|
References Chapter 1 1.1. “2004 International Technology Roadmap for Semiconductors,” Semiconductor Industry Association, 2004. (available at http://public.itrs.net/.) 1.2. S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, M. Zhiyong, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, N. Phi, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, and Y. El-Mansy, “A 90-nm Logic Technology Featuring Strained-Silicon,” IEEE Trans. Electron Devices 51, 1790-1797 (2004). 1.3. G. E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics 38, 253-256 (1965). 1.4. H. Jorke, H. Kibbel, F. Schäffler, A. Casel, H.-J. Herzog, and E. Kasper, “Properties of Si layers Grown by Molecular Beam Epitaxy at Very Low Temperatures,” Appl. Phys. Lett. 54, 819-821 (1989) 1.5. F. Schäffler, “High-Mobility Si and Ge Structures,” Semicond. Sci. Technol. 12, 1515-1549 (1997). 1.6. M. M. Rieger, and P. Vogl, “Electronic-Band Parameters in Strained Si1-xGex Alloys on Si1-yGey Substrates,” Phys. Rev. B 48, 14276-14287 (1993) 1.7. M. V. Fischetti, and S. E. Laux, “Band Structure, Deformation Potentials, and Carrier Mobility in Strained Si, Ge, and SiGe Alloys,” J. Appl. Phys. 80, 2234-2252 (1996) 1.8. E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1–x Structures for III–V Integration with Si and High Mobility Two-Dimensional Electron Gases in Si,” J. Vac. Sci. Technol. B 10, 1807-1819 (1992). 1.9. U. König, A. J. Boers, F. Schäffler, and E. Kasper, “Enhancement Mode N-Channel Si/SiGe MODFET with High Intrinsic Transconductance,” Electron. Lett. 28, 160-162 (1992). 1.10. T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe, and A. Toriumi, “Electron and Hole Mobility Enhancement in Strained-Si MOSFET’s on SiGe-on-Insulator Substrates Fabricated by SIMOX Technology,” IEEE Electron Device Lett. 21, 230-232 (2000). 1.11. M. L. Lee, and E. A. Fitzgerald, “Hole Mobility Enhancements in Nanometer-Scale Strained-Silicon Heterostructures Grown on Ge-Rich Relaxed Si1–xGex,” J. Appl. Phys. 94, 2590-2596 (2003). 1.12. S. F. Nelson, K. Ismail, J. O. Chu, and B. S. Meyerson, “Room-Temperature Electron Mobility in Strained Si/SiGe Hetero- structures,” Appl. Phys. Lett. 63, 367-369 (1993). 1.13. K. Ismail, M. Arafa, K. L. Saenger, J. O. Chu, and B. S. Meyerson, “Extremely High Electron Mobility in Si/SiGe Modulation-Doped Heterostructures,” Appl. Phys. Lett. 66, 1077-1079 (1995). 1.14. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–Semiconductor– Metal Near-Infrared Light Detector Based on Epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175-3177 (1998). 1.15. D. J. Paul, “Si/SiGe Heterostructures: from Material and Physics to Devices and Circuits,” Semicond. Sci. Technol. 19, 75-108 (2004). 1.16. S. C. Jain, A. H. Harker and R. A. Cowley, “Misfit-Strain and Misfit-Dislocations in Lattice Mismatched Epitaxial Layers,” Phil. Mag. A 75, 515–1461 (1997) 1.17. S. C. Jain, T. J. Gosling, J. R. Willis, R. Bullough and P. Balk, “A Theoretical Comparison of the Stability Characteristics of Capped and Uncapped GeSi Strained Epilayers,” Solid-State Electron. 35, 1069–1073 (1992) 1.18. J. C. Bean, L. C. Feldman, A. T. Fiory, S. Nakahara, and I. K. Robinson, “GexSi1–x/Si Strained-Layer Superlattice Grown by Molecular Beam Epitaxy,” J. Vac. Sci. Technol. A 2, 436-440 (1984). 1.19. J. H. Van der Merwe, “Crystal Interfaces. Part II. Finite Overgrowths,” J. Appl. Phys. 34, 123-127 (1963) 1.20. J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers : III. Preparation of almost perfect multilayers,” J. Cryst. Growth 32, 265-273 (1976) 1.21. R. People and J. C. Bean, “Calculation of Critical Layer Thickness versus Lattice Mismatch for GexSi1–x/Si Strained-Layer Heterostructures,” Appl. Phys. Lett. 47, 322-324 (1985) 1.22. R. People and J. C. Bean, “Erratum: Calculation of Critical Layer Thickness versus Lattice Mismatch for GexSi1–x/Si Strained-Layer Heterostructures,” Appl. Phys. Lett. 49, 229 (1985) 1.23. B. W. Dobson and J. Y. Tsao, “Relaxation of Strained-Layer Semiconductor Structures via Plastic Flow,” Appl. Phys. Lett. 51, 1325-1327 (1988) 1.24. B. W. Dobson and J. Y. Tsao, “Erratum: Relaxation of Strained-Layer Semiconductor Structures via Plastic Flow,” Appl. Phys. Lett. 52, 852 (1988) 1.25. D. C. Houghton, “Strain Relaxation Kinetics in Si1–xGex/Si Heterostructures,” J. Appl. Phys. 70, 2136-2151 (1991) 1.26. M. W. L. Thewalt, D. A. Harrison, C. F. Reinhart, J. A. Wolk, and H. Lafontaine, “Type II Band Alignment in Si1-xGex/Si(001) Quantum Wells: The Ubiquitous Type I Luminescence Results from Band Bending,” Phys. Rev. Lett. 79, 269-272 (1997) 1.27. J. Weber, and M. I. Alonso, “Near-Band-Gap Photoluminescence of Si-Ge Alloys,” Phys. Rev. 40, 5683-5693 (1960) 1.28. S. Luryi, A. Kastalsky and J. C. Bean, “New Infrared Detector on a Silicon Chip,” IEEE Trans. Electron Devices 31, 1135-1139 (1984) 1.29. M. M. Rieger, and P. Vogl, “Electronic-Band Parameters in Strained Si1-xGex Alloys on Si1-yGey Substrates,” Phys. Rev. B 48, 14276-14287 (1993) 1.30. G. Sun, L. Friedman and R. A. Soref, “Intersubband Lasing Lifetimes of SiGe/Si and GaAs/AlGaAs Multiple Quantum Well Sructures,” Appl. Phys. Lett. 66, 3425–7 (1995) 