跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 03:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳懷宗
研究生(外文):Huai Chung Chen
論文名稱:新穎低維度矽鍺暨矽化物奈米結構成長與應用研究
論文名稱(外文):Growth of Novel Low-Dimensional SiGe and Silicide Nanostructures on SiGe-Based Substrates
指導教授:陳力俊陳力俊引用關係
指導教授(外文):L. J. Chen
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:150
中文關鍵詞:矽鍺合金矽化物奈米結構
外文關鍵詞:SiGesilicidenanostructure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:349
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
本研究透過使用尺寸分布均勻以及相對低蝕刻速率特性的鍺量子點作為虛擬光罩,發展建立金字塔型的量子點包含鍺/矽超晶格結構在大尺寸的區域裡。在螢光激發光譜量測中發現鍺/矽超晶格量子點與原本鍺/矽超晶格的比較中展現出在強度方面的10 倍提升,此一特性可應用在光電元件應用上。在激發光譜方面的提升歸因于量子維度限制影響。這種成長鍺/矽超晶格量子點方法與現有的矽製程整合技術相容。
利用自我組裝的多層鍺量子點(self-assembled Ge QDs/Si spacer multilayers)尺寸分布均勻以及相對低蝕刻速率特性,本研究提出一種方法來發展建立多層堆疊鍺/氧化矽奈米透鏡(multilayered Ge@silica nanolenses) 在大尺寸的區域裡。在波長1.5微米左右,多層堆疊鍺/氧化矽奈米透鏡樣品相較於原本多層鍺量子點樣品展現百分之77反射率的增強。另外,在螢光激發光譜量測中,多層堆疊鍺/氧化矽奈米透鏡樣品在1.5 和1.55微米之間顯示一個發射峰。將多層堆疊鍺/氧化矽奈米透鏡樣品的螢光激發特性和反射率的增強特性相結合可以被應用作為電信通訊上與矽製程相容的光偵測器材料。
本研究提出一種方法從二維的結構轉換到三維結構進而在矽基材表面上形成鎳矽化物/矽鍺的奈米管(NiSi2/SiGe-based nanotubes)。 透過在一種磊晶成長下所造成的晶格應變的調變釋放,發展一種方法從矽基材上捲取的奈米管架構。透過利用受應變的p+-Si/Si0.7Ge0.3的基材可將半導體矽鍺層(SiGe)和金屬矽化物層(NiSi2)結合成一種奈米管的新架構。由於半導體磊晶技術對於材料成份、摻雜濃度、成長厚度擁有成熟良好的控制,使得金屬矽化物/矽鍺的奈米管(metal silicide/SiGe-based nanotubes)適合于廣泛的應用裡,
本研究是利用固相磊晶方式在應變矽(strained Si)基材上成長長程有序異質磊晶的半導體性鐵矽化物奈米點(��-FeSi2 nanodots)。觀察到鐵矽化物奈米點沿著應變矽基材的<110>方向呈現一維的有序排列。這顯然表示由於漸層緩衝層中的差排傳遞一個應變場到試片表面,使得鐵矽化物奈米點傾向沿著應變場的方向磊晶成長排列。另外,在低溫螢光激發光譜量測中鐵矽化物奈米點在波長1.5微米左右顯示一個發射峰。這種成長半導體性鐵矽化物奈米點方法與現有的矽製程整合技術相容,因此可用於光電元件的應用上。
在對於分支的矽奈米線轉變成鎳矽化物奈米線的詳細研究中,證明在奈米尺度成長的鎳/矽系統中鎳原子是主要的擴散元素。在二鎳化矽/鎳化矽原子級平整度的介面上顯示在奈米尺度中相轉變過程裡異質接面的磊晶關係。另外,在溫度上的改變觀察到矽奈米帶轉變成鎳矽化物奈米帶,進而利用Arrhenius公式計算得到鎳矽化物奈米帶(Ni31Si12 nanobelts)的活化能量(1.06 eV)。
Abstract
By the use of comparably low etching-rate of uniform size Ge QDs as mask, a method was developed to fabricate pyramidal nanodots with excellent uniformity over large area, containing Si-Ge superlattice structure. Photoluminescence measurements reveal that Si-Ge superlattice nanodots exhibit about ten fold enhancement in intensity over conventional Si-Ge superlattice heterostructure, which may lead to applications in optoelectronic devices. The enhancement in PL is attributed to quantum confinement effects. An additional incentive is that the method is compatible with the existing Si/SiGe-based integration technology.
Taking advantage of comparably low etching-rate for Si and uniform size of self-assembled Ge QDs/Si spacer multilayers, a method has been developed to fabricate multilayered Ge@silica nanolenses with excellent uniformity over large area. The samples with Ge@silica nanolens stacks exhibited a reflectivity with an increase of about 77 % around 1.5 �慆 over conventional self-assembled Ge QDs/Si spacer multilayers. In addition, it showed an emission peak between 1.5 and 1.55 �慆 in photoluminescence spectrum. The combination of photoluminescence and reflectance properties of multilayered Ge@silica nanolenses promises applications as a Si-compatible photodetector material for telecommunication.
NiSi2/SiGe-based nanotubes have been fabricated on the Si surfaces by precise transformations from two-dimensional structures to three-dimensional objects. By using the strain in a pair of lattice-mismatched epitaxy layers, a method was developed to create nanotube structure released from a substrate. A new structure combining semiconductor (SiGe) and metallic silicide (NiSi2) into a single nanotube structure was achieved by employing strained p+-Si/Si0.7Ge0.3 substrates. SiGe/metal silicide bilayer nanotubes with a wide range of properties are appropriate for many applications since semiconductor epi-layers possess remarkable control over material composition, doping concentration, and layer thicknesses.
Long-range ordered heteroepitaxial ��-FeSi2 nanodots were grown on strained Si/Si0.8Ge0.2 (001) substrates by solid phase epitaxy method. Ordering was observed on surfaces of strained Si/Si0.8Ge0.2 substrate where the ��-FeSi2 nanodots appear to be confined to one-dimensional array along <110> direction. It is shown that dislocation slip originating from compositionally graded Si1-xGex layers can produce local surface-strain variation that can be used for the fabrication of epitaxial ��-FeSi2 nanostructures on the surface of strained Si/Si0.8Ge0.2 substrate. In addition, a photoluminescence peak at 840meV that contributes from ��-FeSi2 nanodots is measured at 11 K. Consequently, the fabrication procedure of ��-FeSi2 nanodots allows the possibility of combining optoelectronic devices with SiGe/Si-based circuits in the same integrated circuit.
Detailed studies of the transformation from branched Si nanowires into Ni2Si nanowires structures demonstrate that the property of dominant diffusing species of Ni atoms and the diffusion-controlled growth mechanism in nanoscale Ni/Si system. The atomically sharp interface of the Ni2Si/NiSi produced in the nanowire heterostructure has revealed the epitaxial relationship in the nanometer-scale transformation process. The investigation of the transformation of silicon nanobelts into nickel silicide nanobelts on the temperature rise is achieved. The activation energy for the growth of Ni31Si12 nanobelts was obtained (1.06 eV)from an Arrhenius plot.
