跳到主要內容

臺灣博碩士論文加值系統

(34.204.169.230) 您好!臺灣時間:2024/02/28 08:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈昌宏
研究生(外文):Chang-Hong Shen
論文名稱:三族氮化物低維次奈米材料之磊晶成長及物性分析
論文名稱(外文):Epitaxial Growth and Fundamental Properties of III-nitride Low-dimensional Nanomaterials
指導教授:果尚志
指導教授(外文):Shangjr Gwo
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
畢業學年度:95
語文別:英文
論文頁數:116
中文關鍵詞:電漿輔助式分子束磊晶三族氮化物氮化鋁氮化矽氮化鎵氮化銦
外文關鍵詞:Plasma-assisted molecular-beam epitaxyIII-nitridesAlNSi3N4GaNInN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:424
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:1
本論文中分子束磊晶成長方法被應用在三族氮化物的異質磊晶成長。在缺少三族氮化物基板的情況下,三族氮化物的成長方式通常是經由異質磊晶成長法。在眾多基板的選擇中,低價位且擁有高品質的矽基板是一個很好的選擇。本論文的重點將著重在在矽基板上以分子束磊晶法成長三維、一維及零維三族氮化物的異質磊晶成長技術。
在矽基板上成長三維度的氮化物薄膜方面,我們利用相稱的晶格匹配(commensurate lattice match)技術來解決矽基板與氮化物之間晶格不匹配的問題。利用此技術,我們成功的成長出單晶結構的氮化鋁/氮化矽(AlN/Si3N4)雙層緩衝層。並進一步的利用此雙層緩衝層成長高品質的氮化鎵、氮化銦鎵及氮化銦磊晶薄膜。
在零維度的三族氮化物量子點的成長方面,此論文提出以Stranski-Krastanow (S-K) 機制成長氮化銦量子點的實驗結果。藉著高能反射式高能電子繞射方法,我們可以即時的觀測到量子點成長時由二維成長轉換成三維成長的變化過程。而利用原子力顯微鏡我們可清楚的分析氮化銦量子點的尺寸大小及分佈情況。
在一維度的三族氮化物奈米柱的成長方面,我們提出利用分子束磊晶法成功的在矽基板上成長出氮化鎵、氮化銦鎵及氮化銦奈米柱的磊晶技術。以此技術成長出的三族氮化物有著單晶結構且自發性垂直成長的特性。此論文並深入的分析奈米柱的發光特性。氮化銦奈米柱在室溫下可清楚的量測到紅外光波段的光激發螢光,但若與氮化銦薄膜比較,其螢光強度反而比較弱,且在變溫的光激發光譜的量測上展現出異常的溫度效應。我們認為這樣異常的溫度行為表現是來自於晶格結構的失序及表面電子聚集的效應所造成。氮化鎵奈米柱的室溫螢光波段在紫外光區( 3.4 eV)。除了很微弱的黃色螢光外,並無觀測到任何缺陷造成的螢光,說明了氮化鎵奈米柱的高品質結構。
Plasma-assisted molecular-beam epitaxy (PA-MBE) is applied in this thesis work for III-nitride epitaxy. Due to lack of suitable substrates, III-nitride semiconductors are typically grown by heteroepitaxial growth. Low cost and excellent crystal quality Si wafer is a good choice as the substrate material for III-nitride epitaxy if the difficulty of lattice mismatch can be overcome. In this thesis, we demonstrate that III-nitride semiconductors can be heteroepitaxially grown as thin films as well as zero-, and one-dimensional structures on Si(111) substrates by PA-MBE.
For growing III-nitride epilayers on Si, we utilize the concept of commensurate lattice match (CLM) to overcome the problem of large lattice mismatch. It was found in our group that high quality III-nitride epilayers can be grown on Si(111) substrates using a commensurately matched AlN/Si3N4 double buffer layer structure. In this technique, a single crystal Si3N4 layer is used as a diffusion barrier to prevent intermixing and autodoping effects. And, the AlN layer, which is nearly lattice match with GaN and commensurate lattice matched with InN, is used as the second buffer layer. Based on this growth technique, InGaN epilayers covering the entire InGaN composition have also been grown on Si(111) substrates by PA-MBE.
