 1
I-1 研究動機 1
I-2 鑽石的基本特性 1
I-2-1 鑽石的特性及相關應用 1
I-2-2 人工鑽石歷史 4
I-2-3 奈米晶鑽石膜 5
I-3 鑽石的孕核理論及方法 10
I-3-1 孕核理論 10
I-3-2 促進鑽石孕核的方法 12
I-3-2-1製造殘留高表面能或應力的缺陷 12
I-3-2-2 殘留鑽石晶種 13
I-3-2-3 表面被覆 13
I-3-2-4 偏壓輔助孕核 15
I-4 鑽石的成長理論及方法 18
I-4-1 傳統的微米晶鑽石 18
I-4-2 奈米晶鑽石 20
I-4-2-1 缺氫氣環境 20
I-4-2-2 高濃度含碳氣體 22
I-4-2-3 偏壓輔助成長 22
I-4-2-4 其它 23
I-5 表面聲波元件 25
I-5-1 何謂表面聲波元件 25
I-5-2 表面聲波元件用壓電材料 26
I-5-3 壓電-鑽石層式表面聲波元件 28
I-5-4 理論計算及範例 31
I-5-5 專利地圖 35
I-6 電子場發射特性 38
I-6-1 金屬的電子場發射理論 39
I-6-2 半導體的場發射理論 40
I-6-3 場發射材料的發展 42
I-7 其它應用 45
I-7-1 微機電系統(MEMS) 45
I-7-2 電化學電極 46
I-7-3 生化應用 47
第二章 實驗方法及分析 49
II-1孕核階段 49
II-1-1 超音波震盪法(U) 49
II-1-2超音波震盪法-鑽石/鈦懸浮液(U-m) 49
II-1-3 預積碳-超音波震盪法(PC-U) 50
II-1-4 偏壓輔助孕核法(BEN) 50
II-1-4-1 ASTeX 5400 MPECVD系統 50
II-1-4-2 偏壓輔助孕核實驗條件 51
II-2成長階段 52
II-2-1 微米晶、次微米晶及奈米晶鑽石膜 52
II-2-2 超奈米微晶鑽石膜 53
II-2-2-1 IPLAS CRYNNUS I MPECVD系統 53
II-2-2-2 鍍膜條件 55
II-2-2-3 超奈米微晶鑽石薄膜 56
II-3材料特性分析工具 56
II-3-1 二次電子顯微鏡(SEM) 57
II-3-2原子力顯微鏡(AFM) 57
II-3-3拉曼光譜儀(Raman spectrocope) 58
II-3-4近邊緣X射線吸收精細結構(NEXAFS) 58
II-3-5 X-ray繞射晶體結構分析(XRD) 59
II-3-6奈米壓痕儀(nanoindenter) 59
II-3-7雷射光槓桿儀 60
II-4表面聲波元件模擬、製程、量測 61
II-4-1 高指向性氮化鋁薄膜 61
II-4-2 IDT-氮化鋁-奈米晶鑽石層式表面聲波特性模擬 62
II-4-3 奈米晶鑽石層式表面聲波元件製程 63
II-4-4 奈米晶鑽石層式表面聲波元件特性量測 64
II-5電子場發射特性量測 64
II-5-1量測設備及方法 64
II-5-2 F-N圖及分析 65
II-5-3表面處理 66
第三章 從微米晶鑽石到奈米晶鑽石 68
III-1表面形貎 68
III-2結晶結構 73
III-2-1拉曼光譜 73
III-2-2NEXAFS 75
IV-3場發射特性 78
IV-4結論 82
第四章 鑽石的孕核研究 83
IV-1偏壓輔助孕核(BEN) 84
IV-1-1孕核行為 84
IV-1-1-1施加偏壓下電漿及基板行為 84
IV-1-1-2以偏壓電流曲線監測孕核行為 86
IV-1-1-3孕核行為 88
IV-1-2不同孕核條件的影響 93
IV-1-2-1偏壓電流行為 93
IV-1-2-2表面形貌及晶粒大小 95
IV-1-2-3結晶結構 97
IV-1-3結論 99
IV-2不同孕核方式 100
IV-2-1孕核密度及表面形貎 100
IV-2-2結晶結構 106
IV-2-3附著特性 107
IV-2-4結論 110
第五章 奈米晶鑽石薄膜 111
V-1奈米晶鑽石薄膜 112
V-1-1表面形貎及結晶結構 112
V-1-2鍍膜速率 116
V-1-3碳黑被覆問題 119
V-2鍍膜均勻度 121
V-2-1孕核均勻度 121
V-2-2鍍膜均勻度 126
V-2-2-1膜厚均勻度 127
V-2-2-2結晶結構均勻度 129
V-3微波腔體設計 131
V-3-1 TM102模態 131
V-3-2腔體尺寸參數 133
V-3-3基板載具參數 136
V-4結論 139
第六章 氮化鋁-奈米晶鑽石表面聲波元件 141
VI-1高指向性氮化鋁薄膜 142
VI-1-1氮化鋁/矽基板 142
VI-1-1-1 XRD結晶結構分析 142
VI-1-1-2 拉曼分析 143
VI-1-1-3 膜厚均勻度 145
VI-1-2氮化鋁/奈米晶鑽石/矽基板 148
VI-2氮化鋁-奈米晶鑽石表面聲波元件 151
VI-2-1氮化鋁-奈米晶鑽石表面聲波特性模擬 152
VI-2-2氮化鋁-奈米晶鑽石表面聲波元件製作 153
VI-2-3氮化鋁-奈米晶鑽石表面聲波特性量測 156
VI-2-3-1雷射脈衝激發表面聲波技術 156
VI-2-3-2層式表面聲波元件量測 159
VI-3結論 162
第七章 奈米晶鑽石場發射特性研究 163
VII-1偏壓大小影響 164
VII-1-1場發射特性 164
VII-2硼摻雜 166
VII-2-1場發射特性 167
VII-2-2結晶結構、導電度及表面型貎 169
VII-2-3改變偏壓大小對硼摻雜的影響 172
VII-3氮摻雜 175
VII-3-1場發射特性 175
VII-3-2導電度、結晶結構、鍍膜速率及晶粒大小 177
VII-4表面處理 182
VII-4-1場發射特性 182
VII-4-2親水性測試、結晶結構及表面型貎 183
VII-5結論 189
第八章 總結及未來展望 190
第九章 參考文獻 194
個人著作 208
個人簡歷 210
[1] A. Lavoisier, “Elements of Chemistry”, Dover Publications (1772)
[2] H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages”, Noyes (1995)
[3] R. F. Davis, “Diamond films and coating: development, properties, and applications”, Noyes Publications (1993)
[4] B. Dischler and C. Wild, “Low pressure synthetic diamond: manufacturing and applications”, Springer (1998)
[5] M. H. Nazare and A. J. Neves, “Properties, growth and applications of diamond”, INSPEC Inc. (2000)
[6] T. Sharda and S. Bhattacharyya, “Advances in nanocrystalline diamond”, Encyclopedia of Nanoscience and Nanotechnology, X, 1 (2003)
[7] A. R. Krauss, O. Auciello, D. N. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mmancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, and M. Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices”, Diamond and Related Materials, 10, 1952 (2001)
[8] L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structure in nanocrystalline diamond”, Applied Physics Letters, 81 (23), 4455 (2002)
[9] K. Yamanouchi, N. Sakurai, and T. Satoh, “SAW propagation characteristics and fabrication technology of piezoelectric thin film/diamond structure”, 1989 IEEE Ultrasonics Symposium, 351 (1989)
[10] H. Nakahata, A. Hachigo, K. Itakura, and S. Shikata, “Fabrication of high frequency SAW filters from 5 to 10 GHz using SiO2/ZnO/Diamond structure”, 2000 IEEE Ultrasonics Symposium, 349 (2000)
[11] B. Bi, W. S. Huang, J. Asmussen, and B. Golding, “Surface acoustic waves on nanocrystalline diamond”, Diamond and Related Materials, 11, 677 (2002)
[12] F. Benedic, M. B. Assouar, F. Mohasseb, O. Elmazria, P. Alnot, and A. Gicquel, “Surface acoustic wave devices based on nanocrytalline diamond and aluminium nitride”, Diamond and Related Materials, 13, 347 (2004)
[13] J. Wang, M. A. Firestone, O. Auciello, and J. A. Carlisle, “Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of Aryldiazonium salts”, Langmuir, 20, 11450 (2004)