1.31. N. Griffin, D. D. Arnone, D. J. Paul, M. Pepper, D. J. Robbins, A. C. Churchill, and J. M. Fernµndez, “Cyclotron Resonance Measurements of Si/SiGe Two-Dimensional Electron Gases with Differing Strain,” J. Vac. Sci. Technol. B 16, 1655-1658 (1998) 1.32. M. V. Fischetti, and S. E. Laux, “Band Structure, Deformation Potentials, and Carrier Mobility in Strained Si, Ge, and SiGe Alloys,” J. Appl. Phys. 80, 2234-2252 (1996) 1.33. K. Bernhard-Höfer, A. Zrenner, J. Brunner, G. Abstreiter, F. Wittmann and I. Eisele, “Strained Si1 – xGex Multi-Quantum Well Waveguide Structures on (110) Si,” Appl. Phys. Lett. 66, 2226–8 (1995) 1.34. B. S. Meyerson, K. J. Uram and F. K. LeGoues, “Cooperative Growth Phenomena in Silicon/Germanium Low-Temperature Epitaxy,” Appl. Phys. Lett. 53, 2555-2557 (1988) 1.35. D. W. Greve and M. Racanelli, “Construction and Operation of an Ultrahigh Vacuum Chemical Vapor Deposition Epitaxial Reactor for Growth of GexSi1–x,” J. Vac. Sci. Technol. B 8, 511-515 (1990) 1.36. D. J. Robbins, J. L. Glasper, A. G. Cullis and W. Y. Leong “A Model for Heterogeneous Growth of Si1–xGex Films from Hydrides,” J. Appl. Phys. 69, 3729-3732 (1991) 1.37. C. Rosenblad, H. von Kanel, M. Kummer, A. Dommann and E. Muller, “A Plasma Process for Ultrafast Deposition of SiGe Graded Buffer Layers,” Appl. Phys. Lett. 76, 427-429 (2000) 1.38. M. R. Caymax and W. Y. Leong Advanced Silicon and Semiconducting Silicon-alloy Based Materials and Devices ed J. F. A. Nijs (Bristol: Institute of Physics Publishing) p 141 (1994) 1.39. S. Kobayashi, M. L. Ching, A. Kohlhase, T. Sato, J. Murota and N. Mikoshiba, “Selective Germanium Epitaxial Growth on Silicon Using CVD Technology with Ultra-Pure Gases,” J. Cryst. Growth 99, 259-262 (1990) 1.40. H. Jorke, H. Kibbel, F. Schäffler, A. Casel, H.-J. Herzog, and E. Kasper, “Properties of Si layers Grown by Molecular Beam Epitaxy at Very Low Temperatures,” Appl. Phys. Lett. 54, 819-821 (1989) Chapter 2 2.1. G. Abstreiter, H. Brugger, T. Wolf and H.-J. Jorke, “Strain-Induced Two-Dimensional Electron Gas in Selectively Doped Si/SixGe1-x Superlattices,” Phys. Rev. Lett. 54, 2441–4 (1985) 2.2. S. F. Nelson, K. Ismail, J. O. Chu and B. S. Meyerson, “Room-Temperature Electron Mobility in Strained Si/SiGe Heterostructures,” Appl. Phys. Lett. 63, 367–79 (1993) 2.3. K. Ismail, M. Arafa, F. Stern, J. O. Chu and B. S. Meyerson, “Gated Hall Effect Measurements in High-Mobility n-Type Si/SiGe Modulation-Doped Heterostructures,” Appl. Phys. Lett. 66, 842–4 (1995) 2.4. M. Holzmann, D. Többen and G. Abstreiter, “Transport in Silicon/Germanium Nanostructures,” Appl. Surf. Sci. 102 230–6 (1996) 2.5. G. Bauer, Properties of Silicon Germanium and SiGe:Carbon vol 24, ed E Kasper and K Lyutovich (London: IEE INSPEC) pp 228–43 (1999) 2.6. Z. Wilamowski, N. Sandersfeld, W. Jantsch, D. Többen and F. Schäffler, “Screening Breakdown on the Route toward the Metal-Insulator Transition in Modulation Doped Si /SiGe Quantum Wells,” Phys. Rev. Lett. 87, 026401-1 to 026401-4 (2001) 2.7. K. Ismail, High Magnetic Fields in the Physics of Semiconductors ed G. Landwehr and W. Ossau (Singapore: World Scientific) p 947 (1997) 2.8. U. Zeitler, H. W. Schumacher, A. G. M. Jansen and R. H. J. Haug, “Magnetoresistance Anisotropy in Si /SiGe in Tilted Magnetic Fields: Experimental Evidence for a Stripe-Phase Formation,” Phys. Rev. Lett., 86 866–9 (2001) 2.9. S. Luryi, A. Kastalsky and J. C. Bean, “New Infrared Detector on a Silicon Chip,” IEEE Trans. Electron Devices 31, 1135-1139 (1984) 2.10. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange and F. Evangelisti, “Metal Semiconductor Metal Near-Infrared Light Detector Based on Epitaxial Ge/Si,” Appl. Phys. Lett. 72, 3175–7 (1998) 2.11. K. Bernhard-Höfer, A. Zrenner, J. Brunner, G. Abstreiter, F. Wittmann and I. Eisele, “Strained Si1 – xGex Multi-Quantum Well Waveguide Structures on (110) Si,” Appl. Phys. Lett. 66, 2226–8 (1995) 2.12. B. Li, G. Li, E. Liu, Z. Jiang, J. Qin and X. Wang, “Monolithic Integration of a SiGe/Si Modulator and Multiple Quantum Well Photodetector for 1.55 µm Operation,” Appl. Phys. Lett. 73, 3504–5 (1998) 2.13. G. Sun, L. Friedman and R. A. Soref, “Intersubband Lasing Lifetimes of SiGe/Si and GaAs/AlGaAs Multiple Quantum Well Sructures,” Appl. Phys. Lett. 66, 3425–7 (1995) 2.14. P. Boucaud, F. H. Julien, R. Prazeres, J.-M. Ortega, I. Sagnes and Y. Campidelli, “Intersubband Relaxation Time in the Valence Band of Si/Si1 – xGex Quantum Wells,” Appl. Phys. Lett. 69, 3069–71 (1996) 2.15. R. A. Kaindl, M. Wurm, K. Reimann, M. Woerner, T. Elsaesser, C. Miesner, K. Brunner and G. Abstreiter, “Ultrafast Dynamics of Intersubband Excitations in a Quasi-Two-Dimensional Hole Gas,” Phys. Rev. Lett. 86, 1122–5 (2001) 2.16. M. Woerner, R. A. Kaindl, M. Wurm, K. Reimann, T. Elsaesser, C. Miesner, I. Bormann, K. Brunner and G. Abstreiter, “Ultrafast Intersubband Scattering of Holes in P-Type Modulation-Doped Si1−xGex/Si Multiple Quantum Wells,” Physica E 13, 485-488(2001) 2.17. C, W, Snyder, J, F, Mansfield and B, G, Orr, “Kinetically Controlled Critical Thickness for Coherent Islanding and Thick Highly Strained Pseudomorphic Films of InxGa1-xAs on GaAs(100),” Phys. Rev. B 46, 9551-9554 (1992) 2.18. G. Abstreiter, P. Schittenhelm, C. Engel, E. Silveira, A. Zrenner, D. Meertens and W. Jäger, “Growth and Characterization of Self-Assembled Ge-Rich Islands on Si,” Semicond. Sci. Technol. 