Contents
Acknowledgments …………………………………………………. V
Abstract ………………………………………………………………. VI
List of Abbreviations and Acronyms ……………………………. XII
Chapter 1 SiGe Heterostructures
1.1 An Overview ………………………………………………………. 1
1.2 Material Properties of Si1-xGex ...…………………………………... 3
1.2.1 Lattice Parameters and Lattice Mismatch.....……………....... 3
1.2.2 Critical Thickness of Si1-xGex on Si ...…….…………………. 4
1.3 Electronic Properties of Strained Si1-xGex …...…………………..... 6
1.4 Si1-xGex Epitaxial Growth Techniques .............................................. 9
1.4.1 Ultra-high Vacuum Chemical Vapor Deposition …….………10
1.4.2 Molecular Beam Epitaxy ……………………………………11
Chapter 2 SiGe Nanostructures
2.1 Si/SiGe quantum Well Structures .......................................... 13
2.2 Si/Ge Dot Structures ……………………………..…………… 14
2.3 Self-Ordered Ge Dot Structures ….…………………………….. 20
2.3.1 Vertically Self-Aligned Si/Ge Dot Stacks ……….……......… 21
2.3.2 Laterally Self-Ordered Arrays of Ge Dots………………...... 24
Chapter 3 Experimental Procedures
3.1 Ultra-high Vacuum Chemical Vapor Deposition ……….…….….. 27
3.2 High resolution XRD (HRXRD) Analysis …………………….… 28
3.3 Transmission Electron Microscope Observation …..…….............. 29
3.4 Energy Dispersion Spectrometer (EDS) Analysis ……………….. 30
3.5 Atomic Force Microscope (AFM) Observation ……..…………… 30
3.6 Raman Spectrometer Analysis ……………..………...................... 30
3.7 Field Emission Measurements ………………………………..….. 31
3.8 Photoluminescence Spectroscopy …………..……………………. 31
Chapter 4 Pyramid-Shaped Si-Ge Superlattice Quantum Dots with Strong Photoluminescence Properties
4.1 Motivation ……………………………….………………….……. 33
4.2 Experimental Procedures ……………………..………………... 34
4.3 Results and Discussion ………………………..…………………. 35
4.4 Summary and Conclusions ……………..……..…………………. 40
Chapter 5 Self-Aligned Nanolenses with Multilayered Ge-Silica Core-Shell Structures on Si (001)
5.1 Motivation ………………………………………….…………….. 41
5.2 Experimental Procedures ………………………………….…… 42
5.3 Results and Discussion ……………………………………...…… 43
5.4 Summary and Conclusions ……………..……..…………………. 50
Chapter 6 Strain-Driven Self-Rolling Silicide/SiGe Based Nanotubes on Si (001) Substrates
6.1 Motivation …………………………….………………………….. 51
6.2 Experimental Procedures ……………………………….……… 52
6.3 Results and Discussion …………………………...……………… 53
6.4 Summary and Conclusions ……………..……..…………………. 57
Chapter 7 Formation of Epitaxial ��-FeSi2 Nanodots Array on Strained Si/Si0.8Ge0.2 (001) Substrate
7.1 Motivation ……………………………………………...………… 59
7.2 Experimental Procedures ………………………...…………….. 60
7.3 Results and Discussion …………………..………………………. 61
7.4 Summary and Conclusions ……………..…….…………………. 65
Chapter 8 Formation of the Nickel Silicide Nanowire and Nanobelts by In Situ Transmission Electron Microscope Investigation
8.1 Motivation …………………………………………….………… 67
8.2 Experimental Procedures …………………………...………… 69
8.3 Results and Discussion ……………………………….………… 69
8.4 Summary and Conclusions …………..……. ….………………. 74
Chapter 9 Summary and Conclusions
9.1 Pyramid-Shaped Si-Ge Superlattice Quantum Dots with Strong
Photoluminescence Properties …………………….……….…… 76
9.2 Self-Aligned Nanolenses with Multilayered Ge-Silica Core-Shell Structures on Si (001) ………………………………….. 76
9.3 Strain-Driven Self-Rolling Silicide/SiGe Based Nanotubes on Si (001) Substrates …………………………..……………...……. 77
9.4 Formation of Epitaxial ��-FeSi2 Nanodots Array on Strained Si/Si0.8Ge0.2 (001) Substrate …………………………...……….. 77
9.5 Formation of the Nickel Silicide Nanowire and Nanobelts by In Situ Transmission Electron Microscope Investigation …………...……………….……………...……….. 78
Chapter 10 Future Prospects
10.1 Fabrication of Nanowires Functional Devices ………………..… 80
10.2 The Extension of In-Situ Transmission Electron Microscopy …………………………….…………………...…. 81
References …………………………………………………….….…… 83
Figure Captions ……........................................................................... 114
Figures ................................................................................................. 120
Publication List ................................................................................... 147
References
Chapter 1
1.1. “2004 International Technology Roadmap for Semiconductors,” Semiconductor Industry Association, 2004. (available at http://public.itrs.net/.)
1.2. S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, M. Zhiyong, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, N. Phi, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, “A 90-nm Logic Technology Featuring Strained-Silicon,” IEEE Trans. Electron Devices 51, 1790-1797 (2004).
1.3. G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics 38, 253-256 (1965).
1.4. H. Jorke, H. Kibbel, F. Schäffler, A. Casel, H.-J. Herzog, and E. Kasper, “Properties of Si layers Grown by Molecular Beam Epitaxy at Very Low Temperatures,” Appl. Phys. Lett. 54, 819-821 (1989)
1.5. F. Schäffler, “High-Mobility Si and Ge Structures,” Semicond. Sci. Technol. 12, 1515-1549 (1997).
1.6. M. M. Rieger, and P. Vogl, “Electronic-Band Parameters in Strained Si1-xGex Alloys on Si1-yGey Substrates,” Phys. Rev. B 48, 14276-14287 (1993)
1.7. M. V. Fischetti, and S. E. Laux, “Band Structure, Deformation Potentials, and Carrier Mobility in Strained Si, Ge, and SiGe Alloys,” J. Appl. Phys. 80, 2234-2252 (1996)
1.8. E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1–x Structures for III–V Integration with Si and High Mobility Two-Dimensional Electron Gases in Si,” J. Vac. Sci. Technol. B 10, 1807-1819 (1992).
1.9. U. König, A. J. Boers, F. Schäffler, and E. Kasper, “Enhancement Mode N-Channel Si/SiGe MODFET with High Intrinsic Transconductance,” Electron. Lett. 28, 160-162 (1992).
1.10. T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “Electron and Hole Mobility Enhancement in Strained-Si MOSFET’s on SiGe-on-Insulator Substrates Fabricated by SIMOX Technology,” IEEE Electron Device Lett. 21, 230-232 (2000).
1.11. M. L. Lee, and E. A. Fitzgerald, “Hole Mobility Enhancements in Nanometer-Scale Strained-Silicon Heterostructures Grown on Ge-Rich Relaxed Si1–xGex,” J. Appl. Phys. 94, 2590-2596 (2003).
1.12. S. F. Nelson, K. Ismail, J. O. Chu, and B. S. Meyerson, “Room-Temperature Electron Mobility in Strained Si/SiGe Hetero- structures,” Appl. Phys. Lett. 63, 367-369 (1993).
1.13. K. Ismail, M. Arafa, K. L. Saenger, J. O. Chu, and B. S. Meyerson, “Extremely High Electron Mobility in Si/SiGe Modulation-Doped Heterostructures,” Appl. Phys. Lett. 66, 1077-1079 (1995).
1.14. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–Semiconductor– Metal Near-Infrared Light Detector Based on Epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175-3177 (1998).
1.15. D. J. Paul, “Si/SiGe Heterostructures: from Material and Physics to Devices and Circuits,” Semicond. Sci. Technol. 19, 75-108 (2004).
1.16. S. C. Jain, A. H. Harker and R. A. Cowley, “Misfit-Strain and Misfit-Dislocations in Lattice Mismatched Epitaxial Layers,” Phil. Mag. A 75, 515–1461 (1997)
1.17. S. C. Jain, T. J. Gosling, J. R. Willis, R. Bullough and P. Balk, “A Theoretical Comparison of the Stability Characteristics of Capped and Uncapped GeSi Strained Epilayers,” Solid-State Electron. 35, 1069–1073 (1992)
1.18. J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, “GexSi1–x/Si Strained-Layer Superlattice Grown by Molecular Beam Epitaxy,” J. Vac. Sci. Technol. A 2, 436-440 (1984).