[14] J. Isberg, J. Hammersberg, E. Johansson, T. Wikstrom, D. J. Twitchen, A. J. Whitehead, S. E. Coe, and G. A. Scarsbrook, “High carrier mobility in single-crystal plasma-deposited diamond”, Science, 297, 1670 (2002)
[15] W. Yang and R. J. Hamers, “Fabrication and characterization of a biologically sensitive field-effect transistor using a nanocrystalline diamond thin film”, Applied Physics Letters, 85 (16), 3626 (2004)
[16] F. J. Himpsel, J. A. Knapp, J. A. VanVechten, and D. E. Eastman, “Quantum photoyield of diamond (111) – A stable negative-affinity emitter”, Physical Review B, 20 (2), 624 (1979)
[17] W. Zhu, G. P. Kochanski, and S. Jin, “Low-field electron emission from undoped nanostructured diamond”, Science, 282 (5393), 1471 (1998)
[18] A. R. Krauss, O. Auciello, M. Q. Ding, D. M. Gruen, Y. Huang, and V. V. Zhirnov, “Electron field emission for ultrananocrystalline diamond films”, Journal of Applied Physics, 89 (5), 2958 (2001)
[19] W. P. Kang, J. L. Davidson, Y. M. Wong, and K. Holmes, “Diamond vacuum field emission device”, Diamond and Related Materials, 13, 975 (2004)
[20] P. W. Bridgman, "Synthetic diamonds", Scientific American, 193 (5), 42 (1955)
[21] W. G. Eversole, U.S. Patent No. 3,030,188, (1962)
[22] J. C. Angus, H. A. Will, and W. S. Stanko, Journal of Applied Physics, 39 (6), 2915 (1968)
[23] B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of diamond on diamond and other surfaces”, Journal of Crystal Growth, 52, 219 (1981)
[24] S. Matzumoto, Y. Sato, M. Kamo, and N. Setaka, “Vapor deposition of diamond particles from methane”, Japanese Journal of Applied Physics 2, 21, L183 (1982)
[25] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, Journal of Crystal Growth, 62, 642 (1983)
[26] D. M. Gruen, S. Liu, A. R. Krauss, J. Luo, and X. Pan, “Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions”, Applied Physics Letters, 64 (12), 1502 (1994)
[27] T. D. McCauley, D. M. Gruen, and A. R. Krauss, “Temperature dependence of the growth rate for nanocrystalline diamond films deposited from an Ar/CH4 microwave plasma”, Applied Physics Letters, 73 (12), 1646 (1998)
[28] D. M. Gruen, “Nanocrystalline diamond films”, Annual Review Material Science, 29, 211 (1999)
[29] A. P. Malshe, B. S. Park, W. D. Brown, and H. A. Naseem, “A review of techniques for polishing and planarizing chemically vapor-deposited (CVD) diamond films and substrates”, Diamond and Related Materials, 8, 1198 (1999)
[30] T. Sharda, T. Soga, T. Jimbo, and M. Umeno, “Biased enhanced growth of nanocrystralline diamond films by microwave plasma chemical vapor deposition”, Diamond and Related Materials, 9, 1331 (2000)
[31] N. Jiang, K. Nishimura, Y. Shintani, and A. Hiraki, “Field electron emission of diamond films grown on the ultrasonically scratched and nano-seeded Si substrates”, Journal of Crystal Growth, 255, 102 (2003)
[32] L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, Y. Chen, and G. Hu, “Nanocrystalline diamond from carbon nanotubes”, Applied Physics Letters, 84 (15), 2901 (2004)
[33] N. Park, S. Park, N. M. Hwang, J. Ihm, S. Tejima, and H. Nakamura, “First principles study of the effect of charge on the stability of a diamond nanocluster surface”, Physical Review B, 69, 195411 (2004)
[34] G. Lombardi, K. Hassouni, F. Benedic, F. Mohasseb, J. Ropcke, and A. Gicquel, “Spectroscopic diagnostics and modeling of Ar/H2/CH4 microwave discharges used for nanocrystalline diamond deposition”, Journal of Applied Physics, 96 (11), 6739 (2004)
[35] J. R. Rabeau, P. John, J. I. B. Wilson, and Y. Fan, “The role of C2 in nanocrystalline diamond growth”, Journal of Applied Physics, 96 (11), 6724 (2004)
[36] X. Xiao, J. W. Elam, S. Trasobares, O. Auciello, and J. A. Carlisle, “Synthesis of a self-assembled hybrid of ultrananocrystalline diamond and carbon nanotubes”, Advanced Materials, 17, 1496 (2005)
[37] N. Dubrovinskaia, L. Dubrovinsky, F. Langenhorst, S. Jacobsen, and C. Liebske, “Nanocrystalline diamond synthesized from C60”, Diamond and Related Materials, 14, 16 (2005)
[38] M. Stapa, J. Szmidt, A. Szczesny, P. Sniecikowski, W. Czarnacki, M. Dudek, M. Traczyk, and A. Werbowy, “Ultra-thin nanocrystalline diamond detectors”, Diamond and Related Materials, 14, 125 (2005)
[39] G. N. Yushin, S. Osswald, V. I. Padalko, G. P. Bogatyreva, and Y. Gogotsi, “Effect of sintering on structure of nanodiamond”, Diamond and Related Materials, 14, 1721 (2005)
[40] A. Erdemir, C. Bindal, G. R. Fenske, C. Zuiker, A. R. Krauss, and D. M. Gruen, “Friction and wear properties of smooth diamond films grown in fullerence + argon plasmas”, Diamond and Related Materials, 5, 923 (1996)
