(34.239.150.57) 您好!臺灣時間:2021/04/18 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張櫻靖
研究生(外文):Ying-Ching Chang
論文名稱:以有機金屬化學氣相沈積製備的二氧化鈦薄膜之電阻轉換特性研究
論文名稱(外文):Resistance switching characteristics of TiO2 films deposited by MOCVD
指導教授:吳泰伯
指導教授(外文):Tai-Bor Wu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:66
中文關鍵詞:二氧化鈦金屬化學氣相沈積電阻轉換氧氣燈絲
外文關鍵詞:TiO2MOCVDresistanceswitchingoxygenfilament
相關次數:
  • 被引用被引用:0
  • 點閱點閱:148
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
在白金底電極以金屬化學氣相沈積(MOCVD)製備的二氧化鈦薄膜呈現出良好的電阻轉換特性,因此可應用於非揮發性記憶體(NVM)的研究。此金屬-絕緣體-金屬(MIM)結構的上下電極皆使用白金,形成對稱電極。接著將薄膜以氮、氧氣氛作熱處理(rapid thermal Annealing,RTA),以研究其二氧化鈦薄膜的結構及成分對電性影響。另外,由於白金具有較佳的捕捉氧能力,有助於此電阻轉換機制的討論,因此在二氧化鈦薄膜中鍍製白金氧薄層,期望藉由高溫退火後,檢視其還原成的白金粒子對電性的影響。由電性量測的結果,高低阻態的穩定性與結晶性及氧化膜的計量比、氧化程度極相關。此結果也能輔助說明此過渡金屬氧化物(trasition metal oxides)的電阻轉換機制,當薄膜內含有一定程度的氧空缺和較純相的結晶,將具有穩定的電阻轉換表現。
Abstract
The TiO2 films for non-volatile memory applications were prepared on Pt bottom electrode by metal-organic chemical vapor deposition (MOCVD) method. The Pt top and bottom electrodes were made in symmetric metal-insulator-metal (MIM) structure. In order to investigate the relationships between TiO2 film structures and resistance switching behaviors, various temperatures of rapid thermal annealing under O2 and N2 atmosphere were performed. Additionally, according to the good characteristic of oxygen capture of Pt, the TiO2 films embedded with PtO thin layer was performed. The stability of high-resistance state (HRS) and low-resistance state (LRS) was dependent on the crystallinity and film composition of the TiO2 films. The results suggest that the electrical - induced resistance switching was dependent on the crystalline phases and oxygen vacancies in the TiO2 films, which affect the formation of filamentary path previously reported in binary transition metal oxide thin films exhibiting resistance switching characteristics.
Contents
Abstract I
Contents II
List of tables V
List of figures VI
Chapter 1. Introduction 1
Chapter 2. Literature review 3
2-1 Emerging non-volatile memories 3
2-1-1 FeRAM 3
2-1-2 MRAM 4
2-1-3 PCRAM 5
2-1-4 RRAM 5
2-1-5 Polymer memory 6
2-2 Mechanism of transition metal oxide (TMO) RRAM 6
2-2-1 Filamentary model 7
2-2-2 Schottky barrier and space-charged limited conduction (SCLC) 7
Chapter 3. Experimental procedures 13
3-1 M-I-M variable resistor fabrication 13
3-1-1 Process flow 13
3-1-2 Substrate preparation 14
3-1-3 TiO2 film deposition in MOCVD 14
3-1-4 TiO2 film embedded with PtO thin layer 15
3-1-5 Thermal treatments 15
3-1-6 Top electrode deposition 15
3-2 Property analysis 16
3-2-1 Film thickness and Ti valence states 16
3-2-2 Crystalline structure 16
3-3 Electrical characterization 17
Chapter 4. Results and discussion 20
4-1 Preliminary study of TiO2 films deposited by MOCVD 20
4-2 Characterization of as-deposited TiO2 films 21
4-2-1 Film thickness and composition 21
4-2-2 Crystalline structure 21
4-2-3 Electrical property 22
4-3 Effects of RTN treatment 22
4-3-1 Film thickness and composition 22
4-3-2 Crystalline structure 24
4-3-3 Electrical property 24
4-4 Effects of RTO treatment 25
4-4-1 Film thickness and composition 25
4-4-2 Crystalline structure 26
4-4-3 Electrical property 27