For zero dimensional III-nitrides, we find that InN quantum dots (QDs) can be spontaneously formed on AlN and GaN surfaces by PA-MBE under the Stranski-Krastanow (S-K) mode. By using the technique of reflection high-energy electron diffraction (RHEED), we can observe the 2D-3D transition of S-K growth mode and the lattice constant varied can observe drastically at the 2D-3D transition point from AlN to InN lattice constant.
For one-dimensional III-nitrides, we demonstrate that vertically aligned InN, GaN and InGaN nanorods can be grown on Si(111) by plasma-assisted molecular-beam epitaxy. For the case of InN nanorods, near-infrared photoluminescence (PL) can be clearly observed at room temperature. However, in comparison to the InN epitaxial films, the PL efficiency is significantly lower. Moreover, the variable-temperature PL measurements of InN nanorods exhibit anomalous temperature effects. We propose that these unusual PL properties are results of considerable structural disorder and strong surface electron accumulation effect. For the case of GaN nanorods, room temperature (300 K) high-intensity PL peak is at the 3.4 eV near-bandedge transition without yellow defect emission. GaN free and donor bound exicton peaks can be clearly observed in low-temperature PL spectra, indicative of high crystal quality of GaN nanorods.
Contents
摘要
Abstract

Chapter 1 Introduction
1.1 Growth Mechanism of Heteroepitaxy System
1.2 One- and Zero-dimensional Nanostructures
1.3 Outline

Chapter 2 Epitaxial Growth and Optical Characterization Systems:
MBE, Photoluminescence, and Raman
2.1 Introduction
2.2 Molecular Beam Epitaxy (MBE)
2.3 Photoluminescence System
2.4 Raman System

Chapter 3 III-Nitride Semiconductor Epitaxial Films Grown by Plasma-assisted Molecular Beam Epitaxy (PA-MBE)
3.1 Introduction
3.2 Growth of Wurtzite GaN, InGaN, and InN Epitaxy Films on Si(111)
3.2.1 Growth Procedure of III-nitride Epilayers on Si(111)
3.2.2 Commensurate Heterojunctions of Si3N4/Si, AlN/Si and InN/AlN
3.2.3 The Effects of AlN/ Si3N4 Double Buffer Layers
3.3 Optical Measurements of InN Epilayers
3.4 Optical Properties of InGaN Alloy Epilayers
3.4.1 Sample Preparation and In Composition Determination
3.4.2 Room Temperature Luminescence Properties of InGaN Epilayers
3.4.3 Temperature-dependent Photoluminescence of InGaN Epilayers
3.4.4 Bowing Factor in InGaN Alloys

Chapter 4 Zero- and One-dimensional III-nitride Nanostructures Grown by PA-MBE System
4.1 Introduction
4.2 InN Quantum Dots Grown by PA-MBE System
4.2.1 Growth of InN Quantum Dots
4.2.2 In-plane Lattice Parameter Analysis Using RHEED
4.2.3 Size Distribution of InN Quantum Dots
4.2.4 InN Quantum Dots Grown on GaN/sapphire Template (MOCVD)
4.3 Vertically-Aligned InN Nanorods
4.3.1 Growth of InN Nanorods on Si(111) Substrates by PA-MBE
4.3.2 The Optimum Growth Condition of InN Nanorods
4.3.3 Structural Characterizations
4.3.3.1 SEM Investigation of Nanorods
4.3.3.2 X-ray Analysis
4.3.3.3 Raman Measurement
4.3.4 Unusual Photoluminescence Properties of InN Nanorods
4.4 Vertically-aligned GaN Nanorods
4.4.1 Growth Procedure of GaN Nanorods Grown on Si(111) by PA-MBE
4.4.2 Influence of Basic Growth Parameters of Nanorods
4.4.3 Optimum Growth Condition of GaN Nanorods Grown on Si3N4/Si(111)
4.4.4 Structural Characterizations Using X-ray Diffraction and Raman Spectroscopy
4.4.5 Luminescence Properties of GaN nanorods
4.4.5.1 High Emission Efficiency of GaN Nanorods
4.4.5.2 Defect-related Luminescence of GaN Nanorods
4.4.6 Polarity and Chemical Etching of GaN Nanorods

Chapter 5 Conclusion

References
[1-1] A. Trampert, and K. H. Ploog, Cryst. Res. Technol. 35, 793 (2000).