[41] A. V. Sumant, D. S. Grierson, J. E. Gerbi, J. Birrell, U. D. Lanke, O. Auciello, J. A. Carlisle, and R. W. Carpick, “Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond”, Advanced Materials, 17 (8), 1039 (2005)
[42] S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, and P. Zapol, “Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films”, Applied Physics Letters, 79 (10), 1441 (2001)
[43] J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, “Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond”, Applied Physics Letters, 81 (12), 2235 (2002)
[44] T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapol, and R. P. H. Chang, “The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond”, Diamond and Related Materials, 11, 43 (2002)
[45] S. G. Wang, Q. Zhang, S. F. Yoon, J. Ahn, Q. Wang, Q. Zhou, and D. J. Yang, “Electron field emission properties of nano-, submicro- and micro-diamond films”, Physics of Solid State (a), 193 (3), 546 (2002)
[46] N. Jiang, K. Nishimura, Y. Shintani, and A. Hiraki, “Field electron emission of diamond films grown on the ultrasonically scratched and nano-seeded Si substrates”, Journal of Crystal Growth, 255, 102 (2003)
[47] K. Subramanian, W. P. Kang, J. L. Davidson, and W. H. Hofmeister, “Growth aspects of nanocrystalline diamond films and their effects on electron field emissions”, Journal of Vacuum Science Technology B, 23 (2), 786 (2005)
[48] S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, “Microstructure of ultrananocrystalline diamond films grown by microwave Ar-CH4 plasma chemical vapor deposition with or without added H2”, Journal of Applied Physics, 90 (1), 118 (2001)
[49] L. C. Qin, D. Zhou, A. R. Krauss, and D. M. Gruen, “TEM characterization of nanodiamond thin films”, Nanostructured Materials, 10 (4), 649 (1998)
[50] D. Zhou, D. M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss, “Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas”, Journal of Applied Physics, 84 (4), 1981 (1998)
[51] D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss, and D. M. Gruen, “Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma”, Journal of Applied Physics, 83 (1), 540 (1998)
[52] D. M. Gruen, A. R. Kraus, C. D. Zuiker, R. Csencsits, L. J. Terminello, J. A. Carlisle, I. Jimenez, D. G. J. Sutherland, D. K. Shuh, W. Tong, and F. J. Himpsel, “Characterization of nanocrystalline diamond films by core-level photoabsoption”, Applied Physics Letters, 68 (12), 1640 (1996)
[53] X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, “Low temperature growth of ultrananocrystalline diamond”, Journal of Applied Physics, 96 (4), 2232 (2004)
[54] R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, “Raman scattering characterization of carbon bonding in diamond and diamondlike thin films”, Journal of Vacuum Science and Technology A, 6 (3), 1783 (1988)
[55] A. C. Ferrari and J. Robertson, “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond”, Physical Review B, 63, 121405(R) (2001)
[56] R. Pfeiffer, H. Kuzmany, N. Salk, and B. Gunther, “Evidence for trans-polyacetylene in nanocrystalline diamond films from H-D isotropic substitution experiments”, Applied Physics Letters, 82 (23), 4149 (2003)
[57] S. R. Sails, D. J. Gardiner, M. Bowden, J. Savage, and D. Rodway, “Monitoring the quality of diamond films using Raman spectra excited at 514.5 nm and 633 nm”, Diamond and Related Materials, 5, 589 (1996)
[58] P. Zapol, M. Sternberg, L. A. Curtiss, T. Frauenheim, and D. M. Gruen, “Tight-binding molecular-dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries”, Physical Review B, 65, 045403 (2001)
[59] D. L. Smith, “Thin-film deposition: principles and practice”, McGraw-Hill Professional (1995)
[60] X. Jiang, C. P. Klages, R. Zachai, M. Hartweg, and H. J. Fusser, "Epitaxial diamond thin films on (001) silicon substrate", Applied Physics Letters, 62, 3438 (1993)
[61] S. T. Lee and Y. Lifshitz, “The road to diamond wafers”, Nature, 424, 500 (2003)
[62] S. Gsell, T. Bauer, J. Goldfu��, M. Schreck, and B. Stritzker, “A route to diamond wafers by epitaxial deposition on silicon via iridium/yttria-stabilized zirconia buffer layers”, Applied Physics Letters, 84 (22), 4541(2004)
[63] J. H. Je and G. Y. Lee, “Microstructures of diamond films deposited on (100) silicon wafer by microwave plasma-enhanced chemical vapor-deposition”, Journal of Materials Science, 27 (23), 6324 (1992)
[64] D. K. Sood, W. R. Drawl, and R. Messier, ”The effect of carbon ion-implantation on the nucleation of diamond on Ti-6Al-4V alloy”, Surface and Coatings Technology, 51 (1-3), 307 (1992)