1.19. J. H. Van der Merwe, “Crystal Interfaces. Part II. Finite Overgrowths,” J. Appl. Phys. 34, 123-127 (1963)
1.20. J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers : III. Preparation of almost perfect multilayers,” J. Cryst. Growth 32, 265-273 (1976)
1.21. R. People and J. C. Bean, “Calculation of Critical Layer Thickness versus Lattice Mismatch for GexSi1–x/Si Strained-Layer Heterostructures,” Appl. Phys. Lett. 47, 322-324 (1985)
1.22. R. People and J. C. Bean, “Erratum: Calculation of Critical Layer Thickness versus Lattice Mismatch for GexSi1–x/Si Strained-Layer Heterostructures,” Appl. Phys. Lett. 49, 229 (1985)
1.23. B. W. Dobson and J. Y. Tsao, “Relaxation of Strained-Layer Semiconductor Structures via Plastic Flow,” Appl. Phys. Lett. 51, 1325-1327 (1988)
1.24. B. W. Dobson and J. Y. Tsao, “Erratum: Relaxation of Strained-Layer Semiconductor Structures via Plastic Flow,” Appl. Phys. Lett. 52, 852 (1988)
1.25. D. C. Houghton, “Strain Relaxation Kinetics in Si1–xGex/Si Heterostructures,” J. Appl. Phys. 70, 2136-2151 (1991)
1.26. M. W. L. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, “Type II Band Alignment in Si1-xGex/Si(001) Quantum Wells: The Ubiquitous Type I Luminescence Results from Band Bending,” Phys. Rev. Lett. 79, 269-272 (1997)
1.27. J. Weber, and M. I. Alonso, “Near-Band-Gap Photoluminescence of Si-Ge Alloys,” Phys. Rev. 40, 5683-5693 (1960)
1.28. S. Luryi, A. Kastalsky and J. C. Bean, “New Infrared Detector on a Silicon Chip,” IEEE Trans. Electron Devices 31, 1135-1139 (1984)
1.29. M. M. Rieger, and P. Vogl, “Electronic-Band Parameters in Strained Si1-xGex Alloys on Si1-yGey Substrates,” Phys. Rev. B 48, 14276-14287 (1993)
1.30. G. Sun, L. Friedman and R. A. Soref, “Intersubband Lasing Lifetimes of SiGe/Si and GaAs/AlGaAs Multiple Quantum Well Sructures,” Appl. Phys. Lett. 66, 3425–7 (1995)
1.31. N. Griffin, D. D. Arnone, D. J. Paul, M. Pepper, D. J. Robbins, A. C. Churchill, and J. M. Fernµndez, “Cyclotron Resonance Measurements of Si/SiGe Two-Dimensional Electron Gases with Differing Strain,” J. Vac. Sci. Technol. B 16, 1655-1658 (1998)
1.32. M. V. Fischetti, and S. E. Laux, “Band Structure, Deformation Potentials, and Carrier Mobility in Strained Si, Ge, and SiGe Alloys,” J. Appl. Phys. 80, 2234-2252 (1996)
1.33. K. Bernhard-Höfer, A. Zrenner, J. Brunner, G. Abstreiter, F. Wittmann and I. Eisele, “Strained Si1 – xGex Multi-Quantum Well Waveguide Structures on (110) Si,” Appl. Phys. Lett. 66, 2226–8 (1995)
1.34. B. S. Meyerson, K. J. Uram and F. K. LeGoues, “Cooperative Growth Phenomena in Silicon/Germanium Low-Temperature Epitaxy,” Appl. Phys. Lett. 53, 2555-2557 (1988)
1.35. D. W. Greve and M. Racanelli, “Construction and Operation of an Ultrahigh Vacuum Chemical Vapor Deposition Epitaxial Reactor for Growth of GexSi1–x,” J. Vac. Sci. Technol. B 8, 511-515 (1990)
1.36. D. J. Robbins, J. L. Glasper, A. G. Cullis and W. Y. Leong “A Model for Heterogeneous Growth of Si1–xGex Films from Hydrides,” J. Appl. Phys. 69, 3729-3732 (1991)
1.37. C. Rosenblad, H. von Kanel, M. Kummer, A. Dommann and E. Muller, “A Plasma Process for Ultrafast Deposition of SiGe Graded Buffer Layers,” Appl. Phys. Lett. 76, 427-429 (2000)
1.38. M. R. Caymax and W. Y. Leong Advanced Silicon and Semiconducting Silicon-alloy Based Materials and Devices ed J. F. A. Nijs (Bristol: Institute of Physics Publishing) p 141 (1994)
1.39. S. Kobayashi, M. L. Ching, A. Kohlhase, T. Sato, J. Murota and N. Mikoshiba, “Selective Germanium Epitaxial Growth on Silicon Using CVD Technology with Ultra-Pure Gases,” J. Cryst. Growth 99, 259-262 (1990)
1.40. H. Jorke, H. Kibbel, F. Schäffler, A. Casel, H.-J. Herzog, and E. Kasper, “Properties of Si layers Grown by Molecular Beam Epitaxy at Very Low Temperatures,” Appl. Phys. Lett. 54, 819-821 (1989)
Chapter 2
2.1. G. Abstreiter, H. Brugger, T. Wolf and H.-J. Jorke, “Strain-Induced Two-Dimensional Electron Gas in Selectively Doped Si/SixGe1-x Superlattices,” Phys. Rev. Lett. 54, 2441–4 (1985)
2.2. S. F. Nelson, K. Ismail, J. O. Chu and B. S. Meyerson, “Room-Temperature Electron Mobility in Strained Si/SiGe Heterostructures,” Appl. Phys. Lett. 63, 367–79 (1993)
2.3. K. Ismail, M. Arafa, F. Stern, J. O. Chu and B. S. Meyerson, “Gated Hall Effect Measurements in High-Mobility n-Type Si/SiGe Modulation-Doped Heterostructures,” Appl. Phys. Lett. 66, 842–4 (1995)
2.4. M. Holzmann, D. Többen and G. Abstreiter, “Transport in Silicon/Germanium Nanostructures,” Appl. Surf. Sci. 102 230–6 (1996)
2.5. G. Bauer, Properties of Silicon Germanium and SiGe:Carbon vol 24, ed E Kasper and K Lyutovich (London: IEE INSPEC) pp 228–43 (1999)
2.6. Z. Wilamowski, N. Sandersfeld, W. Jantsch, D. Többen and F. Schäffler, “Screening Breakdown on the Route toward the Metal-Insulator Transition in Modulation Doped Si /SiGe Quantum Wells,” Phys. Rev. Lett. 87, 026401-1 to 026401-4 (2001)
2.7. K. Ismail, High Magnetic Fields in the Physics of Semiconductors ed G. Landwehr and W. Ossau (Singapore: World Scientific) p 947 (1997)
2.8. U. Zeitler, H. W. Schumacher, A. G. M. Jansen and R. H. J. Haug, “Magnetoresistance Anisotropy in Si /SiGe in Tilted Magnetic Fields: Experimental Evidence for a Stripe-Phase Formation,” Phys. Rev. Lett., 86 866–9 (2001)
2.9. S. Luryi, A. Kastalsky and J. C. Bean, “New Infrared Detector on a Silicon Chip,” IEEE Trans. Electron Devices 31, 1135-1139 (1984)
2.10. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange and F. Evangelisti, “Metal Semiconductor Metal Near-Infrared Light Detector Based on Epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–7 (1998)
2.11. K. Bernhard-Höfer, A. Zrenner, J. Brunner, G. Abstreiter, F. Wittmann and I. Eisele, “Strained Si1 – xGex Multi-Quantum Well Waveguide Structures on (110) Si,” Appl. Phys. Lett. 66, 2226–8 (1995)
2.12. B. Li, G. Li, E. Liu, Z. Jiang, J. Qin and X. Wang, “Monolithic Integration of a SiGe/Si Modulator and Multiple Quantum Well Photodetector for 1.55 µm Operation,” Appl. Phys. Lett. 73, 3504–5 (1998)
2.13. G. Sun, L. Friedman and R. A. Soref, “Intersubband Lasing Lifetimes of SiGe/Si and GaAs/AlGaAs Multiple Quantum Well Sructures,” Appl. Phys. Lett. 66, 3425–7 (1995)
2.14. P. Boucaud, F. H. Julien, R. Prazeres, J.-M. Ortega, I. Sagnes and Y. Campidelli, “Intersubband Relaxation Time in the Valence Band of Si/Si1 – xGex Quantum Wells,” Appl. Phys. Lett. 69, 3069–71 (1996)
2.15. R. A. Kaindl, M. Wurm, K. Reimann, M. Woerner, T. Elsaesser, C. Miesner, K. Brunner and G. Abstreiter, “Ultrafast Dynamics of Intersubband Excitations in a Quasi-Two-Dimensional Hole Gas,” Phys. Rev. Lett. 86, 1122–5 (2001)
2.16. M. Woerner, R. A. Kaindl, M. Wurm, K. Reimann, T. Elsaesser, C. Miesner, I. Bormann, K. Brunner and G. Abstreiter, “Ultrafast Intersubband Scattering of Holes in P-Type Modulation-Doped Si1−xGex/Si Multiple Quantum Wells,” Physica E 13, 485-488(2001)
2.17. C, W, Snyder, J, F, Mansfield and B, G, Orr, “Kinetically Controlled Critical Thickness for Coherent Islanding and Thick Highly Strained Pseudomorphic Films of InxGa1-xAs on GaAs(100),” Phys. Rev. B 46, 9551-9554 (1992)
2.18. G. Abstreiter, P. Schittenhelm, C. Engel, E. Silveira, A. Zrenner, D. Meertens and W. Jäger, “Growth and Characterization of Self-Assembled Ge-Rich Islands on Si,” Semicond. Sci. Technol. 11, 1521–8 (1996)
2.19. Y. W. Mo, D. E. Savage, B. S. Swartzentruber and M. G. Lagally, “Kinetic Pathway in Stranski-Krastanov Growth of Ge on Si (001),” Phys. Rev. Lett. 65, 1020–3 (1990)
2.20. G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg and R. S. Williams, “Shape Transition of Germanium Nanocrystals on a Silicon (001) Surface from Pyramids to Domes,” Science 279, 353-355 (1998)
2.21. P. Schittenhelm, M. Gail, J. Brunner, J. F. Nützel and G. Abstreiter, “Photoluminescence Study of the Crossover from Two-Dimensional to Three-Dimensional Growth for Ge on Si (100),” Appl. Phys. Lett. 67, 1292–4 (1995)