11, 1521–8 (1996) 2.19. Y. W. Mo, D. E. Savage, B. S. Swartzentruber and M. G. Lagally, “Kinetic Pathway in Stranski-Krastanov Growth of Ge on Si (001),” Phys. Rev. Lett. 65, 1020–3 (1990) 2.20. G. Medeiros-Ribeiro, A. M. Bratkovski, T. I. Kamins, D. A. A. Ohlberg and R. S. Williams, “Shape Transition of Germanium Nanocrystals on a Silicon (001) Surface from Pyramids to Domes,” Science 279, 353-355 (1998) 2.21. P. Schittenhelm, M. Gail, J. Brunner, J. F. Nützel and G. Abstreiter, “Photoluminescence Study of the Crossover from Two-Dimensional to Three-Dimensional Growth for Ge on Si (100),” Appl. Phys. Lett. 67, 1292–4 (1995) 2.22. A. I. Yakimov, A. V. Dvurechenski, Y. Y. Proskuryakov, A. I. Nikiforov, O. P. Pchelyakov, S. A. Teys and A. K. Gutakovskii, “Normal-Incidence Infrared Photoconductivity in Si P-I-N Diode with Embedded Ge Self-Assembled Quantum Dots,” Appl. Phys. Lett. 75, 1413–5 (1999) 2.23. X. Wang, “Germanium Dots with Highly Uniform Size Distribution Grown on Si (100) Substrate by Molecular Beam Epitaxy,” Appl. Phys. Lett. 71, 3543–5 (1997) 2.24. J. Zhu, C. Miesner, K. Brunner and G. Abstreiter, “Strain Relaxation of Faceted Ge Islands on Si (113),” Appl. Phys. Lett. 75, 2395–7 (1999) 2.25. A. V. Kolobov, “Raman Scattering from Ge Nanostructures Grown on Si Substrates: Power and limitations,” J. Appl. Phys. 87, 2926-2930 (2000) 2.26. A. V. Kolobov, H. Oyanagi, K. Brunner, P. Schittenhelm, G. Abstreiter and K. Tanaka, “Raman Scattering and X-Ray Absorption Studies of Ge–Si Nanocrystallization,”Appl. Phys. Lett. 80, 488–91 (2001) 2.27. F. Boscherini, G. Capellini, L. Di Gaspare, F. Rosei, N. Motta and S. Mobilio, “Ge–Si Intermixing in Ge Quantum Dots on Si(001) and Si(111),”Appl. Phys. Lett. 76, 682–4 (2000) 2.28. G. Capellini, M. De Seta and F. Evangelisti, “SiGe Intermixing in Ge/Si(100) Islands,”Appl. Phys. Lett. 78, 303–5 (2001) 2.29. Z. M. Jiang, X. M. Jiang, W. R. Jiang, Q. J. Jia, W. L. Zheng and D. C. Qian, “Lattice Strains and Composition of Self-Organized Ge Dots Grown on Si(001),”Appl. Phys. Lett. 76, 3397–9 (2000) 2.30. T. Roch, “Structural Investigations on Self-Organized Si/SiGe Islands by Grazing Incidence Small Angle X-Ray Scattering,” Phys. Status Solidi b 224, 241 (2001) 2.31. C. Miesner, K. Brunner and G. Abstreiter, “Intra-Valence Band Photocurrent Measurements on Ge Quantum Dots in Si,” Thin Solid Films 380, 180–3 (2000) 2.32. T. Fromherz, E. Koppensteiner, M. Helm, G. Bauer, J. F. Nützel and G. Abstreiter, “Hole Energy Levels and Intersubband Absorption in Modulation-Doped Si/Si1-xGex Multiple Quantum Wells,” Phys. Rev. B 50, 15073-15085 (1994) 2.33. T. Fromherz, P. Kruck, M. Helm, G. Bauer, J. F. Nützel and G. Abstreiter, “Transverse Magnetic and Transverse Electric Polarized Inter-Subband Absorption and Photoconductivity in P-Type SiGe Quantum Wells,” Appl. Phys. Lett. 68, 3611–13 (1996) 2.34. P. Boucaud, V. Le Thanh, S. Sauvage, D. D´ebarre and D. Bouchier, “Intraband Absorption in Ge/Si Self-Assembled Quantum Dots,” Appl. Phys. Lett. 74, 401–3 (1999) 2.35. V. Rhyzii, “The Theory of Quantum-Dot Infrared Phototransistors,” Semicond. Sci. Technol. 11, 759-765 (1996) 2.36. C. Miesner, K. Brunner and G. Abstreiter, “Intra-Valence Band Photocurrent Measurements on Ge Quantum Dots in Si,” Thin Solid Films 380, 180–3 (2000) 2.37. C. Miesner, K. Brunner and G. Abstreiter, “Lateral Photodetectors with Ge Quantum Dots in Si,” Infrared Phys. Technol. 42, 461–5 (2001) 2.38. S.-W. Lee, K. Hirakawa and Y. Shimada, “Bound-to-Continuum Intersubband Photoconductivity of Self-Assembled InAs Quantum Dots in Modulation-Doped Heterostructures,” Appl. Phys. Lett. 75, 1428–30 (1999) 2.39. L. Chu, A. Zrenner, G. Böhm and G. Abstreiter, “Lateral Intersubband Photocurrent Spectroscopy on InAs/GaAs Quantum Dots,” Appl. Phys. Lett. 76, 1944–6 (2000) 2.40. T. I. Kamins, G. Medeiros-Ribeiro, D. A. A. Ohlberg and R. S. Williams, “Evolution of Ge Islands on Si(001) During Annealing,” J. Appl. Phys. 85, 1159-1171 (1999) 2.41. T. I. Kamins, D. A. A. Ohlberg, R. S. Williams, W. Zhang and S. Y. Chou, “Positioning of Self-Assembled, Single-Crystal, Germanium Islands by Silicon Nanoimprinting,” Appl. Phys. Lett. 74, 1773–5 (1999) 2.42. C. Lee and A.-L. Barabasi, “Spatial Ordering of Islands Grown on Patterned Surfaces,” Appl. Phys. Lett. 73, 2651–3 (1998) 2.43. Y. Homma, P. Finnie and T. Ogino, “Aligned Island Formation Using an Array of Step Bands and Holes on Si (111),” Appl. Phys. Lett. 74, 815–17 (1999) 2.44. G. Jin, J. L. Liu, S. G. Thomas, Y. H. Luo, K. L. Wang, B.