[65] S. M. Pimenov, A. A. Smolin, V. G. Ralchenko, V. I. Konov, S. V. Likhanski, and I. A. Veselovski, “UV laser processing of diamond films - effects of irradiation conditions on the properties of laser-treated diamond film surfaces”, Diamond and Related Materials, 2, 291 (1993)
[66] S. Iijima, Y. Aikawa, and K. Baba, "Early formation of chemical vapor deposition diamond films", Applied Physics Letters, 57 (25), 2646 (1990)
[67] J. L. Valdes, J. W. Mitchel, J. A. Mucha, L. Seibles, and H. Huggins, “Selected area nucleation and patterning of diamond thin films by electrophoretic seeding”, Journal of the Electrochemical Society, 138 (2), 635 (1991)
[68] Zhidan Li, Long Wang, Tetsuya Suzuki, and Pirouz Pirouz, "Orientation relationship between chemical vapor deposited diamond and graphite substrates", Journal of Applied Physics, 73(2), 711 (1993)
[69] R. Meilunas, R. P. H. Chang, S. Z. Liu, and M. M. Kappes, “Activated C70 and Diamond”, Nature, 354, 271 (1991)
[70] Z. Feng, M. A. Brewer. K. Komvopoulos, I. G. Brown, and D. B. Bogy, “Diamond nucleation on unscratched silicon substrates coated with various non-diamond carbon films by microwave plasma-enhanced chemical vapor deposition”, Journal of Materials Research, 10 (1), 165 (1995)
[71] M. Ece, B. Oral, J. Patscheider, and K. H. Ernst, “Effect of Organic Precursors on Diamond Nucleation on Silicon”, Diamond and Related Materials, 4, 720 (1995)
[72] D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, "In situ characteristic of diamond nucleation and growth", Applied Physics Letters, 54(5), 416 (1989)
[73] N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, "Nucleation and initial growth of diamond film on Si substrate", Journal of Materials Research, 9 (10), 2695(1994)
[74] R. Haubner, A. Lindlbauer, and B. Lux, “Diamond nucleation and growth on refractory metals using microwave plasma deposition”, Int. J. of Refractory Metals & Hard Materials, 14, 119 (1996)
[75] M. L. Terranova, M. Rossi, and G. Vitali, “Structural investigation of the titanium/diamond films interface”, Journal of Applied Physics, 80 (6), 3552 (1996)
[76] W. L. Wang, K. J. Liao, L. Fang, J. Esteve, and M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition”, Diamond and Related Materials, 10, 383 (2001)
[77] S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Applied Physics Letters, 58 (10), 1036 (1991)
[78] B. R. Stoner, G. H. M. Ma, S. D. Woltor, and J. T. Glass, “Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy”, Physical Review B, 45, 11067 (1992)
[79] J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on silicon”, Journal of Applied Physics, 79 (8), 4388 (1996)
[80] P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films”, Physical Review B, 56 (4), 2183 (1997)
[81] R. Stöckel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films”, Journal of Applied Physics, 79 (2), 768 (1996)
[82] R. Stöckel, M. Stammler, K. Janischowsky, L. Ley, M. Albrecht, and H. P. Strunk, “Diamond nucleation under bias conditions”, Journal of Applied Physics, 83 (1), 531 (1998)
[83] Sz. Kátai, Z. Tass, Gy. Hárs, and P. Deák, “Measurement of ion energy distributions in the bias enhanced nucleation of chemical vapor deposited diamond”, Journal of Applied Physics, 86 (10), 5549 (1999)
[84] J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si”, Applied Physics Letters, 66 (24), 3287 (1995)
[85] S. P. McGinnis, M. A. Kelly, and S. B. Hagström, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond”, Applied Physics Letters, 66 (23), 3117 (1995)
[86] L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond (100)”, Journal of Applied Physics, 76 (11), 7483 (1994)
[87] S. Barrat, S. Saada, I. Dieguez, and E. Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”, Journal of Applied Physics, 84 (4), 1870 (1998)
[88] Q. Chen and Z. Lin, “Electron-emission-enhanced diamond nucleation on Si by hot filament chemical vapor deposition”, Applied Physics Letters, 68 (17), 2450 (1996)
[89] P. K. Bachmann, D. Leers, and H. Lydtin, “Towards a general concept of diamond chemical vapour deposition”, Diamond and Related Materials, 1, 1(1991)
[90] Y. Mitsuda, K. Tanaka, and T. Yoshida, “In situ emission and mass spectroscopic measurement of chemical species responsible for diamond growth in a microwave plasma jet”, Journal of Applied Physics, 67 (8), 3604 (1990)
[91] T. Mitomo, T.Ohta, E. Kondoh, and K. Ohtsuka, “An investigation of product distributions in microwave plasma for diamond growth”, Journal of Applied Physics, 70 (8), 4532 (1991)