[1-2] S. Gwo, C.-L. Wu, C.-H. Shen, H.-W. Lin, H. Y. Chen, and H. Ahn, Proc. SPIE 6134, 61340L-1 (2006).
[1-3] A. Zur and T. C. McGill, J. Appl. Phys. 55, 378 (1984).
[1-4] S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, and J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004).
[1-5] H. Ahn, C.-L. Wu, S. Gwo, C. M. Wei, and Y. C. Chou, Phys. Rev. Lett. 86, 2818 (2001).
[1-6] C.-L. Wu, J.-L. Hsieh, H.-D. Hsueh, and S. Gwo, Phys. Rev. B 65, 045309 (2002).
[1-7] C.-L. Wu, J.-C. Wang, M.-H. Chan, T. T. Chen, and S. Gwo, Appl. Phys. Lett. 83, 4530 (2003).
[1-8] C.-L. Wu, C.-H. Shen, H.-W. Lee, H.-M. Lee, and S. Gwo, Appl. Phys. Lett. 87, 241916 (2005).
[1-9] A. P. Alivisatos, Science 217, 933(1996).
[1-10] J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. de Jongh, Nature 375, 767(1995).
[1-11] K. K. Likharev, and T. Klaeson, Sci. Am., 80 (1992).
[1-12] H. Sunamura, N. Usami, Y. Shiraki, and S. Fukatsu, Appl. Phys. Lett. 68, 13 (1996).
[1-13] G. Jin, Y. S. Tang, J. Liu, and K. L. Wang, Appl. Phys. Lett. 74, 2471 (1999).
[1-14] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Appl. Phys. Lett. 67, 1 868 (1995).
[1-15] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, Science 314, 290 (2000).
[1-16] A. N. Shipway, E. Katz, and I. Willner, ChemPhysChem 1, 18 (2000) .
[1-17] J. Phillips, J. Appl. Phys. 91, 4590 (2002).
[1-18] S. Coe, W. K. Woo, M. Bawendi, and V. Bulovic, Narture 420, 800 (2002).
[1-19] S. Tanaka, S. Iwai, and Y. Aoyagi, Appl. Phys. Lett. 69, 4096 (1996).
[1-20] X. Q. Shen, S. Tanaka, S. Iwai, and Y. Aoyagi, Appl. Phys. Lett. 72, 344 (1998).
[1-21] F. Widmann, B. Daudin, G. Feuillet, Y. Samson, J. L. Rouvière, and N. Pelekanos, J. Appl. Phys. 83, 7618 (1998).
[1-22] F. Widmann, J. Simon, B. Daudin, G. Feuillet, J. L. Rouvière, N. T. Pelekanos, and G. Fishman, Phys. Rev. B 58, R15989 (1998).
[1-23] Y. Xia. P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, Adv. Mater. 15, 353 (2003)
[1-24] K. W.Bagnal, The chemitry of Selenium, Tellurium, and Polonium, Elsevier, New York (1966).
[1-25] A. A. Kudryavtsev, The chemistry and Technology of Selenium and Tellurium, Collet’s, London 1 (1974).
[1-26] E. T. T. Jones, O. M. Chyan, and M. S. Wrighton, J. Am. Chem. Soc. 109, 5526 (1987).