-Y. Nguyen, “Controlled Arrangement of Self-Organized Ge Islands on Patterned Si (001) Substrates,” Appl. Phys. Lett. 75, 2752–4 (1999) 2.45. G. Jin, J. L. Liu and K. L. Wang, “Regimented Placement of Self-Assembled Ge Dots on Selectively Grown Si Mesas,” Appl. Phys. Lett. 76, 3591–3 (2000) 2.46. L. Vescan, “Lateral Ordering of Ge Islands Along Facets,” J. Cryst. Growth 194, 173–7 (1998) 2.47. T. S. Kuan and S. S. Iyer, “Strain Relaxation and Ordering in SiGe Layers Grown on (100), (111), and (110) Si Surfaces by Molecular-Beam Epitaxy,” Appl. Phys. Lett. 59, 2242-4 (1991) 2.48. Q. Xie, A. Madhukar, P. Chen and N. P. Kobayashi, “Vertically Self-Organized InAs Quantum Box Islands on GaAs (100),” Phys. Rev. Lett. 75, 2542–5 (1995) 2.49. J. Tersoff, C. Teichert and M. G. Lagally, “Self-Organization in Growth of Quantum Dot Superlattices,” Phys. Rev. Lett. 76, 1675–8 (1996) 2.50. G. Abstreiter, P. Schittenhelm, C. Engel, E. Silveira, A. Zrenner, D. Meertens and W. Jäger, “Growth and Characterization of Self-Assembled Ge-Rich Islands on Si,” Semicond. Sci. Technol.11, 1521–8 (1996) 2.51. V. Le Thanh, V. Yam, P. Boucaud, F. Fortuna, C. Ulysse, D. Bouchier, L. Vervoort and J.-M. Lourtioz, “Vertically Self-Organized Ge/Si(001) Quantum Dots in Multilayer Structures,” Phys. Rev. B 60, 5851–7 (1999) 2.52. O. G. Schmidt and K. Eberl, “Multiple Layers of Self-Asssembled Ge/Si Photoluminescence, Strain Fields, Material Interdiffusion, and Island Islands: Formation,” Phys. Rev. B 61, 13 721–9 (2000) 2.53. O. G. Schmidt, C. Lange and K. Eberl, “Photoluminescence Study of the Initial Stages of Island Formation for Ge Pyramids/Domes and Hut Clusters on Si (001),” Appl. Phys. Lett. 75, 1905–7 (1999) 2.54. O. Kienzle, F. Ernst, M. Rühle, O. G. Schmidt and K. Eberl, “Germanium "Quantum Dots" Embedded in silicon: Quantitative Study of Self-Alignment and Coarsening,” Appl. Phys. Lett. 74, 269–71 (1999) 2.55. G. Springholz, V. Hol´y, M. Pinczolits and G. Bauer, “Self-Organized Growth of Three- Dimensional Quantum-Dot Crystals with fcc-Like Stacking and a Tunable Lattice Constant,” Science 282, 734–7 (1998) 2.56. V. Hol´y, G. Springholz, M. Pinczolits and G. Bauer, “Strain Induced Vertical and Lateral Correlations in Quantum Dot Superlattices,” Phys. Rev. Lett. 83, 356–9 (1999) 2.57. V. Rhyzii, “The Theory of Quantum-Dot Infrared Phototransistors,” Semicond. Sci. Technol. 11, 759-765 (1996) 2.58. K. Brunner, J. Zhu, G. Abstreiter, O. Kienzle and F. Ernst, “Self-Ordering of Ge Islands on Si Substrates Mediated by Local Strain Fields,” Phys. Status Solidi b 224, 531–5 (2001) 2.59. O. L. Alerhand, D. Vanderbilt, R. D. Meade and J. D. Joannopoulos, “Spontaneous Formation of Stress Domains on Crystal Surfaces,” Phys. Rev. Lett. 61, 1973–6 (1988) 2.60. P. Zeppenfeld, M. Krzyzowski, Romainczyk, G. Comsa and M. G. Lagally, “Size Relation for Surface Systems with Long-Range Interactions,” Phys. Rev. Lett. 72, 2737–40 (1994) 2.61. V. A. Shchukin, N. N. Ledentsov, P. S. Kop’ev and D. Bimberg, “Spontaneous Ordering of Arrays of Coherent Strained Islands,” Phys. Rev. Lett. 75, 2968–71 (1995) 2.62. J. Zhu, K. Brunner and G. Abstreiter, “Two-Dimensional Ordering of Self-Assembled Ge Islands on Vicinal Si (001) Surfaces with Regular Ripples,” Appl. Phys. Lett. 73, 620–2 (1998) 2.63. B. S. Meyerson, K. J. Uram and F. K. LeGoues, “Cooperative Growth Phenomena in Silicon/Germanium Low-Temperature Epitaxy,” Appl. Phys. Lett. 53, 2555-2557 (1988) 2.64. T. Mattsson and H. Metiu, “Kinetic Monte Carlo Simulations of Nucleation on a Surface with Periodic Strain: Spatial Ordering and Island-Size Distribution,” Appl. Phys. Lett. 75, 926–8 (1999) Chapter 3 3.1. B. S. Meyerson, “UHV/CVD Growth of Si and Si:Ge Alloys: Chemistry, Physics, and Device Applications,” Proc. IEEE 80, 1592-1608 (1992). 3.2. A. Ishizaka and Y. Shiraki, “Low Temperature Surface Cleaning of Silicon and Its Application to Silicon MBE,” J. Electrochem. Soc. 133, 666-671 (1976). 3.3. S. K. Lee, Y. H. Ku, and D. L. Kwong, “Silicon Epitaxial Growth by Rapid Thermal Processing Chemical Vapor Deposition,” Appl. Phys. Lett. 54, 1775-1777 (1989). 3.4. A. D. Lambert, B. M. McGregor, R. J. H. Morris, C. P. Parry, D. P. Chu, G. A. Cooke, P. J. Phillips, T. E. Whall, and E. H. C. Parker, “Contamination Issues during Atomic Hydrogen Surfactant Mediated Si MBE,” Semicond. Sci. Technol. 14, L1-L4 (1999). 3.5. J. C. Chang, P. M. Mooney, F. Dacol, and J. O. Chu, “Measurements of Alloy Composition and Strain in Thin GexSi1–x Layers,” J. Appl. Phys. 75, 8098-8108 (1994). 3.6. O. G. Schmidt, C. Lange, and K. Eberl, “Photoluminescence Study of the Initial Stages of Island Formation for Ge Pyramids/Domes and Hut Clusters on Si (001),” Appl. Phys. Lett. 75, 1905-1907 (1999). Chapter 4 4.1. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H. L. Hartnagel, “Formation of Ordered Nanoscale Semiconductor Dots by Ion Sputtering,” Science 285, 1551-1553 (1999) 4.2. K. Kash, B. P. Van der Gaag, Derek D. Mahoney, A. S. Gozdz, L. T. Florez, J. P. Harbison, M. D. Sturge, “Observation of Quantum Confinement by Strain Gradients,” Phys. Rev. Lett. 67, 1326-1329 (1991) 4.3. H. Benisty, C. M. Sotomayor-Torrès, C. Weisbuch, “Intrinsic Mechanism for the Poor Luminescence Properties of Quantum-Box Systems,” Phys. Rev. B 44, 10945-10948 (1991) 4.4. T. Wang, A. Forchel, “Experimental and Theoretical Study of Strain-Induced AlGaAs/GaAs Quantum Dots Using a Self-Organized GaSb Island as a Stressor,” J. Appl. Phys. 86, 2001-2007 (1999) 4.5. U. Zeimer, F. Bugge, S. Gramlich, V. Smirnitski, M. Weyers, G. Tränkle, J. Grenzer, U. Pietsch, G. Cassabois, V. Emililiani, Ch. Lienau, “Evidence for Strain-Induced Lateral Carrier Confinement in InGaAs Quantum Wells by Low-Temperature Near-Field Spectroscopy,” Appl. Phys. Lett. 79, 1611-1613 (2001) 4.6. I-Hsing Tan, R. Mirin, V. Jayaraman, S. Shi,; E. Hu, J. Bowers, “Photoluminescence Study of Strain-Induced Quantum Well Dots by Wet-Etching Technique,” Appl. Phys. Lett. 61, 300-302 (1992) 4.7. C. W. Liu, L. J. Chen, In Encyclopedia of Nanoscience and Nanotechnology, Vol. 9 (Ed: H. S. Nalwa), American Scientific Publishers, Stevenson Ranch, CA, pp 775-792 (2004) 4.8. W. W. Wu, J. H. He, S. L. Cheng, S. W. Lee, L. J. Chen, “Self-Assembled NiSi Quantum-Dot Arrays on Epitaxial Si0.7Ge0.3 on (001) Si,” Appl. Phys. Lett. 83, 1836-1838 (2003) 4.9. S. W. Lee, L. J. Chen, P. S. Chen, M.