2.22. A. I. Yakimov, A. V. Dvurechenski, Y. Y. Proskuryakov, A. I. Nikiforov, O. P. Pchelyakov, S. A. Teys and A. K. Gutakovskii, “Normal-Incidence Infrared Photoconductivity in Si P-I-N Diode with Embedded Ge Self-Assembled Quantum Dots,” Appl. Phys. Lett. 75, 1413–5 (1999)
2.23. X. Wang, “Germanium Dots with Highly Uniform Size Distribution Grown on Si (100) Substrate by Molecular Beam Epitaxy,” Appl. Phys. Lett. 71, 3543–5 (1997)
2.24. J. Zhu, C. Miesner, K. Brunner and G. Abstreiter, “Strain Relaxation of Faceted Ge Islands on Si (113),” Appl. Phys. Lett. 75, 2395–7 (1999)
2.25. A. V. Kolobov, “Raman Scattering from Ge Nanostructures Grown on Si Substrates: Power and limitations,” J. Appl. Phys. 87, 2926-2930 (2000)
2.26. A. V. Kolobov, H. Oyanagi, K. Brunner, P. Schittenhelm, G. Abstreiter and K. Tanaka, “Raman Scattering and X-Ray Absorption Studies of Ge–Si Nanocrystallization,”Appl. Phys. Lett. 80, 488–91 (2001)
2.27. F. Boscherini, G. Capellini, L. Di Gaspare, F. Rosei, N. Motta and S. Mobilio, “Ge–Si Intermixing in Ge Quantum Dots on Si(001) and Si(111),”Appl. Phys. Lett. 76, 682–4 (2000)
2.28. G. Capellini, M. De Seta and F. Evangelisti, “SiGe Intermixing in Ge/Si(100) Islands,”Appl. Phys. Lett. 78, 303–5 (2001)
2.29. Z. M. Jiang, X. M. Jiang, W. R. Jiang, Q. J. Jia, W. L. Zheng and D. C. Qian, “Lattice Strains and Composition of Self-Organized Ge Dots Grown on Si(001),”Appl. Phys. Lett. 76, 3397–9 (2000)
2.30. T. Roch, “Structural Investigations on Self-Organized Si/SiGe Islands by Grazing Incidence Small Angle X-Ray Scattering,” Phys. Status Solidi b 224, 241 (2001)
2.31. C. Miesner, K. Brunner and G. Abstreiter, “Intra-Valence Band Photocurrent Measurements on Ge Quantum Dots in Si,” Thin Solid Films 380, 180–3 (2000)
2.32. T. Fromherz, E. Koppensteiner, M. Helm, G. Bauer, J. F. Nützel and G. Abstreiter, “Hole Energy Levels and Intersubband Absorption in Modulation-Doped Si/Si1-xGex Multiple Quantum Wells,” Phys. Rev. B 50, 15073-15085 (1994)
2.33. T. Fromherz, P. Kruck, M. Helm, G. Bauer, J. F. Nützel and G. Abstreiter, “Transverse Magnetic and Transverse Electric Polarized Inter-Subband Absorption and Photoconductivity in P-Type SiGe Quantum Wells,” Appl. Phys. Lett. 68, 3611–13 (1996)
2.34. P. Boucaud, V. Le Thanh, S. Sauvage, D. D´ebarre and D. Bouchier, “Intraband Absorption in Ge/Si Self-Assembled Quantum Dots,” Appl. Phys. Lett. 74, 401–3 (1999)
2.35. V. Rhyzii, “The Theory of Quantum-Dot Infrared Phototransistors,” Semicond. Sci. Technol. 11, 759-765 (1996)
2.36. C. Miesner, K. Brunner and G. Abstreiter, “Intra-Valence Band Photocurrent Measurements on Ge Quantum Dots in Si,” Thin Solid Films 380, 180–3 (2000)
2.37. C. Miesner, K. Brunner and G. Abstreiter, “Lateral Photodetectors with Ge Quantum Dots in Si,” Infrared Phys. Technol. 42, 461–5 (2001)
2.38. S.-W. Lee, K. Hirakawa and Y. Shimada, “Bound-to-Continuum Intersubband Photoconductivity of Self-Assembled InAs Quantum Dots in Modulation-Doped Heterostructures,” Appl. Phys. Lett. 75, 1428–30 (1999)
2.39. L. Chu, A. Zrenner, G. Böhm and G. Abstreiter, “Lateral Intersubband Photocurrent Spectroscopy on InAs/GaAs Quantum Dots,” Appl. Phys. Lett. 76, 1944–6 (2000)
2.40. T. I. Kamins, G. Medeiros-Ribeiro, D. A. A. Ohlberg and R. S. Williams, “Evolution of Ge Islands on Si(001) During Annealing,” J. Appl. Phys. 85, 1159-1171 (1999)
2.41. T. I. Kamins, D. A. A. Ohlberg, R. S. Williams, W. Zhang and S. Y. Chou, “Positioning of Self-Assembled, Single-Crystal, Germanium Islands by Silicon Nanoimprinting,” Appl. Phys. Lett. 74, 1773–5 (1999)
2.42. C. Lee and A.-L. Barabasi, “Spatial Ordering of Islands Grown on Patterned Surfaces,” Appl. Phys. Lett. 73, 2651–3 (1998)
2.43. Y. Homma, P. Finnie and T. Ogino, “Aligned Island Formation Using an Array of Step Bands and Holes on Si (111),” Appl. Phys. Lett. 74, 815–17 (1999)
2.44. G. Jin, J. L. Liu, S. G. Thomas, Y. H. Luo, K. L. Wang, B.-Y. Nguyen, “Controlled Arrangement of Self-Organized Ge Islands on Patterned Si (001) Substrates,” Appl. Phys. Lett. 75, 2752–4 (1999)
2.45. G. Jin, J. L. Liu and K. L. Wang, “Regimented Placement of Self-Assembled Ge Dots on Selectively Grown Si Mesas,” Appl. Phys. Lett. 76, 3591–3 (2000)
2.46. L. Vescan, “Lateral Ordering of Ge Islands Along Facets,” J. Cryst. Growth 194, 173–7 (1998)
2.47. T. S. Kuan and S. S. Iyer, “Strain Relaxation and Ordering in SiGe Layers Grown on (100), (111), and (110) Si Surfaces by Molecular-Beam Epitaxy,” Appl. Phys. Lett. 59, 2242-4 (1991)
2.48. Q. Xie, A. Madhukar, P. Chen and N. P. Kobayashi, “Vertically Self-Organized InAs Quantum Box Islands on GaAs (100),” Phys. Rev. Lett. 75, 2542–5 (1995)
2.49. J. Tersoff, C. Teichert and M. G. Lagally, “Self-Organization in Growth of Quantum Dot Superlattices,” Phys. Rev. Lett. 76, 1675–8 (1996)
2.50. G. Abstreiter, P. Schittenhelm, C. Engel, E. Silveira, A. Zrenner, D. Meertens and W. Jäger, “Growth and Characterization of Self-Assembled Ge-Rich Islands on Si,” Semicond. Sci. Technol.11, 1521–8 (1996)
2.51. V. Le Thanh, V. Yam, P. Boucaud, F. Fortuna, C. Ulysse, D. Bouchier, L. Vervoort and J.-M. Lourtioz, “Vertically Self-Organized Ge/Si(001) Quantum Dots in Multilayer Structures,” Phys. Rev. B 60, 5851–7 (1999)
2.52. O. G. Schmidt and K. Eberl, “Multiple Layers of Self-Asssembled Ge/Si Photoluminescence, Strain Fields, Material Interdiffusion, and Island Islands: Formation,” Phys. Rev. B 61, 13 721–9 (2000)
2.53. O. G. Schmidt, C. Lange and K. Eberl, “Photoluminescence Study of the Initial Stages of Island Formation for Ge Pyramids/Domes and Hut Clusters on Si (001),” Appl. Phys. Lett. 75, 1905–7 (1999)
2.54. O. Kienzle, F. Ernst, M. Rühle, O. G. Schmidt and K. Eberl, “Germanium "Quantum Dots" Embedded in silicon: Quantitative Study of Self-Alignment and Coarsening,” Appl. Phys. Lett. 74, 269–71 (1999)
2.55. G. Springholz, V. Hol´y, M. Pinczolits and G. Bauer, “Self-Organized Growth of Three- Dimensional Quantum-Dot Crystals with fcc-Like Stacking and a Tunable Lattice Constant,” Science 282, 734–7 (1998)
2.56. V. Hol´y, G. Springholz, M. Pinczolits and G. Bauer, “Strain Induced Vertical and Lateral Correlations in Quantum Dot Superlattices,” Phys. Rev. Lett. 83, 356–9 (1999)
2.57. V. Rhyzii, “The Theory of Quantum-Dot Infrared Phototransistors,” Semicond. Sci. Technol. 11, 759-765 (1996)
2.58. K. Brunner, J. Zhu, G. Abstreiter, O. Kienzle and F. Ernst, “Self-Ordering of Ge Islands on Si Substrates Mediated by Local Strain Fields,” Phys. Status Solidi b 224, 531–5 (2001)
2.59. O. L. Alerhand, D. Vanderbilt, R. D. Meade and J. D. Joannopoulos, “Spontaneous Formation of Stress Domains on Crystal Surfaces,” Phys. Rev. Lett. 61, 1973–6 (1988)
2.60. P. Zeppenfeld, M. Krzyzowski, Romainczyk, G. Comsa and M. G. Lagally, “Size Relation for Surface Systems with Long-Range Interactions,” Phys. Rev. Lett. 72, 2737–40 (1994)
2.61. V. A. Shchukin, N. N. Ledentsov, P. S. Kop’ev and D. Bimberg, “Spontaneous Ordering of Arrays of Coherent Strained Islands,” Phys. Rev. Lett. 75, 2968–71 (1995)
2.62. J. Zhu, K. Brunner and G. Abstreiter, “Two-Dimensional Ordering of Self-Assembled Ge Islands on Vicinal Si (001) Surfaces with Regular Ripples,” Appl. Phys. Lett. 73, 620–2 (1998)
2.63. B. S. Meyerson, K. J. Uram and F. K. LeGoues, “Cooperative Growth Phenomena in Silicon/Germanium Low-Temperature Epitaxy,” Appl. Phys. Lett. 53, 2555-2557 (1988)
2.64. T. Mattsson and H. Metiu, “Kinetic Monte Carlo Simulations of Nucleation on a Surface with Periodic Strain: Spatial Ordering and Island-Size Distribution,” Appl. Phys. Lett. 75, 926–8 (1999)
Chapter 3
3.1. B. S. Meyerson, “UHV/CVD Growth of Si and Si:Ge Alloys: Chemistry, Physics, and Device Applications,” Proc. IEEE 80, 1592-1608 (1992).