[1-27] M. Walther, E. Kaplon, J. Christen, D. M. Hwang, and R. Bhat, Appl. Phys. Lett. 60, 521 (1992).
[1-28] G. Fasol, Science 280, 545 (1998).
[1-29] R. M. Penner, J. Phys. Chem. B106, 3339 (2002).
[1-30] C. R. Martin, Science 266, 1994 (1994).
[1-31] A. Despic, and V. P. Parkhutik, in Modern Aspects of Electrochemistry 20, Plenum Press, New York, Ch. 6. (1989)
[1-32] T. Gao, G. Meng, J. Zhang, S. Sun, L. Zhang, Appl. Phys. A 74, 403 (2002)
[1-33] H. Gao, Y. Xu, J. Hong, H. Liu, G. Yin, B. Li, C. Tie, Z. Xu, Adv. Mater. 13, 1393 (2001)
[1-34] Y. Wu, and P. Yang, Chem. Mater. I2, 605 (2000)
[1-35] C. C. Chen, and C. C. Yeh, Adv. Mater. I2, 738 (2000)
[1-36] J. Zhang, X. S. Peng, X. F. Wang, Y. W. Wang, and L. D. Zhang, Chem. Phys. Lett. 345, 372 (2001)
[1-37] Y. J. Chen, J. B. Li, Y. S. Han, X. Z. Yang, and J. H. Dai, J. Cryst. Growth 245, 163 (2002).
[1-38] M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto and K. Kishino, J. Cryst. Growth 189/190, 138 (1998)
[1-39] E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, Phys. Rev. B 62, 16 826 (2000).
[1-40] L.W. Tu, C. L. Hsiao, T. W. Chi, I. Lo and K. Y. Hsieh, Appl. Phys. Lett. 82, 1601 (2003).
[1-41] Y. S. Park, S. H. Lee, J. E. Oh and T. W. Kang, J. Cryst. Growth 282, 313 (2005).
[2-1] S. Perkowitz, Optical Characterization of Semiconductors: Infrared, Raman, and Photoluminescence Spectroscopy (Academic Press /London /c1993).
[2-2] J.R. Ferraro and K. Nakamoto, Introductory Raman Spectroscopy (Academic Press, 1994)
[3-1] A. Ohtani, K. S. Stevens, and R. Beresford, Appl. Phys. Lett. 65, 61 (1994); K. S. Stevens, A. Ohtani, and R. Beresford, J. Vac. Sci. Technol. B 12, 1186 (1994).
[3-2] M. Godlewski, J. P. Bergman, B. Monemar, U. Rossner, and A. Barski, Appl. Phys. Lett. 69, 2089 (1996).
[3-3] F. Semond, B. Damilano, S. Ve´zian, N. Grandjean, M. Leroux, and J. Massies, Appl. Phys. Lett. 75, 82 (1999).
[3-4] E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muńoz, S. I. Molina, A. M. Sánchez, F. J. Pacheco, and R. García, J. Cryst. Growth 201–202, 296 (1999).
[3-5] H. P. D. Schenk, G. D. Kipshidze, V. B. Lebedev, S. Shokhovets, R. Goldhahn, J. Kräußlich, A. Fissel, and Wo. Richter, J. Cryst. Growth 201/202, 359 (1999).
[3-6] Y. Nakada, I. Aksenov, and H. Okumura, Appl. Phys. Lett. 73, 827 (1998).
[3-7] N. Grandjean, J. Massies, M. Leroux, and P. Lorenzini, Appl. Phys. Lett. 72, 82 (1998).
[3-8] S. Guha and N. A. Bojarczuk, Appl. Phys. Lett. 72, 415 (1998).
[3-9] J. W. Yang, A. Lunev, G. Simin, A. Chitnis, M. Shatalov, M. Asif Khan, J. E. Van Nostrand, and R. Gaska, Appl. Phys. Lett. 76, 273 (2000).