-J. Tsai, C. W. Liu, T. Y. Chien, C. T. Chia, “Self-Assembled Nanorings in Si-Capped Ge Quantum Dots on (001) Si,” Appl. Phys. Lett. 83, 5283-5285 (2003) 4.10. M. Shikida, K. Sato, K. Tokoro, D. Uchikawa, “Comparison of Anisotropic Etching Properties between KOH and TMAH Solutions,” Proc. of IEEE Micro Electro Mechanical Systems, January 17, pp 315-320 (1999) 4.11. J. T. Borenstein, N. D. Gerrish, M. T. Currie, E. A. Fitzgerald, “A New Ultra-Hard Etch-Stop Layer for High Precision Micromachining,” Proc. of IEEE Micro Electro Mechanical Systems, January 17, pp 205-210 (1999) 4.12. K. Kash, J. M. Worlock, M. D. Sturge, P. Grabbe, J. P. Harbison, A. Scherer, P. S. D. Lin, “Strain-Induced Lateral Confinement of Excitons in GaAs-AlGaAs Quantum Well Microstructures,” Appl. Phys. Lett. 53, 782-784 (1988) 4.13. E. S. Kim, N. Usami, Y. Shiraki, “Anomalous Luminescence Peak Shift of SiGe/Si Quantum well Induced by Self-Assembled Ge Islands,” Appl. Phys. Lett. 70, 295-297 (1997) 4.14. H. Lipsanen, M. Sopanen, J. Ahopelto, “Luminescence from Excited States in Strain-Induced InxGa1-xAs Quantum Dots,” Phys. Rev. B 51, 13868-13871 (1995) 4.15. S. W. Lee, L. J. Chen, P. S. Chen, M. –J. Tsai, C. W. Liu, W. Y. Chen, T. M. Hsu, “Improved Growth of Ge Quantum Dots in Ge/Si Stacked Layers by Pre-Intermixing Treatments,” Appl. Surf. Sci. 224, 152-155 (2004) 4.16. V. Higgs, P. Kightley, P. J. Goodhew, P. D. Augustus, “Metal-Induced Dislocation Nucleation for Metastable SiGe/Si,” Appl. Phys. Lett. 59, 829-891 (1991) 4.17. S. Fukatsu, Y. Mera, M. Inou, K. Maeda, H. Akiyama, H. Sakaki, “Time-Resolved D-Band Luminescence in Strain-Relieved SiGe/Si,” Appl. Phys. Lett. 68, 1889-1891 (1996) 4.18. E. Hanamura, “Very Large Optical Nonlinearity of Semiconductor Microcrystallites,” Phys. Rev. B 37, 1273-1279 (1988) 4.19. G. W. Bryant, “Excitons in Quantum Boxes: Correlation Effects and Quantum Confinement,” Phys. Rev. B 37, 8763-8772 (1988) 4.20. Y. Wu, P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, 605-607 (2000) 4.21. Y. Maeda, “Visible Photoluminescence from Nanocrystallite Ge Embedded in a Glassy SiO2 Matrix: Evidence in Support of the Quantum-Confinement Mechanism,” Phys. Rev. B 51, 1658 (1995) 4.22. G. Gu, M. Burghard, G. T. Kim, G. S. Düsberg, P. W. Chiu, V. Krstic, S. Roth, W. Q. Han, “Growth and Electrical Transport of Germanium Nanowires,” J. Appl. Phys. 90, 5747 (2001) 4.23. J. R. Lakowicz, In Principles of Fluorescence Spectroscopy, 2nd edition, Kluwer, New York, (1999) 4.24. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franza, and F. Priolo, “Optical Gain in Silicon Nanocrystals,” Nature 408, 440-444 (2000) 4.25. M. A. Green, J. Zhao, A. Wang, P.J. Reece, and M. Gal, “Efficient Silicon Light-Emitting Diodes,” Nature 412, 805-808 (2001) 4.26. R. Zachai, K. Eberl, E. Abstreiter, E. Kasper, and H. Kibbel, “Photoluminescence in Short-Period Si/Ge Strained-Layer Superlattices,” Phys. Rev. Lett. 64, 1055-1058 (1990) Chapter 5 5.1. Hsi-Jen J. Yeh, John S. Smith, “Integration of GaAs Vertical-Cavity Surface Emitting Laser on Si by Substrate Removal,” Appl. Phys. Lett. 64, 1466-1468 (1994) 5.2. F. E. Ejeckam, C. L. Chua, Z. H. Zhu, Y. H. Lo, H. Hong, R. Bhat, “High-Performance InGaAs Photodetectors on Si and GaAs Substrates,” Appl. Phys. Lett. 67, 3936-3938 (1995) 5.3. K. K. Linder, J. Phillips, O. Qasaimeh, X. F. Liu, S. Krishna, P. Bhattacharya, J. C. Jiang, “Self-Organized In0.4Ga0.6As Quantum-Dot Lasers Grown on Si Substrates,” Appl. Phys. Lett. 74, 1355-1357 (1999) 5.4. B. Ullrich, A. Erlacher, “Rectification and Intrinsic Photocurrent of GaAs/Si Photodiodes Formed with Pulsed-Laser Deposition at 1064 nm,” Appl. Phys. Lett. 87, 151115 (2005) 5.5. J. S. Park, R. P. G. Karunasiri, K. L. Wang. “Observation of Large Stark Shift in GexSi1–x/Si Multiple Quantum Wells,” J. Vac. Sci. Technol. B 8, 217-220 (1990) 5.6. Y. Miyake, J. Y. Kim, Y. Shiraki, S. Fukatsu, “Absence of Stark Shift in Strained Si1 – xGex/Si Type-I Quantum Wells,” Appl. Phys. Lett. 68, 2097-2099 (1996) 5.7. Cheng Li, Qinqing Yang, Hongjie Wang, Hongzheng Wei, Jinzhong Yu, Qiming Wang, “Observation of Quantum-Confined Stark Shifts in SiGe/Si Type-I Multiple Quantum Wells,” J. Appl. Phys. 87, 8195-8197 (2000) 5.8. A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, V. V. Ulyanov, A. G. Milekhin, A. O. Govorov, S. Schulze, D. R. T. Zahn, “Stark Effect in Type-II Ge/Si Quantum Dots,” Phys. Rev. B 67, 125318 (2003) 5.9. A. Liu, R. Jones, L. Liao, Dean. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia, “A High-Speed Silicon Optical Modulator Based on a Metal−Oxide−Semiconductor Capacitor,” Nature 427, 615-618 (2004) 5.10. Q. Xu, B. Schmidt, S. Pradhan, M. Lipson, “Micrometre-Scale Silicon Electro-Optic Modulator,” Nature 435, 325-327 (2005) 5.11. Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, J. S. Harris, “Strong Quantum-Confined Stark Effect in Germanium Quantum-Well Structures on Silicon,” Nature 437, 1334-1336 (2005) 5.12. D. Krapf, B. Adoram, J. Shappir, A. Sa,ar, S. G. Thomas, J. L. Liu, K. L. Wang, “Infrared Multispectral Detection Using Si/SixGe1–x Quantum Well Infrared Photodetectors,” Appl. Phys. Lett. 78, 495-497 (2001) 5.13. S. Tong, J. L. Liu, J. Wan, K. L. Wang, “Normal-Incidence Ge Quantum-Dot Photodetectors at 1.5 µm Based on Si Substrate,” Appl. Phys. Lett. 80, 1189-1191 (2002) 5.14. C.W. Liu, L. J. Chen, In Encyclopedia of Nanoscience and Nanotechnology, Vol. 9 (Ed: H. S. Nalwa), American Scientific Publishers, Stevenson Ranch, CA, pp 775-792 (2004) 5.15. H. C. Chen, C. W. Wang, S. W. Lee, L. J. Chen, “Pyramid-Shaped Si/Ge Superlattice Quantum Dots with Enhanced Photoluminescence Properties,” Adv. Mater. 18, 367-370. (2006) 5.16. C. B. Li, R. W. Mao, Y. H. Zuo, L. Zhao, W. H. Shi, L. P. Luo, B. W. Cheng, J. Z. Yu, Q. M. Wang, “1.55 µm Ge Islands Resonant-Cavity-Enhanced Detector with High-Reflectivity Bottom Mirror,” Appl. Phys. Lett. 85, 2697-2699 (2004) 5.17. F. García-Santamaría, M. Ibisate, I. Rodríguez, F. Meseguer, C. López, “Photonic Band Engineering in Opals by Growth of Si/Ge Multilayer Shells,” Adv. Mater. 15, 788-792 (2003) 5.18. T. Hanrath, B. A. Korgel, “Supercritical Fluid-Liquid-Solid (SFLS) Synthesis of Si and Ge Nanowires Seeded by Colloidal Metal Nanocrystals,” Adv. Mater. 15, 437-440 (2003) 5.19. T. I. Kamins, X. Li, R. S. Williams, X. Liu, “Growth and Structure of Chemically Vapor Deposited Ge Nanowires on Si Substrates,” Nano Lett. 4, 503-506 (2004) 5.20. Douglas D. Cannon, Jifeng Liu, Yasuhiko Ishikawa, Kazumi Wada, David T. Danielson, Samerkhae Jongthammanurak, Jurgen Michel, Lionel C. Kimerling, “Tensile Strained Epitaxial Ge Films on Si(100) Substrates with Potential Application in L-Band Telecommunications,” Appl. Phys. Lett. 84, 906-908 (2004) 5.21. Jifeng Liu, Douglas D. Cannon, Kazumi Wada, Yasuhiko Ishikawa, Samerkhae Jongthammanurak, David T. Danielson, Jurgen Michel, Lionel C. Kimerling, “Tensile Strained Ge P-I-N Photodetectors on Si Platform for C and L Band Telecommunications,” Appl. Phys. Lett. 87, 011110 (2005) 5.22. M. Shikida, K. Sato, K. Tokoro, D. Uchikawa, “Comparison of Anisotropic Etching Properties Between KOH and TMAH Solutions,” Proc. of IEEE Micro Electro Mechanical Systems, January 17, pp 315-320 (1999) 5.23. J. T. Borenstein, N. D. Gerrish, M. T. Currie, E. A. Fitzgerald, “A New Ultra-Hard Etch-Stop Layer for High Precision Micromachining,” Proc. of IEEE Micro Electro Mechanical Systems, January 17, pp 205-210 (1999) 5.24. C. Teichert, M. G. Lagally, L. J. Peticolas, J. C. Bean, J. Tersoff, “Stress-Induced Self-Organization of Nanoscale Structures in SiGe/Si Multilayer Films,” Phys. Rev. B 53, 16334-16337 (1996) 5.25. C. E. A. Kirschhock, S. P. B. Kremer, P. J. Grobet, P. A. Jacobs, J. A. Martens, “New Evidence for Precursor Species in the Formation of MFI Zeolite in the Tetrapropylammonium Hydroxide-Tetraethyl Orthosilicate-Water System,” J. Phys. Chem. B 106, 4897-4900 (2002) 5.26. L. Q. Wang, G. J. Exarhos, “Study of Local Molecular Ordering in Layered Surfactant-Silicate Mesophase Composites,” J. Phys. Chem. B 107, 443-450 (2003) 5.27. J. M. Fedeyko, J. D. Rimer, R. F. Lobo, D. G. Vlachos, “Spontaneous Formation of Silica Nanoparticles in Basic Solutions of Small Tetraalkylammonium Cations,” J. Phys. Chem. B 108, 12271-12275 (2004) 5.28. P. J. Dean, J. R. Haynes, W. F. Flood, “New Radiative Recombination Processes Involving Neutral Donors and Acceptors in Silicon and Germanium,” Phys. Rev. 161, 711-729 (1967) 5.29. J. Weber, M. I. Alonso, “Near-Band-Gap Photoluminescence of Si-Ge alloys,” Phys. Rev. B 40, 5683-5693 (1989) 5.30. S. W. Lee, Y. L. Chueh, L. J. Chen, L. J. Chou, P. S. Chen, M. –J. Tsai, C. W. Liu, “Formation of SiCH6-Mediated Ge Quantum Dots with Strong Field Emission Properties by Ultrahigh Vacuum Chemical Vapor Deposition,” J. Appl. Phys. 98, 073506 (2005) 5.31. H. Míguez, E. Chomski, F. García-Santamaría, M. Ibisate, S. John, C. López, F. Meseguer, J. P. Mondia, G. A. Ozin, O. Toader, H. M. Van Driel, “Photonic Bandgap Engineering in Germanium Inverse Opals by Chemical Vapor Deposition,” Adv. Mater. 13, 1634-1637 (2001) 5.32. A. Blanco, E. Chomski, S. Grabtchak, M. Ibisate, S. John, S. W. Leonard, C. López, F. Meseguer, H. Míguez, J. P. Mondia, G. A. Ozin, O. Toader, H. M. Van Driel, “Large-Scale Synthesis of a Silicon Photonic Crystal with a Complete Three-Dimensional Bandgap near 1.5 Micrometres,” Nature 405, 437-440 (2000) 5.33. Z. Zhong, G. Katsaros, M. Stoffel, G. Costantini, K. Kern, O. G. Schmidt, N. Y. Jin-Phillipp, G. Bauer, “Periodic Pillar Structures by Si Etching of Multilayer GeSi/Si Islands,” Appl. Phys. Lett. 87, 263102 (2005) Chapter 6 6.1 S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, L. Zhuang, “Sub-10 nm Imprint Lithography and Applications,” J. Vac. Sci. Technol. B 15, 2897-2904 (1997) 6.2 Bimberg, D.; Grundmann, M.; Ledentsov, N. N. Quantum Dot Heterostructures 1998 (New York: Wiley). 