4-5 Effects of embedded PtO thin layer 29
4-5-1 Formation of Pt nanocrystals 29
4-5-2 Crystalline structure 29
4-5-3 Electrical property 29
Chapter 5. Conclusion 61
Chapter 6. Reference 63

List of tables
Table 3- 1 – Summary of deposition parameters. 18
Table 3- 2 -MOCVD temperature calibration. 18
Table 3- 3 – Summary of PtO deposition parameters. 19

Table 4- 1 - XPS Spectrum, Atomic Concentration Table. 31

List of figures
Fig. 2- 1 P-E characteristic curve. 9
Fig. 2- 2 Core storage is why the internal workspace of the computer is called "memory." Like magnetic disks, magnetic cores hold their content without power. 9
Fig. 2- 3 Change in magnetic polarity sensed as resistance change. 10
Fig. 2- 4 Electrical energy (heat) converts the material between crystalline 10
Fig. 2- 5 RRAM cross sectional structure. 11
Fig. 2- 6 Typical resistive switching I-V curves. 11
Fig. 2- 7 Change in resistance due to ionic transport with applied electric field. 12

Fig. 4- 1 I-V curves of the Ar/ O2:1/1 sample in voltage sweeping (0→+V) mode. 32
Fig. 4- 2 I-V curves of the Ar/ O2:2/3 sample in voltage sweeping (0→+V) mode. 32
Fig. 4- 3 I-V curves of the Ar/ O2:3/2 sample in voltage sweeping (0→+V) mode. 33
Fig. 4- 4 I-V curves of the sample in oxygen-free atmosphere in voltage sweeping (0→+V) mode. 33
Fig. 4- 5 I-V curves of the sample in oxygen-free atmosphere in voltage sweeping (0→+V) mode. 34
Fig. 4- 6 I-V curves of the sample in oxygen-free atmosphere in voltage sweeping (0→+V) mode. 34
Fig. 4- 7 I-V curves of the sample in oxygen-free atmosphere in voltage sweeping (0→+V) mode. 35
Fig. 4- 8 SEM cross sectional structure of as-deposited TiO2 films. 35
Fig. 4- 9 SEM plane view of as-deposited TiO2 films. 36
Fig. 4- 10 XPS spectra of the Ti2p region of as-deposited TiO2 films. 36
Fig. 4- 11 X-ray diffraction patterns of as-deposited TiO2 films. 37
Fig. 4- 12 Typical I-V curves of the as-deposited TiO2 films in voltage sweeping (0→+V) mode. 37
Fig. 4- 13 Dispersion in the set and reset voltage. 38
Fig. 4- 14 Resistance switching behavior of de-posited samples at room temperature against the cycling times. 38
Fig. 4- 15 Cross-sectional SEM of TiO2 after RTN 400℃, 30s. 39
Fig. 4- 16 Cross-sectional SEM of TiO2 after RTN 500℃, 30s. 39
Fig. 4- 17 Cross-sectional SEM of TiO2 after RTN 600℃, 30s. 40
Fig. 4- 18 Plane view of SEM after RTN400℃, 30s. 40
Fig. 4- 19 Plane view of SEM after RTN500℃, 30s. 41
Fig. 4- 20 Plane view of SEM after RTN500℃, 30s. 41
Fig. 4- 21 TEM cross sectional Pt/ Ti substrate of (a) RTN600℃, 30s (b) As-deposited. 42
Fig. 4- 22 XPS spectra of the Ti2p region of the TiO2 films after RTN500℃, 30s. 42
Fig. 4- 23 X-ray diffraction patterns of TiO2 films after RTN400℃, 500℃, 600℃, 30s, respectively, and compared with the pattern of the as-deposited sample. 43
Fig. 4- 24 I-V curves of the TiO2 films after RTN400℃,30s. 43
Fig. 4- 25 I-V curves (early stage) of the TiO2 films after RTN500℃,30s 44
Fig. 4- 26 I-V curves (late stage) of the TiO2 films after RTN500℃,30s. 44
Fig. 4- 27 I-V curves of the TiO2 films after RTN600℃,30s. 45
Fig. 4- 28 Dispersion in the set and reset voltage of RTN500℃, 30s. 45