[3-10] A. Dadgar, M. Poschenrieder, J. Bla¨sing, K. Fehse, A. Diez, and A. Krost, Appl. Phys. Lett. 80, 3670 (2002).
[3-11] K. S. Stevens, M. Kinniburgh, A. F. Schwartzman, A. Ohtani, and R. Beresford, Appl. Phys. Lett. 66, 3179 (1995).
[3-12] F. Semond, P. Lorenzini, N. Grandjean, and J. Massies, Appl. Phys. Lett. 78, 335 (2001).
[3-13] C.-L. Wu, J.-C. Wang, M.-H. Chan, T. T. Chen, and S. Gwo, Appl. Phys. Lett. 83, 4530 (2003).
[3-14] C.–L. Wu, Template-assisted Heterostructure of Group-III Nitride Epilayers and Nanocrystals on Silicon, PhD thesis, NTHU (2003).
[3-15] A. R. Smith, R. M. Feenstra, D. W. Greve, M.-S. Shin, M. Skowronski, J. Neugebauer, and J. E. Northrup, Appl. Phys. Lett. 72, 2114 (1998).
[3-16] A. Zur and T. C. McGill, J. Appl. Phys. 55, 378 (1984).
[3-17] H. Ahn, C.-L. Wu, S. Gwo, C. M. Wei, and Y. C. Chou, Phys. Rev. Lett. 86, 2818 (2001)
[3-18] C.-L. Wu, J.-L. Hsieh, H.-D. Hsueh, and S. Gwo, Phys. Rev. B 65, 045309 (2002).
[3-19] C.-L. Wu, C.-H. Shen, H.-W. Lin, H.-M. Lee, S. Gwo, Appl. Phys. Lett. 87, 241916 (2005).
[3-20] S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T.M. Hsu, J.-S. Wang, J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004).
[3-21] H. Lu, W.J. Schaff, J. Hwang, H. Wu, G. Koley, L.F. Eastman, Appl. Phys. Lett. 79, 1489 (2001).
[3-22] S.Z. Wang, S.F. Yoon, Y.X. Xia, S.W. Xie, J. Appl. Phys. 95, 7998 (2004).
[3-23] C.-L. Wu, C.-H. Shen, H.-Y. Chen, S.-J. Tsai, H.-W. Lin, H.-M. Lee, S. Gwo, T.-F. Chuang, H.-S. Chang, and T. M. Hsu, J. of Cryst. Growth 288, 247 (2006).
[3-24] B. Arnaudov, T. Paskova, P.P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W.J. Schaff, H. Amano, I. Akasaki, Phys. Rev. B 69, 115216 (2004).
[3-25] T. Araki, Y. Saito, T. Yamaguchi, M. Kurouchi, Y. Nanishi, H. Naoi, J. Vac. Sci. Technol. B 22, 2139 (2004).
[3-26] T. L. Tansley and C. P. Foley, J. Appl. Phys. 59, 3241 (1986).
[3-27] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmu¨ller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, R1 (2002).
[3-28] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, Phys. Status Solidi B 234, 787 (2002).
[3-29] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager II, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
[3-30] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, J. Appl. Phys. 94, 4457 (2003).
[3-31] K. Xu and A. Yoshikawa, Appl. Phys. Lett. 83, 251 (2003).
[3-32] R. Singh, R. J. Molnar, M. S. Ünlü, and T. D. Moustakas, Appl. Phys. Lett. 64, 336 (1994).
[3-33] A. G. Bhuiyan, A. Hashimoto, and A. Yamamoto, J. Appl. Phys. 94, 2779 (2003).
[3-34] V. Yu. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, and T. Inushima, Appl. Phys. Lett. 75, 3297 (1999).
[3-35] E. Kurimoto, M. Hangyo, H. Harima, M. Yoshimoto, T. Yamaguchi, T. Araki, Y. Nanishi, and K. Kisoda, Appl. Phys. Lett. 84, 212 (2004).