[92] S. J. Harris, “Gas-phase kinetics during diamond growth: CH4 as-growth species”, Journal of Applied Physics, 65 (8), 3044 (1989)
[93] M. Frenklach and H. Wang, “Detailed surface and gas-phase chemical kinetics of diamond deposition”, Physical Review B, 43 (2), 1520 (1991)
[94] D. G. Goodwin, “Simulation of high-rate diamond synthesis: Methyl as growth species”, Applied Physics Letters, 59 (3), 277 (1991)
[95] C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D'Evelyn, "Growth kinetics of (100), (110), and (111) homoepitaxial diamond films", Applied Physics Letters, 61 (12), 1393 (1992)
[96] M. C. McMaster, W. L. Hsu, M. E. Coltrin, and D. S. Dandy, “Experimental measurements and numerical simulations of the gas composition in a hot-filament-assisted diamond chemical-vapor-deposition reactor”, Journal of Applied Physics, 76 (11), 7567 (1994)
[97] A. Y. Vul, V. G. Golubev, S. A. Grudinkin, A. Kruger, and H. Naramoto, “Diamond films: initial CVD growth stage using nanodiamonds as nucleation centers”, Technical Physcis Letters, 28 (9), 787 (2002)
[98] X. T. Zhou, Q. Li, F. Y. Meng, I. Bello, C. S. Lee, S. T. Lee, and Y. Lifshitz, “Manipulation of the equilibrium between diamond growth and renucleation to form a nanodiamond/amorphous carbon composite”, Applied Physics Letters, 80 (18), 3307 (2002)
[99] S. N. Kundu, M. Basu, A. B. Maity, S. Chaudhuri, and A. K. Pal, “Nanocrystalline diamond films deposited by high pressure sputtering of vitreous carbon”, Materials Letters, 31, 303 (1997)
[100] I. Gouzman and A. Hoffman, “Chemical stability of nano-diamond films deposited by the dc-glow discharge process”, Diamond and Related Materials, 9, 378 (2000)
[101] W. Tang, C. Zhu, W. Yao, Q. Wang, C. Li, and F. Lu, “Nanocrystalline diamond films produced by direct current arc plasma jet process”, Thin Solid Films, 429, 63 (2003)
[102] T. Hara, T. Yoshitake, T. Fukugawa, L. Y. Zhu, M. Itakura, N. Kuwano, Y. Tomokiyo, and K. Nagayama, “Nanocrystalline diamond film prepared by pulsed laser deposition in a hydrogen atmosphere”, Diamond and Related Materials, 13, 679 (2004)
[103] D. A. Horner, L. A. Curtiss, and D. M. Gruen, “A theoretical study of the energetics of insertion of dicarbon (C2) and vinylidene into methane C-H bonds”, Chemical Physics Letters, 233, 243 (1995)
[104] P. C. Redfern, D. A. Horner, L. A. Curtiss, and D. M. Gruen, “Theoretical studies of growth of diamond (110) from dicarbon”, Journal of Physics and Chemistry, 100, 11654 (1996)
[105] H. Yoshikawa, C. Morel, and Y. Koga, “Synthesis of nanocrystalline diamond films using microwave plasma CVD“, Diamond and Related Materials, 10, 1588 (2001)
[106] J. Lee, R. W. Collins, R. Messier, and Y. E. Strausser, “Low temperature plasma process based on CO-rich CO/H2 mixtures for high rate diamond film deposition”, Applied Physics Letters, 70 (12), 1527 (1997)
[107] N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, Journal of Crystal Growth, 242, 362 (2002)
[108] T. Sharda, M. Umeno, T. Soga, and T. Jimbo, “Growth of nanocrystalline diamond films by biased enhanced microwave plasma chemical vapor deposition: A different regime of growth”, Applied Physics Letters, 77 (26), 4304 (2000)
[109] T. Sharda, T. Soga, T. Jimbo, and M. Umeno, “Highly stressed carbon film coatings on silicon: Potentail applications”, Applied Physics Letters, 80 (16), 2880 (2002)
[110] W. Zhu, G. P. Kochanski, and S. Jin, “Low-field emission from undoped nanostructured diamond”, Science, 282, 1471 (1998)
[111] A. Göhl, A. N. Alimova, T. Habermann, A. L. Mescheryakova, D. Nau, V. V. Zhirnov, and G. Huller, “Integral and local field emission analyses of nanodiamond coating for power applications” Journal of Vacuum Science and Technology B, 17, 670 (1999)
[112] S. Prawer, J. L. Peng, J. O. Orwa, J. C. McCallum, D. N. Jamieson, and L. A. Bursill, “Size dependence of structural stability in nanocrystalline diamond”, Physical Review B, 62 (24), R16360 (2000)
[113] Z. Sun, X. Shi, B. K. Tay, D. Flynn, X. Wang, Z. Zheng, and Y. Sun, “Low pressure polymer precursor process for synthesis of hard glassy carbon and diamond films”, Diamond and Related Materials, 6, 230 (1997)
[114] L. T. Sun, J. L. Gong, Z. Y. Zhu, D. Z. Zhu, S. X. He, Z. X. Wang, Y. Chen, and G. Hu, “Nanocrystalline diamond from carbon nanotubes”, Applied Physics Letters, 84 (15), 2901 (2004)
[115] C. Campbell, “Surface acoustic wave devices and their signal processing applications”, Academic Press (1989)