6.3 O. G. Schmidt, K. Eberl, “Self-Assembled Ge/Si Dots for Faster Field-Effect Transistors,” IEEE Trans. El. Dev. 48, 1175-1179 (2001) 6.4 O. G. Schmidt, Ch. Deneke, Y. M. Manz, C. Müller, “Semiconductor Tubes, Rods and Rings of Nanometer and Micrometer Dimension,” Physica E 13, 969-973 (2002) 6.5 O. G. Schmidt, N.Y. Jin-Phillipp, “Free-Standing SiGe-Based Nanopipelines on Si (001) Substrates,” Appl. Phys. Lett. 78, 3310-3312 (2001) 6.6 O. G. Schmidt, K. Eberl, “Thin Solid Films Roll up Into Nanotubes,” Nature 410, 168 (2001) 6.7 V. Y. Prinz, D. Grutzmacher, A. Beyer, C. David, B. Ketterer, E. Deckardt, “A New Technique for Fabricating Three-Dimensional Micro- and Nanostructures of Various Shapes,” Nanotechnology 12, 399-408 (2001) 6.8 Ch. Deneke, C. Müller, N. Y. Jin-Phillipp, O. G. Schmidt, “Diameter Scalability of Rolled-up In(Ga)As/GaAs Nanotubes,” Semicond. Sci. Technol. 17, 1278-1281 (2002) 6.9 O. G. Schmidt, N. Schmarje, Ch. Deneke, C. Müller, N. Y. Jin-Phillipp, “Three-Dimensional Nano-objects Evolving from a Two-Dimensional Layer Technology,” Adv. Mater. 13, 756 (2001) 6.10 O. G. Schmidt, Ch. Deneke, N. Schmarje, C. Müller, N. Y. Jin-Phillipp, “Free-Standing Semiconductor Micro- and Nano-objects,” Mater. Sci. Eng. C 19, 393-396 (2002) 6.11 O. G. Schmidt, Ch. Deneke, S. Kiravittaya, R. Songmuang, H. Heidemeyer, Y. Nakamura, R. Zapf-Gottwick, C. Müller, N. Y. Jin-Phillipp, “Self-Assembled Nanoholes, Lateral Quantum-Dot Molecules, and Rolled-up Nanotubes,” IEEE. J. Quantum Electronics 8, 1025-1034 (2002) 6.12 L. J. Chen, J. W. Mayer, K. N. Tu, “Formation and Structure of Epitaxial NiSi2 and CoSi2 ,” Thin Solid Film 93, 135-141 (1982) 6.13 Ch. Deneke, N. Y. Jin-Phillipp, I. Loa, O. G. Schmidt, “Radial Superlattices and Single Nanoreactors,” Appl. Phys. Lett. 84, 4475-4477 (2004) 6.14 S. W. Lu, C. W. Nieh, L. J. Chen, “Epitaxial Growth of NiSi2 on Ion-Implanted Silicon at 250–280 °C,” Appl. Phys. Lett. 49, 1770-1772 (1986) 6.15 L. J. Chen, C. M. Donald, I. W. Wu, J. J. Chu, S. W. Lu, “Epitaxial Growth of NiSi2 on Ion-Implanted Silicon at 250–280 °C,” J. Appl. Phys. 62, 2789-2792 (1987) 6.16 K. Watanabe, T. Yamazaki, Y. Kikuchi, Y. Kotaka, M. Kawasaki, I. Hashimoto, M. Shiojiri, “Atomic-Resolution Incoherent High-Angle Annular Dark Field STEM Images of Si(011),” Phys. Rev. B 63, 085316 (2001) 6.17 S. C. Anderson, C. R. Birkeland, G. R. Anstis, D. J. H. Cockayne, “An Approach to Quantitative Compositional Profiling at Near-Atomic Resolution Using High-Angle Annular Dark Field Imaging,” Ultramicroscopy 69, 83-103 (1997) Chapter 7 7.1 M. C. Bost and J. E. Mahan, “Optical Properties of Semiconducting Iron Disilicide Thin Films,” J. Appl. Phys. 58, 2696-2703 (1985). 7.2 S. J. Clark, H. M. Al-Allak, S. Brand, and R. A. Abram, “Structure and Electronic Properties of FeSi2,” Phys. Rev. B 58, 10389-10393 (1998) 7.3 L. Miglio, V. Meregalli, and O. Jepsen, “Strain Dependent Gap Nature of Epitaxial β-FeSi2 in Silicon by First Principles Calculations,” Appl. Phys. Lett. 75, 385-387 (1999) 7.4 D. B. Migas and Leo Miglio, “Band-Gap Modifications of β-FeSi2 with Lattice Distortions Corresponding to the Epitaxial Relationships on Si(111),” Phys. Rev. B 62, 11063-11070 (2000) 7.5 K. Yamaguchi and K. Mizushima, “Luminescent FeSi2 Crystal Structures Induced by Heteroepitaxial Stress on Si (111),” Phys. Rev. Lett. 86, 6006-6009 (2001) 7.6 K. M. Geib, J. E. Mahan, R. G. Long, M. Nathan, andG. Bai, “Epitaxial Orientation and Morphology of β-FeSi2 on (001) Silicon,” J. Appl. Phys. 70, 1730-1736 (1991) 7.7 D. R. Peale, R. Haight, and J. Ott, “Heteroepitaxy of β-FeSi2 on Unstrained and Strained Si (100) Surfaces,” Appl. Phys. Lett. 62, 1402-1404 (1993) 7.8 S. Yu. Shiryaev, F. Jensen, J. W. Petersen, J. L. Hansen, and A. N. Larsen, “Low-Dimensional Structures Generated by Misfit Dislocations in the Bulk of Si1 – xGex/Si Heteroepitaxial Systems,” Appl. Phys. Lett. 71, 1972-1974 (1997) 7.9 I. Markov and S. Stoyanov, Contemporary Physics 28, 267 (1987) 7.10 S. Yu. Shiryaev, F. Jensen, J. W. Petersen, J. L. Hansen, and A. N. Larsen, “Dislocation Patterning and Nanostructure Engineering in Compositionally Graded Si1 − xGex/Si Layer Systems,” J. Crystal Growth 157, 132-136 (1995) 7.11 L. Miglio, V. Meregalli, “Theory of FeSi2 Direct Gap Semiconductor on Si(100),” J. Vac. Sci. Technol. B, 16, 1604-1609 (1998) 7.12 A. Hartmann, L. Vescan, C. Dieker, T. Stoica, and H. Luth, “Line-Shape Model for Broad Photoluminescence Band from Si1-xGex/Si Heterostructures,” Phys. Rev. B 48, 18276-18279 (1993) 7.13 T. Stoica, L. Vescan, and M. Goryll, “Electroluminescence of Strained SiGe/Si Selectively Grown above the Critical Thickness for Plastic Relaxation,” J. Appl. Phys. 83, 3367-3373 (1998) 7.14 S. Fukatsu, Y. Mera, M. Inoue, and K. Maeda, “Time-Resolved Dislocation-Related Luminescence in Strain-Relaxed SiGe/Si,” Thin Solid Films 294, 33-36 (1997) 7.15 J.