3.2. A. Ishizaka and Y. Shiraki, “Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE,” J. Electrochem. Soc. 133, 666-671 (1976).
3.3. S. K. Lee, Y. H. Ku, and D. L. Kwong, “Silicon Epitaxial Growth by Rapid Thermal Processing Chemical Vapor Deposition,” Appl. Phys. Lett. 54, 1775-1777 (1989).
3.4. A. D. Lambert, B. M. McGregor, R. J. H. Morris, C. P. Parry, D. P. Chu, G. A. Cooke, P. J. Phillips, T. E. Whall, and E. H. C. Parker, “Contamination Issues during Atomic Hydrogen Surfactant Mediated Si MBE,” Semicond. Sci. Technol. 14, L1-L4 (1999).
3.5. J. C. Chang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of Alloy Composition and Strain in Thin GexSi1–x Layers,” J. Appl. Phys. 75, 8098-8108 (1994).
3.6. O. G. Schmidt, C. Lange, and K. Eberl, “Photoluminescence Study of the Initial Stages of Island Formation for Ge Pyramids/Domes and Hut Clusters on Si (001),” Appl. Phys. Lett. 75, 1905-1907 (1999).
Chapter 4
4.1. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H. L. Hartnagel, “Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering,” Science 285, 1551-1553 (1999)
4.2. K. Kash, B. P. Van der Gaag, Derek D. Mahoney, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of Quantum Confinement by Strain Gradients,” Phys. Rev. Lett. 67, 1326-1329 (1991)
4.3. H. Benisty, C. M. Sotomayor-Torrès, C. Weisbuch, “Intrinsic Mechanism for the Poor Luminescence Properties of Quantum-Box Systems,” Phys. Rev. B 44, 10945-10948 (1991)
4.4. T. Wang, A. Forchel, “Experimental and Theoretical Study of Strain-Induced AlGaAs/GaAs Quantum Dots Using a Self-Organized GaSb Island as a Stressor,” J. Appl. Phys. 86, 2001-2007 (1999)
4.5. U. Zeimer, F. Bugge, S. Gramlich, V. Smirnitski, M. Weyers, G. Tränkle, J. Grenzer, U. Pietsch, G. Cassabois, V. Emililiani, Ch. Lienau, “Evidence for Strain-Induced Lateral Carrier Confinement in InGaAs Quantum Wells by Low-Temperature Near-Field Spectroscopy,” Appl. Phys. Lett. 79, 1611-1613 (2001)
4.6. I-Hsing Tan, R. Mirin, V. Jayaraman, S. Shi,; E. Hu, J. Bowers, “Photoluminescence Study of Strain-Induced Quantum Well Dots by Wet-Etching Technique,” Appl. Phys. Lett. 61, 300-302 (1992)
4.7. C. W. Liu, L. J. Chen, In Encyclopedia of Nanoscience and Nanotechnology, Vol. 9 (Ed: H. S. Nalwa), American Scientific Publishers, Stevenson Ranch, CA, pp 775-792 (2004)
4.8. W. W. Wu, J. H. He, S. L. Cheng, S. W. Lee, L. J. Chen, “Self-Assembled NiSi Quantum-Dot Arrays on Epitaxial Si0.7Ge0.3 on (001) Si,” Appl. Phys. Lett. 83, 1836-1838 (2003)
4.9. S. W. Lee, L. J. Chen, P. S. Chen, M.-J. Tsai, C. W. Liu, T. Y. Chien, C. T. Chia, “Self-Assembled Nanorings in Si-Capped Ge Quantum Dots on (001) Si,” Appl. Phys. Lett. 83, 5283-5285 (2003)
4.10. M. Shikida, K. Sato, K. Tokoro, D. Uchikawa, “Comparison of Anisotropic Etching Properties between KOH and TMAH Solutions,” Proc. of IEEE Micro Electro Mechanical Systems, January 17, pp 315-320 (1999)
4.11. J. T. Borenstein, N. D. Gerrish, M. T. Currie, E. A. Fitzgerald, “A New Ultra-Hard Etch-Stop Layer for High Precision Micromachining,” Proc. of IEEE Micro Electro Mechanical Systems, January 17, pp 205-210 (1999)
4.12. K. Kash, J. M. Worlock, M. D. Sturge, P. Grabbe, J. P. Harbison, A. Scherer, P. S. D. Lin, “Strain-Induced Lateral Confinement of Excitons in GaAs-AlGaAs Quantum Well Microstructures,” Appl. Phys. Lett. 53, 782-784 (1988)
4.13. E. S. Kim, N. Usami, Y. Shiraki, “Anomalous Luminescence Peak Shift of SiGe/Si Quantum well Induced by Self-Assembled Ge Islands,” Appl. Phys. Lett. 70, 295-297 (1997)
4.14. H. Lipsanen, M. Sopanen, J. Ahopelto, “Luminescence from Excited States in Strain-Induced InxGa1-xAs Quantum Dots,” Phys. Rev. B 51, 13868-13871 (1995)
4.15. S. W. Lee, L. J. Chen, P. S. Chen, M. –J. Tsai, C. W. Liu, W. Y. Chen, T. M. Hsu, “Improved Growth of Ge Quantum Dots in Ge/Si Stacked Layers by Pre-Intermixing Treatments,” Appl. Surf. Sci. 224, 152-155 (2004)
4.16. V. Higgs, P. Kightley, P. J. Goodhew, P. D. Augustus, “Metal-Induced Dislocation Nucleation for Metastable SiGe/Si,” Appl. Phys. Lett. 59, 829-891 (1991)
4.17. S. Fukatsu, Y. Mera, M. Inou, K. Maeda, H. Akiyama, H. Sakaki, “Time-Resolved D-Band Luminescence in Strain-Relieved SiGe/Si,” Appl. Phys. Lett. 68, 1889-1891 (1996)
4.18. E. Hanamura, “Very Large Optical Nonlinearity of Semiconductor Microcrystallites,” Phys. Rev. B 37, 1273-1279 (1988)
4.19. G. W. Bryant, “Excitons in Quantum Boxes: Correlation Effects and Quantum Confinement,” Phys. Rev. B 37, 8763-8772 (1988)
4.20. Y. Wu, P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, 605-607 (2000)
4.21. Y. Maeda, “Visible Photoluminescence from Nanocrystallite Ge Embedded in a Glassy SiO2 Matrix: Evidence in Support of the Quantum-Confinement Mechanism,” Phys. Rev. B 51, 1658 (1995)
4.22. G. Gu, M. Burghard, G. T. Kim, G. S. Düsberg, P. W. Chiu, V. Krstic, S. Roth, W. Q. Han, “Growth and Electrical Transport of Germanium Nanowires,” J. Appl. Phys. 90, 5747 (2001)
4.23. J. R. Lakowicz, In Principles of Fluorescence Spectroscopy, 2nd edition, Kluwer, New York, (1999)
4.24. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franza, and F. Priolo, “Optical Gain in Silicon Nanocrystals,” Nature 408, 440-444 (2000)
4.25. M. A. Green, J. Zhao, A. Wang, P.J. Reece, and M. Gal, “Efficient Silicon Light-Emitting Diodes,” Nature 412, 805-808 (2001)
4.26. R. Zachai, K. Eberl, E. Abstreiter, E. Kasper, and H. Kibbel, “Photoluminescence in Short-Period Si/Ge Strained-Layer Superlattices,” Phys. Rev. Lett. 64, 1055-1058 (1990)
Chapter 5
5.1. Hsi-Jen J. Yeh, John S. Smith, “Integration of GaAs Vertical-Cavity Surface Emitting Laser on Si by Substrate Removal,” Appl. Phys. Lett. 64, 1466-1468 (1994)
5.2. F. E. Ejeckam, C. L. Chua, Z. H. Zhu, Y. H. Lo, H. Hong, R. Bhat, “High-Performance InGaAs Photodetectors on Si and GaAs Substrates,” Appl. Phys. Lett. 67, 3936-3938 (1995)
5.3. K. K. Linder, J. Phillips, O. Qasaimeh, X. F. Liu, S. Krishna, P. Bhattacharya, J. C. Jiang, “Self-Organized In0.4Ga0.6As Quantum-Dot Lasers Grown on Si Substrates,” Appl. Phys. Lett. 74, 1355-1357 (1999)