[3-36] T. Yodo, H. Yona, H. Ando, D. Nosei, and Y. Harada, Appl. Phys. Lett. 80, 968 (2002).
[3-37] Yong-Hoon Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 73, 1370(1998).
[3-38] P. G. Eliseev, P. Perlin, J. Lee, and M. Osiski. Appl. Phys. Lett. 71, 569 (1997).
[3-39] H. P. D. Schenk, M. Leroux, and P. de Mierry J. Appl. Phys. 88, 1525 (2000).
[3-40] Varshni Y P, Physica 34, 149 (1967).
[3-41] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, S. V. Ivanov, V. V. Vekshin, F. Bechstedt, J Furthmuller, H. Harima, A. V. Mudryi, A. Hashimoto, A. Yamamoto, J. Aderhold, J. Graul, and E. E. Haller, Phys. Stat. Solidi (b) 230, R4 (2002).
[3-42] H. Grille, Ch. Schnittler, and F. Bechstedt, Phys. Rev. B 61, 6091 (2000).
[3-43] Correia MR, Pereira S, Pereira E, Frandon J, Alves E, Appl. Phys. Lett. 83, 4761 (2003).
[3-44] V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, A. N. Smirnov, I. N. Goncharuk, A. V. Sakharov, D. A. Kurdyukov, M. V. Baidakova, V. A. Vekshin, S. V. Ivanov, J. Aderhold, J. Graul, A. Hashimoto, A. Yamamoto, Phys. Stat. Solidi (b) 240, 425 (2003).
[4-1] C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, and Y. F. Chen, Appl. Phys. Lett. 81, 22 (2002).
[4-2] Z. H. Lan, W. M. Wang, C. L. Sun, S C. Shi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen, Y. F. Chen, and L. C. Chen, J. Crystal Growth 269, 87 (2004).
[4-3] M. C. Johnson, C. J. Lee, E. D. Bourret-Courchesne, S. L. Konsek, S. Aloni, W. Q. Han, and A. Zettl, Appl. Phys. Lett. 85, 5670 (2004).
[4-4] L.-W. Yin, Y. Bando, D. Golberg, M.-S. Li, Adv. Mater. 16, 1833 (2004).
[4-5] S. Luo, W. Zhou, W. Wang, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, and S. Xie, Appl. Phys. Lett. 87, 063109 (2005).
[4-6] T. Stoica, R. Meijers, R. Calarco, T. Richter, and H. Lüth, J. Crystal Growth 290, 241 (2006).
[4-7] H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, Appl. Phys. Lett. 82, 1736 (2003).
[4-8] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004).
[4-9] H. Lu, W. J. Schaff, and L. F. Eastman, J. Appl. Phys. 96, 3577 (2004).
[4-10] O. Kryliouk, H. J. Park, H. T. Wang, B. S. Kang, T. J. Anderson, F. Ren, and S. J. Pearton, J. Vac. Sci. Technol. B 23, 1891 (2005).
[4-11] M. Yoshizawa, A. Kikuchi, N. Fujita, K. Kushi, H. Sasamoto and K. Kishino, J. Cryst. Growth 189/190, 138 (1998).
[4-12] E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, U. Jahn, and K. Ploog, Phys. Rev. B 62, 16826 (2000).
[4-13] L.W. Tu, C. L. Hsiao, T. W. Chi, I. Lo and K. Y. Hsieh, Appl. Phys. Lett. 82, 1601 (2003).
[4-14] Y. S. Park, S. H. Lee, J. E. Oh and T. W. Kang, J. Cryst. Growth 282, 313 (2005).
[4-15] B. Daudin, F. Widmann, G. Feuillet, Y. Samson, M. Arlery, J. L. Rouvière, Phys. Rev. B 56, R7069 (1997).
[4-16] B. Damilano, N. Grandjean, S. Dalmasso, J. Massies, Appl. Phys. Lett. 75, 3751 (1999).
[4-17] Q. Guo, O. Kato, A. Yoshida, J. Appl. Phys. 73, 7969 (1993).