[116] H. Nakahata, A. Hachigo, S. Shikata, and N. Fujimori, “High frequency surface acoustic wave filter using ZnO/Diamond/Si structure”, 1992 Ultrasonics Symposium, 377 (1992)
[117] H. Nakahata and N. Fujimori, “Surface acoustic wave device”, U.S. Patent No. 5,221,870, (1993)
[118] A. Springer, F. Hollerweger, R. Weigel, S. Berek, R. Thomas, W. Ruile, C. W. Ruppel, and M. Guglielmi, “Design and performance of a SAW ladder-type filter at 3.15 GHz using SAW mass-production technology”, IEEE Transactions on Microwave Theory and Techniques, 47 (12), 2312 (1999)
[119] G. Fischerauer, T. Ebner, P. Kruck, K. Morozumi, R. Thomas, and M. Pitschi, “SAW filter solutions to the needs of 3G cellular phones”, IEEE MTT-S Digest, 351 (2001)
[120] D. Marsh, “Safety check: Wireless sensors eye tire pressure”, EDN Europe, Reed Electronics Group, 30 (2004)
[121] Y. Hur, J. Han, J. Seon, Y. E. Pak, and Y. Roh, “Development of an SH-SAW sensor for the detection of DNA hybridization”, Sensors and Actuators A-Physical, 120 (2), 462 (2005)
[122] A. J. Moulson and J. M. Herbert, “Electroceramics: Materials, Properties, Applications”, Springer (1990)
[123] C. Hammond, “The basics of crystallography and diffraction”, Oxford University Press (2001)
[124] http://www.keramverband.de/keramik/englisch/fachinfo/eigenschaften/eigenschaften_piezo.htm
[125] T. E. Parker and M. B. Schulz, “Temperature stable surface acoustic wave delay lines with SiO2 film overlays”, 1974 Ultrasonics Symposium Proceedings, 295 (1974)
[126] K. Yamanouchi, N. Sakural, and T. Satoh, “SAW propagation characteristics and fabrication technology of piezoelectric thin film/ diamond structure”, 1989 Ultrasonics Symposium, 351 (1989)
[127] H. Nakahata, A. Hachigo, K. Higaki, S. Fujii, S. Shikata, and N. Fujimori, “Theoretical study on SAW characteristics of layered structures including a diamond layer”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 42 (2), 362 (1995)
[128] H. Nakahata, A. Hachigo, K. Itakura, S. Fujii, and S. Shikata, “SAW resonators of SiO2/ZnO/Diamond structure in GHz range”, 2000 IEEE/EIA International Frequency Control Symposium and Exhibition, 315 (2000)
[129] C. Caliendo, “Gigahertz-band eletroacoustic devices based on AlN thick films sputtered on Al2O3 at low temperature”, Applied Physics Letters, 83 (23), 4851 (2003)
[130] K. Yamanouchi, Y. Cho, and T. Meguro, “SHF-range surface acoustic wave inter-digital transducers using electron beam exposure”, 1988 Ultrasonics Symposium, 115 (1988)
[131] Y. Takagaki, P. V. Santos, E. Wiebicke, O. Brandt, H. P. Schönherr and K. H. Pliig, “Superhigh-frequency surface-acoustic-wave transducers using AlN layers grown on SiC substrates”, Applied Physics Letters, 81 (41), 2538 (2002)
[132] H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, H. Kitabayashi, K. Tanabe, Y. Seki, and S. Shikata, “SAW devices on diamond”, 1995 IEEE Ultrasonics Symposium, 361 (1995)
[133] K. Higaki, H. Nakahata, H. Kitabayashi, S. Fujii, K. Tanabe, Y. Seki, and S. Shikata, “High power durability of diamond surface acoustic wave filter”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 44 (6), 1395 (1997)
[134] O. Elmazria, V. Mortet, M. E. Hakiki, M. Nesladek, and P. Alnot, “High velocity SAW using aluminum nitride film on unpolished nucleation side of free-standing CVD diamond”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 50 (6), 710 (2003)
[135] T. Lamara, M. Belmahi, O. Elmazria, L. L. Brizoual, J. Bougdira, M. Rémy, P. Alnot, “Freestanding CVD diamond elaborated by pulsed-microwave-plasma for ZnO/diamond SAW devices”, Diamond and Related Materials, 13, 581 (2004)
[136] B. Bi, W. S. Huang, J. Asmussen, B. Golding, “Surface acoustic waves on nanocrystalline diamond”, Diamond and Related Materials, 11, 677 (2002)
[137] F. Bénédic, M. B. Assouar, F. Mohasseb, O. Elmzria, P. Alnot, and A. Gicquel, “Surface acoustic wave devices based on nanocrystalline diamond and aluminium nitride”, Diamond and Related Materials, 13, 347 (2004)
[138] M. Benetti, D. Cannatá, F. D. Pietrantonio, and E. Verona, “Growth of AlN piezoelectric films on diamond for high frequency SAW devices”, 2003 IEEE Uultrasonics Symposium, 1738 (2003)
[139] H. Nakahata and N. Fujimori, “Surface acoustic wave device”, U.S. Patent No. 5,160,869 (1992)
[140] S. Yamamoto, K, “Surface acoustic wave device”, U.S. Patent No. 5,235,233 (1993)
[141] H. Nakahata, K. Higaki, S. Fujii, H. Kitabayashi, and S. Shikata, “Diamond-ZnO surface acoustic wave device”, U.S. Patent No. 5,814,918 (1998)