5.4. B. Ullrich, A. Erlacher, “Rectification and Intrinsic Photocurrent of GaAs/Si Photodiodes Formed with Pulsed-Laser Deposition at 1064 nm,” Appl. Phys. Lett. 87, 151115 (2005)
5.5. J. S. Park, R. P. G. Karunasiri, K. L. Wang. “Observation of Large Stark Shift in GexSi1–x/Si Multiple Quantum Wells,” J. Vac. Sci. Technol. B 8, 217-220 (1990)
5.6. Y. Miyake, J. Y. Kim, Y. Shiraki, S. Fukatsu, “Absence of Stark Shift in Strained Si1 – xGex/Si Type-I Quantum Wells,” Appl. Phys. Lett. 68, 2097-2099 (1996)
5.7. Cheng Li, Qinqing Yang, Hongjie Wang, Hongzheng Wei, Jinzhong Yu, Qiming Wang, “Observation of Quantum-Confined Stark Shifts in SiGe/Si Type-I Multiple Quantum Wells,” J. Appl. Phys. 87, 8195-8197 (2000)
5.8. A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, V. V. Ulyanov, A. G. Milekhin, A. O. Govorov, S. Schulze, D. R. T. Zahn, “Stark Effect in Type-II Ge/Si Quantum Dots,” Phys. Rev. B 67, 125318 (2003)
5.9. A. Liu, R. Jones, L. Liao, Dean. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A High-Speed Silicon Optical Modulator Based on a Metal−Oxide−Semiconductor Capacitor,” Nature 427, 615-618 (2004)
5.10. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-Scale Silicon Electro-Optic Modulator,” Nature 435, 325-327 (2005)
5.11. Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, “Strong Quantum-Confined Stark Effect in Germanium Quantum-Well Structures on Silicon,” Nature 437, 1334-1336 (2005)
5.12. D. Krapf, B. Adoram, J. Shappir, A. Sa,ar, S. G. Thomas, J. L. Liu, K. L. Wang, “Infrared Multispectral Detection Using Si/SixGe1–x Quantum Well Infrared Photodetectors,” Appl. Phys. Lett. 78, 495-497 (2001)
5.13. S. Tong, J. L. Liu, J. Wan, K. L. Wang, “Normal-Incidence Ge Quantum-Dot Photodetectors at 1.5 µm Based on Si Substrate,” Appl. Phys. Lett. 80, 1189-1191 (2002)
5.14. C.W. Liu, L. J. Chen, In Encyclopedia of Nanoscience and Nanotechnology, Vol. 9 (Ed: H. S. Nalwa), American Scientific Publishers, Stevenson Ranch, CA, pp 775-792 (2004)
5.15. H. C. Chen, C. W. Wang, S. W. Lee, L. J. Chen, “Pyramid-Shaped Si/Ge Superlattice Quantum Dots with Enhanced Photoluminescence Properties,” Adv. Mater. 18, 367-370. (2006)
5.16. C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, Q. M. Wang, “1.55 µm Ge Islands Resonant-Cavity-Enhanced Detector with High-Reflectivity Bottom Mirror,” Appl. Phys. Lett. 85, 2697-2699 (2004)
5.17. F. García-Santamaría, M. Ibisate, I. Rodríguez, F. Meseguer, C. López, “Photonic Band Engineering in Opals by Growth of Si/Ge Multilayer Shells,” Adv. Mater. 15, 788-792 (2003)
5.18. T. Hanrath, B. A. Korgel, “Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals,” Adv. Mater. 15, 437-440 (2003)
5.19. T. I. Kamins, X. Li, R. S. Williams, X. Liu, “Growth and Structure of Chemically Vapor Deposited Ge Nanowires on Si Substrates,” Nano Lett. 4, 503-506 (2004)
5.20. Douglas D. Cannon, Jifeng Liu, Yasuhiko Ishikawa, Kazumi Wada, David T. Danielson, Samerkhae Jongthammanurak, Jurgen Michel, Lionel C. Kimerling, “Tensile Strained Epitaxial Ge Films on Si(100) Substrates with Potential Application in L-Band Telecommunications,” Appl. Phys. Lett. 84, 906-908 (2004)
5.21. Jifeng Liu, Douglas D. Cannon, Kazumi Wada, Yasuhiko Ishikawa, Samerkhae Jongthammanurak, David T. Danielson, Jurgen Michel, Lionel C. Kimerling, “Tensile Strained Ge P-I-N Photodetectors on Si Platform for C and L Band Telecommunications,” Appl. Phys. Lett. 87, 011110 (2005)
5.22. M. Shikida, K. Sato, K. Tokoro, D. Uchikawa, “Comparison of Anisotropic Etching Properties Between KOH and TMAH Solutions,” Proc. of IEEE Micro Electro Mechanical Systems, January 17, pp 315-320 (1999)
5.23. J. T. Borenstein, N. D. Gerrish, M. T. Currie, E. A. Fitzgerald, “A New Ultra-Hard Etch-Stop Layer for High Precision Micromachining,” Proc. of IEEE Micro Electro Mechanical Systems, January 17, pp 205-210 (1999)
5.24. C. Teichert, M. G. Lagally, L. J. Peticolas, J. C. Bean, J. Tersoff, “Stress-Induced Self-Organization of Nanoscale Structures in SiGe/Si Multilayer Films,” Phys. Rev. B 53, 16334-16337 (1996)
5.25. C. E. A. Kirschhock, S. P. B. Kremer, P. J. Grobet, P. A. Jacobs, J. A. Martens, “New Evidence for Precursor Species in the Formation of MFI Zeolite in the Tetrapropylammonium Hydroxide-Tetraethyl Orthosilicate-Water System,” J. Phys. Chem. B 106, 4897-4900 (2002)
5.26. L. Q. Wang, G. J. Exarhos, “Study of Local Molecular Ordering in Layered Surfactant-Silicate Mesophase Composites,” J. Phys. Chem. B 107, 443-450 (2003)
5.27. J. M. Fedeyko, J. D. Rimer, R. F. Lobo, D. G. Vlachos, “Spontaneous Formation of Silica Nanoparticles in Basic Solutions of Small Tetraalkylammonium Cations,” J. Phys. Chem. B 108, 12271-12275 (2004)
5.28. P. J. Dean, J. R. Haynes, W. F. Flood, “New Radiative Recombination Processes Involving Neutral Donors and Acceptors in Silicon and Germanium,” Phys. Rev. 161, 711-729 (1967)
5.29. J. Weber, M. I. Alonso, “Near-Band-Gap Photoluminescence of Si-Ge alloys,” Phys. Rev. B 40, 5683-5693 (1989)
5.30. S. W. Lee, Y. L. Chueh, L. J. Chen, L. J. Chou, P. S. Chen, M. –J. Tsai, C. W. Liu, “Formation of SiCH6-Mediated Ge Quantum Dots with Strong Field Emission Properties by Ultrahigh Vacuum Chemical Vapor Deposition,” J. Appl. Phys. 98, 073506 (2005)
5.31. H. Míguez, E. Chomski, F. García-Santamaría, M. Ibisate, S. John, C. López, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, H. M. Van Driel, “Photonic Bandgap Engineering in Germanium Inverse Opals by Chemical Vapor Deposition,” Adv. Mater. 13, 1634-1637 (2001)
5.32. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. López, F. Meseguer, H. Míguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. Van Driel, “Large-Scale Synthesis of a Silicon Photonic Crystal with a Complete Three-Dimensional Bandgap near 1.5 Micrometres,” Nature 405, 437-440 (2000)
5.33. Z. Zhong, G. Katsaros, M. Stoffel, G. Costantini, K. Kern, O. G. Schmidt, N. Y. Jin-Phillipp, G. Bauer, “Periodic Pillar Structures by Si Etching of Multilayer GeSi/Si Islands,” Appl. Phys. Lett. 87, 263102 (2005)
Chapter 6
6.1 S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, L. Zhuang, “Sub-10 nm Imprint Lithography and Applications,” J. Vac. Sci. Technol. B 15, 2897-2904 (1997)