[4-18] K. L. Westra, R. P. W. Lawson, M. J. Brett, J. Vac. Sci. Technol. A 6, 1730 (1988).
[4-19] C. Nörenberg, R.A. Oliver, M.G. Martin, L. Allers, M.R. Castell, G.A.D. Briggs, Phys. Stat. Sol. (a) 194, 536 (2002).
[4-20] Y. G. Cao, M. H. Xie, Y. Liu, Y. F. Ng, H. S. Wu, S. Y. Tong, Appl. Phys. Lett. 83, 5157 (2003).
[4-21] A. Yoshikawa, N. Hashimoto, N. Kikukawa, S. B. Che, Y. Ishitani, Appl. Phys. Lett. 86, 153115 (2005).
[4-22] C.-H. Shen , H.-W. Lin , H.-M. Lee , C.-L. Wu , J.-T. Hsu , and S. Gwo, Thin Solid Films 494, 79 (2006).
[4-23] S. Gwo, C.-L. Wu, C.-H. Shen, W.-H. Chang, T. M. Hsu, J.-S. Wang, J.-T. Hsu, Appl. Phys. Lett. 84, 3765 (2004).
[4-24] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, J. Graul, Phys. Stat. Sol. (b) 229 (2002) R1.
[4-25] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Graul, Phys. Status Solidi B 229, R1 (2002).
[4-26] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
[4-27] B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, Phys. Rev. B 69, 115216 (2004).
[4-28] A. A. Klochikhin, V. Yu. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, Phys. Rev. B 71, 195207 (2005).
[4-29] H. Ahn, C.-H. Shen, C.-L. Wu, and S. Gwo, Appl. Phys. Lett. 86, 201905 (2005).
[4-30] K. T. Tsen, C. Poweleit, D. K. Ferry, H. Lu, and W. J. Schaff, Appl. Phys. Lett. 86, 222103 (2005).
[4-31] S. K. O’Leary, B. E. Foutz, M. S. Shur, L. F. Eastman, Appl. Phys. Lett. 87, 222103 (2005).
[4-32] C.-Y. Chang, G.-C. Chi, W.-M. Wang, L.-C. Chen, K.-H. Chen, F. Ren, and S. J. Pearton, Appl. Phys. Lett. 87, 093112 (2005).
[4-33] C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, and Y. F. Chen, Appl. Phys. Lett. 81, 22 (2002).
[4-34] L.-W. Yin, Y. Bando, D. Golberg, M.-S. Li, Adv. Mater. 16, 1833 (2004).
[4-35] S. Luo, W. Zhou, W. Wang, Z. Zhang, L. Liu, X. Dou, J. Wang, X. Zhao, D. Liu, Y. Gao, L. Song, Y. Xiang, J. Zhou, and S. Xie, Appl. Phys. Lett. 87, 063109 (2005).
[4-36] Z. H. Lan, W. M. Wang, C. L. Sun, S C. Shi, C. W. Hsu, T. T. Chen, K. H. Chen, C. C. Chen, Y. F. Chen, and L. C. Chen, J. Crystal Growth 269, 87 (2004).
[4-37] M. C. Johnson, C. J. Lee, E. D. Bourret-Courchesne, S. L. Konsek, S. Aloni, W. Q. Han, and A. Zettl, Appl. Phys. Lett. 85, 5670 (2004).
[4-38] T. Stoica, R. Meijers, R. Calarco, T. Richter, and H. Lüth, J. Crystal Growth 290, 241 (2006).
[4-39] S.-C. Shi, C.-F. Chen, G.-M. Hsu, J.-S. Hwang, S. Chattopadhyay, Z.-H. Lan, K.-H. Chen, and L.-C. Chen, Appl. Phys. Lett. 87, 203103 (2005).
[4-40] C.-H. Shen, H.-Y. Chen, H.-W. Lin, C.-Y. Wu, S. Gwo, A. A. Klochikhin, and V. Yu. Davydov, submitted to Phys. Status Solidi.
