跳到主要內容

臺灣博碩士論文加值系統

(44.192.38.248) 您好!臺灣時間:2022/11/26 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱陳琦
研究生(外文):Chen Chi Chiu
論文名稱:高功率寬頻磁旋行波放大器之理論研究
論文名稱(外文):Theoretic Investigation of Gyrotron Traveling Wave Tube Amplifier with High Power and Broad-Band Capabilities
指導教授:朱國瑞朱國瑞引用關係
指導教授(外文):Kwo Ray Chu
學位類別:博士
校院名稱:國立清華大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:70
中文關鍵詞:磁旋管磁旋行波放大器絕對不穩定飽和功率飽和增益頻寬
外文關鍵詞:GyrotronGyro-TWTAbsolute instabilitysaturated powersaturated gainbandwidth
相關次數:
  • 被引用被引用:0
  • 點閱點閱:870
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:1
High power and broad-band gyrotron traveling wave tube amplifier (gyro-TWT) was required for advanced radar applications, remote sensing, imaging, and space object identification in 92-94 GHz atmospheric window. As is well known, the operation of gyro-TWT was largely restricted by absolute instability which is a more serious problem to gyro-TWT than to conventional TWT, since gyro-TWT usually operates near the cut off frequency of the waveguide.

Beginning from the study of various absolute instabilities in a high-order, TE01 mode, distributed-loss gyro-TWT, a systematic optimization of the performance was then proposed under the zero-drive stable condition. This device is recently designed and currently in operation at UC Davis, which can be taken as an illustration of a guide to achieve high power and broad bandwidth. The optimization processes addressed here can be applied to other gyro-TWT design as well.

The development of W-band TE01 mode gyro-TWT is collaboration between NTHU and UC Davis groups. The experimental works are conducted in the United States, while the simulation works are supported by NTHU in Taiwan. The current status on the UC Davis experiments and the corresponding simulation works are reported.
High power and broad-band gyrotron traveling wave tube amplifier (gyro-TWT) was required for advanced radar applications, remote sensing, imaging, and space object identification in 92-94 GHz atmospheric window. As is well known, the operation of gyro-TWT was largely restricted by absolute instability which is a more serious problem to gyro-TWT than to conventional TWT, since gyro-TWT usually operates near the cut off frequency of the waveguide.

Beginning from the study of various absolute instabilities in a high-order, TE01 mode, distributed-loss gyro-TWT, a systematic optimization of the performance was then proposed under the zero-drive stable condition. This device is recently designed and currently in operation at UC Davis, which can be taken as an illustration of a guide to achieve high power and broad bandwidth. The optimization processes addressed here can be applied to other gyro-TWT design as well.

The development of W-band TE01 mode gyro-TWT is collaboration between NTHU and UC Davis groups. The experimental works are conducted in the United States, while the simulation works are supported by NTHU in Taiwan. The current status on the UC Davis experiments and the corresponding simulation works are reported.
Acknowledgements iii

Abstract iv

1. Introduction

1.1 Basic mechanism of Electron Cyclotron Maser 1
1.2 Histories and Development of the Gyrotron Traveling
Wave Tube Amplifier 4

2. Numerical Model

2.1 Particle Tracing Technique 8
2.2 Small Signal Theory 24

3. Absolute Instabilities in a High-Order-Mode Gyrotron Traveling-Wave Amplifier

3.1 Numerical Model and Operating Parameters 30
3.2 Characterization of Field Profiles 32
3.3 Parametric Dependence of Start Oscillation Current 33
3.4 A General Recipe for Achieving Zero-Drive Stability - Significance to the UCD Gyro-TWT Experiment 38

4. Systematic Optimization of TE01 High-Order-Mode Gyrotron Traveling-Wave Amplifier

4.1 Parametric Dependence of TE01 High-Order-Mode Gyrotron Traveling-Wave Amplifier 40

4.2 Systematic Optimization of TE01 High-Order-Mode Gyrotron Traveling-Wave Amplifier 46

5. Status on Current UC Davis W-Band 94 GHz Gyro-TWT Experiment

5.1 Experimental Setup 51
5.2 High Gradient Output Stabilization Coil Technique 56
5.3 Preliminary Results 59
5.4 Interpretation of Beam Tester Data 61
5.5 Next Generation Design 65

6. Conclusion 66

References 68
[1] K.R. Chu, Rev. Mod. Phys. 76(2), 489, 2004.