Fig. 4- 29 Overlap number of Vset and Vreset values of samples under RTN500, 30s. 46
Fig. 4- 30 Dispersion in the set and reset voltage of RTN400℃, 30s. 46
Fig. 4- 31 Resistance switching behavior of TiO2 films after RTN500℃, 30s against cycling times at room temperature. 47
Fig. 4- 32 Resistance switching behavior of TiO2 films after RTN400℃, 30s against cycling times at room temperature. 47
Fig. 4- 33 Cross-sectional SEM of TiO2 after RTO 400℃, 3min. 48
Fig. 4- 34 Cross-sectional SEM of TiO2 after RTO 500℃, 3min. 48
Fig. 4- 35 Cross-sectional SEM of TiO2 after RTO 600℃, 3min. 49
Fig. 4- 36 XPS spectra of the Ti2p region of RTO400℃ TiO2 films. 49
Fig. 4- 37 XPS spectra of the Ti2p region of RTO500℃ TiO2 films. 50
Fig. 4- 38 XPS spectra of the Ti2p region of RTO600℃ TiO2 films. 50
Fig. 4- 39 X-ray diffraction patterns of TiO2 films after RTO400℃, 500℃, 600℃, 3min, respectively, and compared with the pattern of the as-deposited sample. 51
Fig. 4- 40 I-V curves of the TiO2 films after RTO400℃,3min, in voltage sweeping (0→+V) mode. 51
Fig. 4- 41 I-V curves of the TiO2 films after RTO500℃,3min, in voltage sweeping (0→+V) mode. 52
Fig. 4- 42 I-V curves of the TiO2 films after RTO600℃, 3min, in voltage sweeping (0→+V) mode. 52
Fig. 4- 43 Resistance switching behavior of TiO2 films after RTO600℃, 3min against cycling times measured at room temperature. 53
Fig. 4- 44 Dispersion in the set and reset voltage of RTO600℃, 3min. 53
Fig. 4- 45 Resistance switching behavior of TiO2 films after RTO500℃, 3min against cycling times measured at room temperature. 54
Fig. 4- 46 Dispersion in the set and reset voltage of RTO500℃, 3min. 54
Fig. 4- 47 Resistance switching behavior of TiO2 films after RTO400℃, 3min against cycling times measured at room temperature. 55
Fig. 4- 48 Dispersion in the set and reset voltage of RTO400℃, 3min. 55
Fig. 4- 49 Resistance comparison between RTO400℃, 500℃ and 600℃, 3 min, respectively. 56
Fig. 4- 50 Cross-sectional TEM structure of TiO2 films embedded with PtO ultra thin layer after MOCVD in-situ 425℃ annealing. 57
Fig. 4- 51 X-ray diffraction patterns of TiO2 films embedded PtO thin layer compared with the pattern of the as-deposited sample. 58
Fig. 4- 52 I-V curves (early stage) of the TiO2 films embedded with PtO thin layer, in voltage sweeping (0→+V) mode. 58
Fig. 4- 53 I-V curves (late stage) of the TiO2 films embedded with PtO thin layer, in voltage sweeping (0→+V) mode. 59
Fig. 4- 54 Resistance switching behavior of Pt-nanocrystals embedded TiO2 film against cycling times measured at room temperature. 59
Fig. 4- 55 Dispersion in the set and reset voltage of MOCVD in-situ annealing. 60
Chapter 6. Reference
[1] M.I.B. Bernardi, E.J.H. Lee, P.N. Lisboa-Filho, E.R. Leite, E. Longo, J.A Varela, Materials Research, Vol. 4, No. 3, 223-6 (2001).
[2] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, IEDM Tech. Dig., 587-590 (2005).
[3] B. J. Choi, D. S. Jeong, and S. K. Kim, J. Appl. Phys. 98, 033715 (2005).
[4] Christina Rohde, Byung Joon Choi, Doo Seok Jeong, Seol Choi, Jin-Shi Zhao, and Cheol Seong Hwang, Appl. Phys. Lett. 86, 262907 (2005).
[5] Byung Joon Choi, Seol Choi, Kyung Min Kim, Yong Cheol Shin, and Cheol Seong Hwang, Appl. Phys. Lett. 89, 012906 (2006).