[4-41] M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, Jpn. J. Appl. Phys. 36, L459 (1997).
[4-42] E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E. Muñoz, S. I. Molina, A. M. Sánchez, F. J. Pacheco, R, García, J. Crystal Growth 201, 296 (1999).
[4-43] C.-H. Shen, H.-Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin and V. Yu. Davydov, Appl. Phys. Lett. 88, 253104 (2006).
[4-44] H.-Y. Chen, C.-H. Shen, H.-W. Lin, C.-H. Chen, C.-Y. Wu, and S. Gwo, , Accepted to Thin Solid Film (2006).
[4-45] V. Yu. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, M. B. Smirnov, and T. Inushima,, Appl. Phys. Lett. 75, 3297 (1999).
[4-46] A. A. Klochikhin, V. Yu. Davydov, V. V. Emtsev, A. V. Sakharov, V. A. Kapitonov, B. A. Andreev, H. Lu, and W. J. Schaff, Phys. Rev. B 71, 195207(2005).
[4-47] H. Lu, W. J. Schaff, L. F. Eastman, and C. E. Stutz, Appl. Phys. Lett. 82, 1736 (2003).
[4-48] I. Mahboob, T. D. Veal, C. F. McConville, H. Lu, and W. J. Schaff, Phys. Rev. Lett. 92, 036804 (2004).
[4-49] H. Morkocü, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, J. Appl. Phys.,76, 1363 (1994).
[4-50] S. Nakamura, M. Senoh, N. Iwasa, Shin-ichi Nagahama, T. Yamada and T. Mukai, Jpn. J. Appl. Phys.34, L1332(1995).
[4-51] S. Nakamura, and G. Fasol, The Blue Laser Diode; Springer: New York (1997).
[4-52] Akihiko Kikuchi, Kouji Yamano, Makoto Tada, and Katsumi Kishino, Phys. Stat. Sol. (b) 241, 2754(2004).
[4-53] Y. H. Kim, J. Y. Lee, S.-H. Lee, J.-E. Oh, and H. S. Lee, Appl. Phys. A 80, 1635(2005).
[4-54] N. Grandjean, M. Leroux, M. Laügt, J. Massies: Appl. Phys. Lett. 71, 240 (1997).
[4-55] P. Perlin, C. Jauberthie-Carillon, J. P. Itie, A. S. Miguel, I. Grzegory, and A. Polian, Phys. Rev. B 45, 83 (1992).
[4-56] C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. W. Ager, E. Jones, Z. Liliental-Weber, M. Rubin, E. R. Weber, M. D. Bremser, and R. F. Davis, Phys. Rev. B 54, 17745 (1996).
[4-57] Y. S. Park, S.-H. Lee, J. E. Oh, C.-M. Park, and T. W. Kang, J. Crys. Growth 282, 313 (2005).
[4-58] Y. S. Park, C.-M. Park, D. J. Fu, T. W. Kang, and J. E. Oh, Appl. Phy. Lett. 85, 5718 (2004).
[4-59] M.A. Reshchikov, D. Huang, L. He, H. Morkoc, J. Jasinski, Z. Liliental-Weber, S.S. Park, and K.Y. Lee, Physica B 367, 35 (2005).
[4-60] M. Seelmann-Eggebert, J. L. Weyher, H. Obloh, H. Zimmermann, A. Rar, and S. Porowski, Appl. Phys. Lett. 71, 2635 (1997).
[4-61] J. L. Rouviere, J. L. Weyher, M. Seelmann-Eggebert, and S. Porowski, Appl. Phys. Lett. 73, 668 (1998).
[4-62] M. N. Hock, N. G. Weimann, and A. Chowdhury, J. Appl. Phys. 94, 650 (2003).
[4-63] J. L. Rouviere, J. L. Weyher, M. Seelmann-Eggebert, and S. Porowski, Appl. Phys. Lett. 73, 668 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