[2] P. Forman, Rev. Mod. Phys. 67, 397, 1995.

[3] W. C. Tsai, T. H. Chang, N.C. Chen, K.R. Chu, H.H. Song, and N.C. Luhmann, Jr., Phys. Rev. E, 70, 056402 (2004).

[4] K.R. Chu, H.Y. Chen, C.L. Hung, T.H. Chang, L.R. Barnett S.H. Chen, and T.T. Yang, Phys. Rev. Lett. 81, 4760 (1998).

[5] K. T. Nguyen, J. P. Calame, D. E. Pershing, B. G. Danly, M. Garven, B. Levush, and T. M. Antonsen, IEEE Trans. Plasma Sci. 48, 108 (2001).

[6] H. H. Song, D. B. McDermott, Y. Hirata, L. R. Barnett, C. W. Domier, H. L. Hsu, T. H. Chang, W. C. Tsai, K. R. Chu, and N. C. Luhmann, Jr., Phys. Plasmas 11, 2935 (2004).

[7] M. Garven, J. P. Calame, B. G. Danly, K. T. Nguyen, B. Levush, F. N. Wood, and D. E. Pershing, IEEE Trans. Plasma Sci. 30, 885 (2002)

[8] C. K. Chong, D. B. McDermott, and N. C. Luhmann, Jr., IEEE Trans. Plasma Sci. 26, 500 (1998).

[9] Q. S. Wang, D. B. McDermott, and N. C. Luhmann, Jr., Phys. Rev. Lett. 75, 4322 (1995).

[10] K. R. Chu, H. Guo, and V. L. Granatstein, Phys. Rev. Lett. 78, 4661 (1997).

[11] H. Guo, S. H. Chen, V. L. Granatstein, J. Rogers, G. S. Nusinovich, M. Waters, B. Levush, and W. J. Chen, Phys. Rev. Lett. 79, 515 (1997).

[12] J. Rodgers, H. Guo, G. S. Nusinovich, and V. L. Granatstein, IEEE Trans. Electron Devices 48, 2434 (2001).

[13] V. L. Bratman, A. W. Gross, G. G. Denisov, W. He, A. D. R. Phelps, K. Ronald, S. V. Samsonov, C. G. Whyte, and A. R. Young, Phys. Rev. Lett., vol. 84, pp. 2746–2749, (2000).

[14] K. R. Chu, IEEE Trans. Plasma Sci. 30, 903 (2002).

[15] L. A. Hoffman, K. H. Hurlbut, D. E. Kind, and H. J. Wintroub, IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 1145–1149, (1969).

[16] D. B. McDermott, H. H. Song, Y. Hirata et al., IEEE Trans. Plasma Sci. 30, 894 (2002).

[17] V. L. Granatstein, B. Levush, B. G. Danly, and R. K. Parker, IEEE Trans. Plasma Sci. 25, 1322 (1997).

[18] M. Blank, B. G. Danly, B. Levush et al., Phys. Plasmas 6, 4405 (1999).

[19] M. Blank, K. Felch, B. G. James et al., IEEE Trans. Plasma Sci. 30, 865 (2002).

[20] K. R. Chu, and Anthony T. Lin, IEEE Trans. Plasma Sci. 16, 90 (1988).

[21] G.. DOHLER, Int. J. Electron. 56, 617–627 (1984).

[22] G.. DOHLER, Int. J. Electron. 56, 629–640 (1984).

[23] C. S. Kou and Fouries Tseng, Phys. Plasmas 5 2454 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top