[6] Young Ho Do, Koo Wong Jeong, Chae Ok Kim and Jin Pyo Hong, Journal of the Korean Physical Society, Vol. 48, No. 6 (2006).
[7] Masayuki Fujimoto and Hiroshi Koyama, Appl. Phys. Lett. 89, 223509 (2006).
[8] Chia-Hsun Tu and Dim-Lee Kwong, Appl. Phys. Lett. 89, 252107 (2006).
[9] Doo Seok Jeong, Byung Joon Choi and Cheol Seong Hwang, J. Appl. Phys. 100, 113724 (2006).
[10] I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park,
Tech. Dig. - Int. Electron Devices Meet. 587 (2004).
[11] R. Waser, Nanoelectronics and Information Technology (Wiley-VCH,
Weinheim), p. 527 (2003).
[12] I. G. Baek et al., Technical Digest—International Electron Devices Meeting, San Francisco, CA, 12–14 (2004).
[13] J. Rodriguez Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal, and N. A. Pertsev, Appl. Phys. Lett. vol. 83, pp. 4595-4597 (2003).
[14] D. Adler, M. S. Shur, M. Silver and S. R. Ovshinsky, J. Appl. Phys. 51, 3289 (1980).
[15] Piotr Piszczek, Monika Richert, Antoni Grodzicki, Ewa Talik, and Jan Heimann, Chem. Vap. Deposition, 399- 403 (2005).
[16] M. N. Kozicki, M. Mitkota, M. Park, M. Balakrishnan, and C. Gopalan,
Superlattices Microstruct. 34, 459 (2003).
[17] Y. C. Chen, C. F. Chen, C. T. Chen, J. Y. Yu, S. Wu, S. L. Lung, R. Liu,
and C. Y. Lu, Tech. Dig. - Int. Electron Devices Meet., 37.4.1 (2003).
[18] http://www.pcmag.com/encyclopedia_term/0,2542,t=FeRAM&i=
[19] http://en.wikipedia.org/wiki/RRAM
[20] D. R. Lamb and P. C. Rundle, Br. J. Appl. Phys. 18, 29-32 (1967).
[21] http://www.technologyreview.com/Infotech/12946/
[22] S. Q. Liu, N. J. Wu, and A. Ignatiev, Appl. Phys. Lett., Vol. 76, No. 19, (2000).
[23] Sheng T. Hsu and Tingkai Li, J. Appl. Phys. 101, 024517 (2007).
[24] 6J. F. Gibbons and W. E. Beadle, Solid-State Electron. 7, 785 (1964); W. R. Hiatt and T. W. Hickmott, Appl. Phys. Lett. 6, 106 (1965); T. W. Hickmott, J. Opt. Soc. Am. 6, 828( 1969); J. G. Simmons and R. R. Verderber, Proc. R. Soc. London, Ser. A 301, 77 (1967); I. Austin, Semiconductor Effects in Amorphous Solids (North Holland, Amsterdam, 1970), p. 477.
[25] Kyung Min Kim, Byung Joon Choi, Doo Seok Jeong, and Cheol Seong Hwang, Appl. Phys. Lett. 89, 162912 (2006).
[26] S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D.-S. Suh, Y. S. Joung, and I. K. Yoo, Appl. Phys. Lett., Vol. 85, No. 23, (2004).
[27] Vetrone, J.; Chung, Y-W. J. Vac. Sci. Technol. A, v.9, n. 6, p.3041-3047 (1991).
[28] M.I.B. Bernardi, E.J.H. Lee, P.N. Lisboa-Filho, E.R. Leite, Materials Research, Vol. 4, No. 3, 223-6 (2001).

[29] Heung Yong Ha, Suk Woo Nam, Tae Hoon Lim, In-Hwan Oh, Seong-Ahn Hong, Journal of Membrane Science 111, 81-92, (1996).
[30] Christina Rohde, Byung Joon Choi, Doo Seok Jeong, Seol Choi,
Jin-Shi Zhao, and Cheol Seong Hwang, Appl. Phys. Lett. 86, 262907 (2005).
[31] Soon Yong KWEON, Si Kyung CHOI, Seung Jin YEOM and Jae Sung ROH, Jpn. J. Appl. Phys. Vol. 40 (2001) Pt. 1, No. 10.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