[142] M. E. Hakiki, O. Elmazria, M. B. Assouar, V. Mortet, A. Talbi, and F. Sarry, “High SAW velocity and high electromechanical coupling coefficient with the new three layered structure: ZnO/AlN/diamond”, 2004 IEEE Ultrasonics Symposium, 195 (2004)
[143] T. Imai, H. Nakahata, and N. Fujimori, “Surface acoustic wave device”, U.S. Patent No. 4,952,832 (1990)
[144] H. Nakahata. A. Hachigo, K. Higaki, and S. Shikata, “Surface acoustic wave element”, U.S. Patent No. 5,446,329 (1995)
[145] H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, and S. Shikata, “Surface acoustic wave device”, U.S. Patent No. 5,565,725 (1996)
[146] H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, and S. Shikata, “Diamond-LiTaO3 surface acoustic wave device”, U.S. Patent No. 5,646,468 (1997)
[147] H. Du, J. E. Graebner, S. Jin, D. W. Johnson, and W. Zhu, “Process for fabricating device comprising lead zirconate titanate”, U.S. Patent No. 6,248,394 (2001)
[148] H. Nakahata, M. Narita, A. Hachigo, and S. Shikata, “Surface-acoustic-wave device”, U.S. Patent No. 6,337,531 (2002)
[149] W. Zhu, “Vacuum microelectronics”, John Wiley & Sons (2001)
[150] N. S. Xu and S. E. Huq, “Novel cold cathode materials and applications”, Materials Science and Engineering R, 48, 47 (2005)
[151] D. A. Buck and K. R. Shoulders, “An approach to microminiature systems”, in Procedure Eastern Joint Computer Conference, 55 (1958)
[152] C. A. Spindt, I. Brodie, L. Humphrey, and E. R. Westerberg, “Physical properties of thin field emission cathode with molybdenum cones”, Journal of Applied Physics, 47, 5248 (1976)
[153] Y. Wei, C. Xie, K. A. Dean, and B. F. Coll, “Stability of carbon nanotubes under electric field studied by scanning electron microscopy”, Applied Physics Letters, 79 (27), 4527 (2001)
[154] J. M. Bonard, C. Klinke, K. A. Dean, and B. F. Coll, “Degradation and failure of carbon nanotube field emitters”, Physical Review B, 67, 115406 (2003)
[155] W. B. Choi, J. J. Cuomo, V. V. Zhirnov, A. F. Myers, and J. J. Hren, “Field emission from silicon and molybdenum tips coated with diamond powder by dielectrophoresis”, Applied Physics Letter, 68 (5), 720 (1996)
[156] R. V. Latham and N. S. Xu, “’Electron pin-holes’: the limiting defect for insulating high voltage by vacuum, a basis for new cold cathode electron sources”, Vacuum, 42 (18), 1173 (1991)
[157] Z. H. Huang, P. H. Culter, N. M. Miskovsky, and T. E. Sullivan, “Theoretical-Study of Field-Emission from Diamond”, Applied Physics Letter, 65 (20), 2562 (1994)
[158] V. V. Zhirnov, E. I. Givargizov, and P. S. Plekhanov, “Field-Emission from Silicon Spikes with Diamond Coatings”, Journal of Vacuum Science and Technology B, 13 (2), 418 (1995)
[159] A. V. Karabutov, S. K. Gordeev, V. G. Ralchenko, S. B. Korchagina, S. V. Lavrischev, S. V. Terekhov, K. I. Maslakov, and A. P. Dementjec, “Oxidized porous diamond/pyrocarbon nanocomposites as improved field electron emitters”, Diamond and Related Materials, 12, 1710 (2003)
[160] W. I. Milne, “Field emission from tetrahedrally bonded amorphous carbon”, Applied Surface Science, 146, 262 (1999)
[161] S. G. Wang, Q. Zhang, S. F. Yoon, J. Ahn, Q. Wang, Q. Zhou, and D. J. Yang, “Growth and electron field emission characteristics of nanodiamond films deposited in N2/CH4/H2 microwave plasma-enhanced chemical vapor deposition”, Journal of Vacuum Science and Technology B, 20 (5), 1982 (2002)
[162] M. W. Geis, J. C. Twichell, N. N. Efremow, K. Krohn, and T. M. Lyszczarz, “Comparison of electron field emission from nitrogen-doped, type 1b diamond, and boron-doped diamond”, Applied Physics Letters, 68 (16), 2294 (1996)
[163] W. P. Kang, A. Wisitsora-at, J. L. Davidson, D. V. Kerns, Q. Li, J. F. Xu, and C. K. Kim, “Effect of sp2 content and tip treatment on the field emission of micropatterned pyramidal diamond tips”, Journal of Vacuum Science and Technology B, 16 (2), 684 (1998)
[164] M. Q. Ding, D. M. Gruen, A. R. Krauss, O. Auciello, T. D. Corrigan, and R. P. H. Chang, “Studies of field emission from bias-grown diamond thin films”, Journal of Vacuum Science and Technology B, 17 (2), 705 (1999)
[165] C. Gu, X. Jiang, Z. Jin, and W. Wang, “Electron emission from nanocrystalline diamond films”, Journal of Vacuum Science and Technology B, 19 (3), 962 (2001)
[166] O. Gröning, L-O. Nilsson, P. Gröning, L. Schlapbach, “Properties and characterization of chemical vapor deposition diamond field emitters”, Solid State Electronics, 45, 929 (2001)