6.2 Bimberg, D.; Grundmann, M.; Ledentsov, N. N. Quantum Dot Heterostructures 1998 (New York: Wiley).
6.3 O. G. Schmidt, K. Eberl, “Self-Assembled Ge/Si Dots for Faster Field-Effect Transistors,” IEEE Trans. El. Dev. 48, 1175-1179 (2001)
6.4 O. G. Schmidt, Ch. Deneke, Y. M. Manz, C. Müller, “Semiconductor Tubes, Rods and Rings of Nanometer and Micrometer Dimension,” Physica E 13, 969-973 (2002)
6.5 O. G. Schmidt, N.Y. Jin-Phillipp, “Free-Standing SiGe-Based Nanopipelines on Si (001) Substrates,” Appl. Phys. Lett. 78, 3310-3312 (2001)
6.6 O. G. Schmidt, K. Eberl, “Thin Solid Films Roll up Into Nanotubes,” Nature 410, 168 (2001)
6.7 V. Y. Prinz, D. Grutzmacher, A. Beyer, C. David, B. Ketterer, E. Deckardt, “A New Technique for Fabricating Three-Dimensional Micro- and Nanostructures of Various Shapes,” Nanotechnology 12, 399-408 (2001)
6.8 Ch. Deneke, C. Müller, N. Y. Jin-Phillipp, O. G. Schmidt, “Diameter Scalability of Rolled-up In(Ga)As/GaAs Nanotubes,” Semicond. Sci. Technol. 17, 1278-1281 (2002)
6.9 O. G. Schmidt, N. Schmarje, Ch. Deneke, C. Müller, N. Y. Jin-Phillipp, “Three-Dimensional Nano-objects Evolving from a Two-Dimensional Layer Technology,” Adv. Mater. 13, 756 (2001)
6.10 O. G. Schmidt, Ch. Deneke, N. Schmarje, C. Müller, N. Y. Jin-Phillipp, “Free-Standing Semiconductor Micro- and Nano-objects,” Mater. Sci. Eng. C 19, 393-396 (2002)
6.11 O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, N. Y. Jin-Phillipp, “Self-Assembled Nanoholes, Lateral Quantum-Dot Molecules, and Rolled-up Nanotubes,” IEEE. J. Quantum Electronics 8, 1025-1034 (2002)
6.12 L. J. Chen, J. W. Mayer, K. N. Tu, “Formation and Structure of Epitaxial NiSi2 and CoSi2 ,” Thin Solid Film 93, 135-141 (1982)
6.13 Ch. Deneke, N. Y. Jin-Phillipp, I. Loa, O. G. Schmidt, “Radial Superlattices and Single Nanoreactors,” Appl. Phys. Lett. 84, 4475-4477 (2004)
6.14 S. W. Lu, C. W. Nieh, L. J. Chen, “Epitaxial Growth of NiSi2 on Ion-Implanted Silicon at 250–280 °C,” Appl. Phys. Lett. 49, 1770-1772 (1986)
6.15 L. J. Chen, C. M. Donald, I. W. Wu, J. J. Chu, S. W. Lu, “Epitaxial Growth of NiSi2 on Ion-Implanted Silicon at 250–280 °C,” J. Appl. Phys. 62, 2789-2792 (1987)
6.16 K. Watanabe, T. Yamazaki, Y. Kikuchi, Y. Kotaka, M. Kawasaki, I. Hashimoto, M. Shiojiri, “Atomic-Resolution Incoherent High-Angle Annular Dark Field STEM Images of Si(011),” Phys. Rev. B 63, 085316 (2001)
6.17 S. C. Anderson, C. R. Birkeland, G. R. Anstis, D. J. H. Cockayne, “An Approach to Quantitative Compositional Profiling at Near-Atomic Resolution Using High-Angle Annular Dark Field Imaging,” Ultramicroscopy 69, 83-103 (1997)
Chapter 7
7.1 M. C. Bost and J. E. Mahan, “Optical Properties of Semiconducting Iron Disilicide Thin Films,” J. Appl. Phys. 58, 2696-2703 (1985).
7.2 S. J. Clark, H. M. Al-Allak, S. Brand, and R. A. Abram, “Structure and Electronic Properties of FeSi2,” Phys. Rev. B 58, 10389-10393 (1998)
7.3 L. Miglio, V. Meregalli, and O. Jepsen, “Strain Dependent Gap Nature of Epitaxial β-FeSi2 in Silicon by First Principles Calculations,” Appl. Phys. Lett. 75, 385-387
(1999)
7.4 D. B. Migas and Leo Miglio, “Band-Gap Modifications of β-FeSi2 with Lattice Distortions Corresponding to the Epitaxial Relationships on Si(111),” Phys. Rev. B 62, 11063-11070 (2000)
7.5 K. Yamaguchi and K. Mizushima, “Luminescent FeSi2 Crystal Structures Induced by Heteroepitaxial Stress on Si (111),” Phys. Rev. Lett. 86, 6006-6009 (2001)
7.6 K. M. Geib, J. E. Mahan, R. G. Long, M. Nathan, andG. Bai, “Epitaxial Orientation and Morphology of β-FeSi2 on (001) Silicon,” J. Appl. Phys. 70, 1730-1736 (1991)
7.7 D. R. Peale, R. Haight, and J. Ott, “Heteroepitaxy of β-FeSi2 on Unstrained and Strained Si (100) Surfaces,” Appl. Phys. Lett. 62, 1402-1404 (1993)
7.8 S. Yu. Shiryaev, F. Jensen, J. W. Petersen, J. L. Hansen, and A. N. Larsen, “Low-Dimensional Structures Generated by Misfit Dislocations in the Bulk of Si1 – xGex/Si Heteroepitaxial Systems,” Appl. Phys. Lett. 71, 1972-1974 (1997)
7.9 I. Markov and S. Stoyanov, Contemporary Physics 28, 267 (1987)
7.10 S. Yu. Shiryaev, F. Jensen, J. W. Petersen, J. L. Hansen, and A. N. Larsen, “Dislocation Patterning and Nanostructure Engineering in Compositionally Graded Si1 − xGex/Si Layer Systems,” J. Crystal Growth 157, 132-136 (1995)
7.11 L. Miglio, V. Meregalli, “Theory of FeSi2 Direct Gap Semiconductor on Si(100),” J. Vac. Sci. Technol. B, 16, 1604-1609 (1998)
7.12 A. Hartmann, L. Vescan, C. Dieker, T. Stoica, and H. Luth, “Line-Shape Model for Broad Photoluminescence Band from Si1-xGex/Si Heterostructures,” Phys. Rev. B 48, 18276-18279 (1993)
7.13 T. Stoica, L. Vescan, and M. Goryll, “Electroluminescence of Strained SiGe/Si Selectively Grown above the Critical Thickness for Plastic Relaxation,” J. Appl. Phys. 83, 3367-3373 (1998)
7.14 S. Fukatsu, Y. Mera, M. Inoue, and K. Maeda, “Time-Resolved Dislocation-Related Luminescence in Strain-Relaxed SiGe/Si,” Thin Solid Films 294, 33-36 (1997)
7.15 J.-P. Noel, N. L. Rowell, D. C. Houghton, and D. D. Petrovic, “Intense Photoluminescence between 1.3 and 1.8 µm from Strained Si1–xGex Alloys,” Appl. Phys. Lett. 57, 1037-1039 (1990)
7.16 Y. Chen and J. Washburn, “Structural Transition in Large-Lattice-Mismatch Heteroepitaxy,” Phys. Rev. Lett. 77, 4046-4049 (1996)
7.17 D. S. L. Mui, D. Leonard, L. A. Coldren, and P. M. Petroff, “Surface Migration Induced Self-Aligned InAs Islands Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 66, 1620-1622 (1995)
7.18 Y. H. Xie, S. B. Samavedam, M. Bulsara, T. A. Langdo, and E. A.
Fitzgerald, “Relaxed Template for Fabricating Regularly Distributed Quantum Dot Arrays,” Appl. Phys. Lett. 71, 3567-3569 (1997)
7.19 S. Yu. Shiryaev, F. Jensen, J. L. Hansen, J. W. Petersen, and A. N. Larsen, “Nanoscale Structuring by Misfit Dislocations in Si1-xGex/Si Epitaxial Systems,” Phys. Rev. Lett. 78, 503-506 (1997)
Chapter 8
8.1 Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks,” Science 294, 1313-1317 (2001).