-P. Noel, N. L. Rowell, D. C. Houghton, and D. D. Petrovic, “Intense Photoluminescence between 1.3 and 1.8 µm from Strained Si1–xGex Alloys,” Appl. Phys. Lett. 57, 1037-1039 (1990) 7.16 Y. Chen and J. Washburn, “Structural Transition in Large-Lattice-Mismatch Heteroepitaxy,” Phys. Rev. Lett. 77, 4046-4049 (1996) 7.17 D. S. L. Mui, D. Leonard, L. A. Coldren, and P. M. Petroff, “Surface Migration Induced Self-Aligned InAs Islands Grown by Molecular Beam Epitaxy,” Appl. Phys. Lett. 66, 1620-1622 (1995) 7.18 Y. H. Xie, S. B. Samavedam, M. Bulsara, T. A. Langdo, and E. A. Fitzgerald, “Relaxed Template for Fabricating Regularly Distributed Quantum Dot Arrays,” Appl. Phys. Lett. 71, 3567-3569 (1997) 7.19 S. Yu. Shiryaev, F. Jensen, J. L. Hansen, J. W. Petersen, and A. N. Larsen, “Nanoscale Structuring by Misfit Dislocations in Si1-xGex/Si Epitaxial Systems,” Phys. Rev. Lett. 78, 503-506 (1997) Chapter 8 8.1 Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks,” Science 294, 1313-1317 (2001). 8.2 Y. Wu, R. Fan, P. Yang, “Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires,” Nano. Lett. 2, 83-86 (2002). 8.3 A. I. Hochbaum, R. Fan, R. He, P. Yang, “Controlled Growth of Si Nanowire Arrays for Device Integration,” Nano. Lett. 5, 457-460 (2005). 8.4 R. He, D. Gao, R. Fan, A. I. Hochbaum, C. Carraro, R. Maboudian, P. Yang, “Si Nanowire Bridges in Microtrenches: Integration of Growth into Device Fabrication,” Adv. Mater. 17, 2098-2102 (2005). 8.5 Y. Cui, C. M. Lieber, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science 291,851-853 (2001) 8.6 Z. Zhong, D. Wang, Y. Cui, M. W. Bockrath, C. M. Lieber, “Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems,” Science 302, 1377-1379 (2003). 8.7 J.-F. Lin, J. P. Bird, Z. He, P. A. Bennett, D. J. Smith, “Signatures of Quantum Transport in Self-Assembled Epitaxial Nickel Silicide Nanowires,” Appl. Phys. Lett. 85, 281-283 (2004) 8.8 C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers, D. R. Evans, “Directed Growth of Nickel Silicide Nanowires,” Appl. Phys. Lett. 84, 1389-1391 (2004). 8.9 Y. L. Chueh, L. J. Chou, S. L. Cheng, L. J. Chen, C. J. Tsai, C. M. Hsu, S. C. Kung, “Synthesis and Characterization of Metallic TaSi2 Nanowires,” Appl. Phys. Lett. 87, 223113 (2005). 8.10 S. Y. Chen, L. J. Chen, “Nitride-Mediated Epitaxy of Self-Assembled NiSi2 Nanowires on (001) Si,” Appl. Phys. Lett. 87, 253111 (2005). 8.11 Y. Wu, J. Xiang, C. Yang, W. Lu, C. M. Lieber, “Single-Crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures,” Nature 430, 61-65 (2004). 8.12 J. M. Gibson, J. L. Batstone, R. T. Tung, F. C. Unterwald, “Origin of A- or B-type NiSii2 Determined by In Situ Transmission Electron Microscopy and Diffraction during Growth,” Phys. Rev. Lett. 60, 1158-1161 (1988). 8.13 M. W. Kleinschmit, M. Yeadon, J. M. Gibson, “Nucleation of Single-Crystal CoSi2 with Oxide-Mediated Epitaxy,” Appl. Phys. Lett. 75, 3288-3290 (1999) 8.14 T. Yokota, M. Murayama, J. M. Howe, “In Situ Transmission-Electron-Microscopy Investigation of Melting in Submicron Al-Si Alloy Particles under Electron-Beam Irradiation,” Phys. Rev. Lett. 91, 265504 (2003) 8.15 M. Tanaka, F. Chu. M. Shimojo, M. Takeguchi, K. Mitsuishi, K. Furuya, “Position- and Size-Controlled Fabrication of Iron Silicide Nanorods by Electron-Beam-Induced Deposition Using an Ultrahigh-Vacuum Transmission Electron Microscope,” Appl. Phys. Lett. 86, 183104 (2005) 8.16 S. Liang, R. Islam, D. J. Smith, P. A. Bennett, J. R. O’Brien, B. Taylor, “Magnetic Iron Silicide Nanowires on Si(110),” Appl. Phys. Lett. 88, 113111 (2006) 8.17 K. N. Tu, W. K. Chu, J. W. Mayer, “Structure and Growth Kinetics of Ni2Si on Silicon,” Thin Solid Film 25, 403-413 (1965) 8.18 G. Majni, M. Costato, F. Panini, “The Growth Processes of Thin Film Silicides in Si/Ni Planar Systems ,” Thin Solid Film 125, 71-78 (1985) 8.19 M. K. Datta, S. K. Pabi, B. S. Murty, “Thermal Stability of Nanocrystalline Ni Silicides Synthesized by Mechanical Alloying,” Mater. Sci. Eng. A 284,219-225 (2000) 8.20 K. N. Tu, “Analysis of Marker Motion in Thin-Film Silicide Formation,” J. Appl. Phys. 48, 3379-3382 (1977) Chapter 10 10.1 Lincoln J. Lauhon, Mark S. Gudiksen, Deli Wang, and Charles M. Lieber, “Epitaxial Core–Shell and Core–Multishell Nanowire Heterostructures,” Nature 420, 57-61 (2002) 10.2 Josh Goldberger, Allon I. Hochbaum, Rong Fan, and Peidong Yang, “Silicon Vertically Integrated Nanowire Field Effect Transistors,” Nano Lett. 6, 973-977 (2006) 10.3 Jiming Bao, Mariano A. Zimmler, and Federico Capasso, Xiaowei Wang, and Z. F. Ren, “Broadband ZnO Single-Nanowire Light-Emitting Diode,” Nano Lett. 6, (2006) 10.4 Kristian Mølhave, Sven Bjarke Gudnason, Anders Tegtmeier Pedersen, Casper Hyttel Clausen, Andy Horsewell, and Peter Bøggild, “Transmission Electron Microscopy Study of Individual Carbon Nanotube Breakdown Caused by Joule Heating in Air,” Nano Lett. 6, (2006) 10.5 B. C. Regan, S. Aloni, R. O. Ritchie, U. Dahmen, and A. Zettl, “Carbon Nanotubes as Nanoscale Mass Conveyors,” Nature, 428, 924-927 (2004) 10.6 J. Y. Huang, S. Chen, Z. F. Ren, G. Chen, and M. S. Dresselhaus, “Real-Time Observation of Tubule Formation from Amorphous Carbon Nanowires under High-Bias Joule Heating,” Nano Lett. 6, (2006)
|