[167] S. G. Wang, Q. Zhang, S. F. Yoon, J. Ahn, Q. Wang, Q. Zhou, and D. J. Yang, “Electron field emission properties of nano-, submicro- and micro-diamond films”, Physical State of Solids (a), 193 (3), 546 (2002)
[168] S. Bhattacharyya, “Mechanism of high n-type conduction in nitrogen-doped nanocrystalline diamond”, Physical Review B, 70, 125412 (2004)
[169] T. D. Corrigan, D. M. Gruen, A. R. Krauss, P. Zapol, and R. P. H. Chang, “The effect of nitrogen addition to Ar/CH4 plasmas on the growth, morphology and field emission of ultrananocrystalline diamond”, Diamond and Related Materials, 11, 43 (2002)
[170] W. P. Kang, A. Wisitsora-at, J. L. Davidson, M. Howerll, D. V. Kerns, Q. Li, and F. Xu, “Subvolt turn-on voltage self-align gate diamond emitter fabricated by self-align-gate-sharpened molding technique”, Journal of Vacuum Science and Technology B, 17 (2), 740 (1999)
[171] Y. Ando, Y. Nishibayashi, H. Furuta, K. Kobashi, T. Hirao, and K. Oura, “Spiky diamond field emitters”, Diamond and Related Materials, 12, 1681 (2003)
[172] W. J. Zhang, Y. Wu, C. Y. Chan, W. K. Wong, X. M. Meng, I. Bello, Y. Lifshitz, and S. T. Lee, “Structure single- and nano-crystalline diamond cones”, Diamond and Related Materials, 13, 1037 (2004)
[173] A. N. Stepanova, E. I. Givargizov, L. V. Bormatova, V. V. Zhirnov, E. S. Mashkova, and A. V. Molchanov, “Preparation of ultrasharp diamond tip emitters by ion-beam etching”, Journal of Vacuum Science and Technology B, 16 (2), 678 (1998)
[174] B. Günther, A. Göhl, G. Müller, E. Givargizov, L. Zadorozhnaya, A. Stepanova, B. Spitsyn, A. N. Blaut-Bachev, B. Seleznev, and N. Suetin, “Microscopic field emission investigation of nanodiamond and AlN coated Si tips”, Journal of Vacuum Science and Technology B, 19 (3), 942 (2001)
[175] A. V. Sumant, D. S. Grierson, J. E. Gerbi, J. Birrell, U. D. Lanke, O. Auciello, J. A. Carlisle, and R. W. Carpick, “Toward the ultimate tribological interface: Surface chemistry and nanotribology of ultrananocrystalline diamond”, Advanced Materials, 17 (8), 1039 (2005)
[176] J. Philip, P. Hess, T. Feygelson, J. E. Butler, S. Chattopadhyay, K. H. Chen, and L. C. Chen, “Elastic, mechanical, and thermal properties of nanocrystalline diamond films”, Journal of Applied Physics, 93 (4), 2164 (2003)
[177] L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston, and J. E. Butler, “Nanomechanical resonant structures in nanocrystalline diamond”, Applied Physics Letters, 81 (23), 4455 (2002)
[178] A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M. N. Gardos, H. G. Busmann, E. M. Meyer, M. Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices”, Diamond and Related Materials, 10, 1952 (2001)
[179] J. Wang, M. A. Firestone, O. Auciello, and J. A. Carlisle, “Surface functionalization of ultrananocrystalline diamond films by electrochemical reduction of arldiazonium salts”, Langmuir, 20, 11450 (2004)
[180] W. Yang, O. Auciello, J. E. Butler, W. Cai, J. A. Carlisle, J. E. Berbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russell, L. M. Smith, and R. J. Hamers, “DNA-modified nanocrystalline diamond thin-films as stable, biologically active substrates”, Nature Materials, 1, 253 (2002)
[181] M. D. Fries, Y. K. Vohra, “Properties of nanocrystalline diamond thin films grown by MPCVD fro biomedical implant purposes”, Diamond and Related Materials, 13, 1740 (2004)
[182] http://www.msd.anl.gov/groups/sc/research/ntf/docs/electrochemical.pdf
[183] G.. F. Iriarte, F. Engelmark, M. Ottosson, and I. V. Katardjiev, “Influence of deposition parameters on the stress of magnetron sputter-deposited AlN thin films on Si(100) substrates”, Journal of Material Research, 18 (2), 423 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 35、 羅容恒、吳桂華,銀行經營效率之比較與改進之研究,臺灣銀行季刊,民93,第46期(第1卷),93-122。
2. 31、 葉彩蓮、陳澤義,銀行經營績效評估:財務比率與DEA的整合,東吳經濟商學學報,民89,第30期,19-42。
3. 30、 葉彩蓮,臺灣地區銀行經營效率之比較—資料包絡分析法的應用,企銀季刊,民87,第22卷(第1期),37-52。
4. 28、 黃祺嵐,臺灣地區本國異質銀行效率與風險之研究,臺灣銀行季刊,民93,第55卷(第1期),23-58。
5. 27、 黃俊誠,金融控股公司內部銀行經營績效之實證研究,臺灣土地金融季刊,民93,第41卷(第3期),189-202。
6. 26、 黃台心、陳盈秀,應用三階段估計法探討台灣地區銀行業經濟效率,貨幣市場,民94,第9卷(第4期),1-29。
7. 20、 陳家彬、陳文貞,銀行經營績效、關係人往來與逾期放款,臺灣銀行季刊,民92,第54卷(第2期),421-46。
8. 19、 陳建宏、溫怡俐,本國商業銀行與外商銀行經營績效之實證結果,臺灣銀行季刊,民95,第57卷(第3期),1-17。
9. 15、 梁榮輝、沈千惠、余惠芳,台灣區金融機構相對經營效率之實證研究,華人經濟研究,民94,第3卷(第2期),108-143。
10. 14、 張寶塔、王克陸、梁志豪,我國銀行經營效率、技術效率與規模效率之分類研究—資料包絡分析法之應用,管理研究學報,民93,第4卷(第1期),91-122。
11. 11、 張秀珍、陳振遠、周建新,台灣地區銀行經營效率之研究-DEA與Malmquist生產力指數之應用,樹德科技大學學報,民92,第5卷(第2期),25-38。
12. 7、 徐清俊、黃俊誠,臺灣納入金控公司之14家銀行經營績效分析,臺灣銀行季刊,民94,第56卷(第1期),27-37。
13. 4、 邱永和、陳玉涓,銀行效率與獨占力之評估,亞太經濟管理評論,民93,第8卷(第1期),49-65。
14. 1、 李竹芬,台灣銀行業在亞洲金融危機中之營運效率分析,宜蘭大學人文及管理學報,民95,第3期,243-263。