8.2 Y. Wu, R. Fan, P. Yang, “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires,” Nano. Lett. 2, 83-86 (2002).
8.3 A. I. Hochbaum, R. Fan, R. He, P. Yang, “Controlled Growth of Si Nanowire Arrays for Device Integration,” Nano. Lett. 5, 457-460 (2005).
8.4 R. He, D. Gao, R. Fan, A. I. Hochbaum, C. Carraro, R. Maboudian, P. Yang, “Si Nanowire Bridges in Microtrenches: Integration of Growth into Device Fabrication,” Adv. Mater. 17, 2098-2102 (2005).
8.5 Y. Cui, C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291,851-853 (2001)
8.6 Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, C. M. Lieber, “Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems,” Science 302, 1377-1379 (2003).
8.7 J.-F. Lin, J. P. Bird, Z. He, P. A. Bennett, D. J. Smith, “Signatures of Quantum Transport in Self-Assembled Epitaxial Nickel Silicide Nanowires,” Appl. Phys. Lett. 85, 281-283 (2004)
8.8 C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers, D. R. Evans, “Directed Growth of Nickel Silicide Nanowires,” Appl. Phys. Lett. 84, 1389-1391 (2004).
8.9 Y. L. Chueh, L. J. Chou, S. L. Cheng, L. J. Chen, C. J. Tsai, C. M. Hsu, S. C. Kung, “Synthesis and Characterization of Metallic TaSi2 Nanowires,” Appl. Phys. Lett. 87, 223113 (2005).
8.10 S. Y. Chen, L. J. Chen, “Nitride-Mediated Epitaxy of Self-Assembled NiSi2 Nanowires on (001) Si,” Appl. Phys. Lett. 87, 253111 (2005).
8.11 Y. Wu, J. Xiang, C. Yang, W. Lu, C. M. Lieber, “Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures,” Nature 430, 61-65 (2004).
8.12 J. M. Gibson, J. L. Batstone, R. T. Tung, F. C. Unterwald, “Origin of A- or B-type NiSii2 Determined by In Situ Transmission Electron Microscopy and Diffraction during Growth,” Phys. Rev. Lett. 60, 1158-1161 (1988).
8.13 M. W. Kleinschmit, M. Yeadon, J. M. Gibson, “Nucleation of Single-Crystal CoSi2 with Oxide-Mediated Epitaxy,” Appl. Phys. Lett. 75, 3288-3290 (1999)
8.14 T. Yokota, M. Murayama, J. M. Howe, “In Situ Transmission-Electron-Microscopy Investigation of Melting in Submicron Al-Si Alloy Particles under Electron-Beam Irradiation,” Phys. Rev. Lett. 91, 265504 (2003)
8.15 M. Tanaka, F. Chu. M. Shimojo, M. Takeguchi, K. Mitsuishi, K. Furuya, “Position- and Size-Controlled Fabrication of Iron Silicide Nanorods by Electron-Beam-Induced Deposition Using an Ultrahigh-Vacuum Transmission Electron Microscope,” Appl. Phys. Lett. 86, 183104 (2005)
8.16 S. Liang, R. Islam, D. J. Smith, P. A. Bennett, J. R. O’Brien, B. Taylor, “Magnetic Iron Silicide Nanowires on Si(110),” Appl. Phys. Lett. 88, 113111 (2006)
8.17 K. N. Tu, W. K. Chu, J. W. Mayer, “Structure and Growth Kinetics of Ni2Si on Silicon,” Thin Solid Film 25, 403-413 (1965)
8.18 G. Majni, M. Costato, F. Panini, “The Growth Processes of Thin Film Silicides in Si/Ni Planar Systems ,” Thin Solid Film 125, 71-78 (1985)
8.19 M. K. Datta, S. K. Pabi, B. S. Murty, “Thermal Stability of Nanocrystalline Ni Silicides Synthesized by Mechanical Alloying,” Mater. Sci. Eng. A 284,219-225 (2000)
8.20 K. N. Tu, “Analysis of Marker Motion in Thin-Film Silicide Formation,” J. Appl. Phys. 48, 3379-3382 (1977)
Chapter 10
10.1 Lincoln J. Lauhon, Mark S. Gudiksen, Deli Wang, and Charles M. Lieber, “Epitaxial Core–Shell and Core–Multishell Nanowire Heterostructures,” Nature 420, 57-61 (2002)
10.2 Josh Goldberger, Allon I. Hochbaum, Rong Fan, and Peidong Yang, “Silicon Vertically Integrated Nanowire Field Effect Transistors,” Nano Lett. 6, 973-977 (2006)
10.3 Jiming Bao, Mariano A. Zimmler, and Federico Capasso, Xiaowei Wang, and Z. F. Ren, “Broadband ZnO Single-Nanowire Light-Emitting Diode,” Nano Lett. 6, (2006)
10.4 Kristian Mølhave, Sven Bjarke Gudnason, Anders Tegtmeier Pedersen, Casper Hyttel Clausen, Andy Horsewell, and Peter Bøggild, “Transmission Electron Microscopy Study of Individual Carbon Nanotube Breakdown Caused by Joule Heating in Air,” Nano Lett. 6, (2006)
10.5 B. C. Regan, S. Aloni, R. O. Ritchie, U. Dahmen, and A. Zettl, “Carbon Nanotubes as Nanoscale Mass Conveyors,” Nature, 428, 924-927 (2004)
10.6 J. Y. Huang, S. Chen, Z. F. Ren, G. Chen, and M. S. Dresselhaus, “Real-Time Observation of Tubule Formation from Amorphous Carbon Nanowires under High-Bias Joule Heating,” Nano Lett. 6, (2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 羅燕琴(2003)。花蓮縣特殊教育之現況與發展。花蓮師院特教通訊,29,1-4。
2. 魏俊華(1997)。聽覺障礙兒童之心理壓力與因應。特教新知通訊,4(6),1-3。
3. 劉鎔毓(2004)。身心障礙生的輔導方式與成效—以一個躁鬱症學生為例。學生輔導,90,114-120。
4. 劉明麗(2005)。亮麗人生—談聽障生之資源服務。聽障教育,3,33-35。
5. 劉斐文(2000)。多重障礙者之學習特性及有效學習策略。特教園丁,15(3),21-25。
6. 鄭崇趁(1998)。輔導中輟學生的權責與方案。學生輔導,55,16-23。
7. 鄧煌發(2000)。輟學少年之家庭與社會學習因素的比較分析。犯罪學期刊,5,233-276。
8. 蔡姿娟(1999)。從教師權責看中輟生輔導。教育資料文摘,43(6),89-97。
9. 楊惠卿、林家興(2005)。臺灣中輟生問題現況與防治策略之探討。教師天地,137,15-21。
10. 葛竹婷(2002)。重度障礙學生正向行為支持方案。國小特殊教育,34,21-26。
11. 溫怡雯、章勝傑(2000)。一個臺東縣原住民國中中輟生歸因歷程之個案研究。臺東師院學報,11(上),1-28。
12. 黃榮真、洪美連(2004)。國小階段身心障礙學生在家教育安置之現況問題研究─以花蓮地區為例。花蓮師院學報,18,61-90。
13. 黃秋霞(2002)。探討重度或多重障礙在家教育學生的現況安置輔導問題。特教園丁,17(4),1-7。
14. 陳富美(2001)。從老師、家長及學生的差異觀點探討阻礙學生中輟問題防治之因素。社區發展季刊,96,222-235。
15. 陳映雪(2003)。創造嚴重情緒障礙患者的無障礙教育空間。教師天地,125,39-43。