|
REFERENCES [1] R. Feynman, “There is plenty if room at the bottom,” Annual meeting of the American Physical Society at the California Institute of Technology (Caltech), 1959. [2] G. Binning, C. F. Quate, and C. Gerber, “Atomic force microscopy,” Physical Review Letters, vol. 56, pp. 930-933, 1986. [3] K. Sato, T. Yoshioka, T. Ando, M. Ahilida, and T. Kawabata, ”Tensile testing of silicon film having different crystallographic orientation carrier out on a silicon chip,” Sensor & Actuator A, vol. 70, pp. 148-152, 1998. [4] T. Yi, L. Lu, and C. J. Kim, ”Microscale material testing of single crystalline silicon: process effects on surface morphology and tensile strength,” Sensor and Actuator A, vol. 83, pp. 172-178, 2000. [5] W. Suwito, M. L. Dunn, S. J. Cunningham, and D. T. Read, “Elastic moduli, strength, and fracture initiation at sharp notches in etched single crystal silicon microstructures,” Journal Applied Physics, vol. 85, pp. 3519-3534, 1999 [6] M. A. Haque, and M. T. Saif, “Mechanical behavior of 30-50 nm thick aluminum films under uniaxial tension,” Scripta Materialia, vol. 47, pp. 863-867, 2002. [7] C. J. Wilson, and P. A. Beck, “Fracture testing of bulk silicon microcantilever beams subjected to a side load,” Journal Microelectromechanical System, vol. 5, no. 3, pp. 142-150, 1996. [8] T. Namazu, Y. Isono, and T. Tanaka, “Evaluation of size effect on mechanical properties of single crystal silicon by nanoscale bending test using AFM,” Journal of Microelectromechanical Systems, vol. 9, pp. 450-459, 2000. [9] S. Sundararajan, B. Bhushan, T. Namazu, and Y. Isono, “Mechanical property measurements of nanoscale structures using an atomic force microscope,” Ultramicroscopy, vol. 91, pp. 111-118, 2002. [10] S. E. Grillo, M. Ducarroir, M. Nadal, E. Tournié, and J. P. Faurie, “Nanoindentation of Si, GaP, GaAs and ZaSe single crystals,” Journal of Physics D: Applied Physics, vol. 36, pp. L5-L9, 2003. [11] J. A. Ruud, T. R. Jervis, and F. Spaepen, “Nanoindentation of Ag/Ni multilayer thin films,” Journal Applied Physics, vol. 75, pp.4969-4974, 1994. [12] K. E. Petersen, and C. R. Guanieri, “Young’s modulus measurements of thin films using micromechanics,” Journal Applied Physics, vol. 50, pp. 6761-6766, 1979. [13] X. Li, T. Ono, Y. Wang, and M. Esashi, “Ultrathin single-crystalline-silicon cantilever resonators: Fabrication technology and significant specimen size effect on Young’s modulus,” Applied Physics Letters, vol. 83, pp. 3081-3083, 2003. [14] M. D. Kluge, J. R. Ray, and A. Rahman, “Molecular dynamics calculation of elastic constants of silicon,” Journal of Chemical Physics, vol. 85, pp. 4028-4030, 1986. [15] F. H. Stillinger, and T. A. Weber, ”Dynamics of structure transition in liquids,” Physical Review A, vol. 28, pp. 2408-2416, 1983. [16] F. H. Stillinger, and T. A. Weber, ”Inherent pair correlation in simple liquids,” Journal of Chemical Physics, vol. 80, pp. 4434-4437, 1986. [17] F. H. Stillinger, and T. A. Weber, ”Computer simulation of local order in condensed phases of silicon,” Physical Review B, vol. 31, pp. 5262-5271, 1985. [18] R. Komanduri, N. Chandrasekaran, and L.M. Raff, “Molecular dynamics simulation of uniaxial tension at nanoscale of semiconductor materials for micro-electro-mechanical systems (MEMS) application,” Materials Science and Engineering A, vol. 34, pp.58-67, 2003. [19] J. Tersoff, “New empirical model for the structure properties of silicon,” Physical Review Letters, vol. 56, pp. 632-635, 1986. [20] J. Tersoff, “Empirical interatomic potential for silicon with improved elastic properties,” Physical Review B, vol. 38, pp. 9902-9905, 1988. [21] J. Tersoff, “New empirical approach for the structure and energy of covalent systems,” Physical Review B, vol. 37, pp. 6991-7000, 1988. [22] K. Yashiro, M. Oho, and Y. Tomita, “Ab initio study on the lattice instability of silicon and aluminum under [001] tension,” Computational Materials Science, vol. 29, pp. 397-406, 2004. [23] K. K. Mon, “Mechanical properties of model nanostructures,” Physical Review B, vol. 50, pp. 16718-16721, 1994. [24] I. L. Chang, “Simulation of mechanical behavior of nanomaterials by molecular statics,” Ph.D. Dissertation, Purdue University, 2004. [25] H. Zhang, “Mechanical behavior of nanomaterials: modeling and simulation,” Ph.D. Dissertation, Purdue University, 2004. [26] S. H. Park, J. S. Kim, J. H. Park, J. S. Lee, Y. K. Choi, and O. M. Kwon, “Molecular dynamics study on size-dependent elastic properties of silicon nanocantilevers,” Thin Solid Films, vol. 492, pp.285-289, 2005. [27] K. N. Chiang, C. A. Yuan, C. N. Han, and C. Y. Chou, “Mechanical characteristic of ssDNA/dsDNA molecule under external loading,” Applied Physics Letters, vol. 88, pp. 023902-1-023902-3, 2006. [28] Y. R. Jeng, and C. M. Tan, “Computer simulation of tension experiments of a thin film using an atomic model,” Physical Review B, vol. 65, pp.174107-1-174107-7, 2002. [29] S. Izumi, T. Kawakami, and S. Sakai, “Study of combined FEM-MD method,” JSME International Journal A, vol. 44, pp. 152-159, 2001. [30] B. Liu, H. Jiang, Y. Huang, S. Qu, M. F. Yu, and K. C. Hwang, “Atomic-scale finite element method in multiscale computation with applications to carbon nanotubes,” Physical Review B, vol. 72, pp.035435-1-035435-8, 2005. [31] G. M. Odegard, T. A. Gates, L. M. Nicholson, and K. E. Wise, “Equivalent-Continuum modeling of nano-structure materials,” Composites Science and Technology, vol. 62, no. 14, pp. 1869-1880, 2002. [32] H. C. Cheng, K. N. Chiang, and M. H. Lee, “An alternative local/global finite element approach or ball grid array type packages,” ASME Journal of Electronic Packaging, vol. 120, pp. 129-134, 1998. [33] K, N. Chiang and W. L. Chen, “Package reflow shapes prediction for solder mask defined ball grid array,” ASME Journal of Electronic Packaging, vol. 120, pp. 175-178, 1998. [34] C. T. Lin, and K. N. Chiang, “Investigation of nano-scale single crystal silicon using atomistic-continuum mechanics with Stillinger-Weber potential function,” IEEE conference on Emerging Technologies-Nanoelectronics: NanoSingapore 2006, pp. 5-9, Singapore, 10-13 Jan. 2006. [35] C. N. Han, C. Y. Chou, C. J. Wu, and K. N. Chiang, “Investigation of ssDNA Backbone Molecule Mechanical Behavior Using Atomistic-Continuum Mechanics Method,” 2006 NSTI Nanotechnology Conference and Trade Show, 7-11 May, Boston, 2006. [36] C. J. Wu, C. Y. Chou, C. N. Han, and K. N. Chiang, “Investigation of Carbon Nanotube Mechanical Properties Using The Atomistic-Continuum Mechanics Method,” 2006 NSTI Nanotechnology Conference and Trade Show, 7-11 May, Boston, 2006. [37] A. Y. T. Leung, X. Guo, X. Q. He, and S. Kitipornchai, “A continuum model for zigzag single-wall carbon nanotubes,” Applied Physics Letters, vol. 86, pp. 083110-1-083110-3, 2005. [38] P. Zhang, Y. Huang, P. H. Geubelle, P. A. Klein, and K. C. Hwang, ”The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials,” International Journal of Solid and Structure, vol. 39, pp. 3893-3906, 2002. [39] Y. L. Liu, “On equivalent continuum mechanics analysis for the material properties of carbon nanotube,” Master Thesis, National Tsing Hua University, Taiwan, 2004. [40] C. T. Sun, and H. Zhang, “Size-dependent elastic moduli of platelike nanomaterials,” Journal of Applied Physics, vol. 93, pp.1212-1218, 2003. [41] I. L. Chang, and J. C. Huang, “Size-dependent elastic moduli of nanofilm,” 2006 NSTI Nanotechnology Conference and Trade Show, 7-11 May, Boston, 2006. [42] J. G. Guo, and Y. P. Zhao, “The size-dependent elastic properties of nanofilms with surface effects,” Journal of Applied Physics, vol. 98, pp.074306-1-074306-11, 2005. [43] T. Chang, and H. Gao, “Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model,” Journal of the Mechanics and Physics of Solids, vol. 51, pp. 1059-1074, 2003. [44] K. N. Chiang, C. Y. Chou, C. J. Wu, and C. A. Yuan, “Prediction of the bulk elastic constant of metals using atomic-level single-lattice analytical method,” vol. 88, pp. 171904-1-171904-3, 2006. [45] C. L. Wu, “Investigation of carbon nanotudes mechanical properties using atomistic-continuum mechanics,” Master Thesis, National Tsing Hua University, Taiwan, 2006. [46] Marc Madou, Fundamentals of Microfabrication, CRC Press, USA, 1997. [47] M. Born and R. Oppenheimer, “Zur Quantentheorie der Molekeln” Ann. Phys. (Leipzig), vol. 84, pp.457-484, 1927. [48] H. R. Tabar, and G. A. Mansoori, “Interatomic potential models for nanostructures,” Encyclopedia of Nanoscience and Nanotechnology, vol.x, pp.1-17, 2003. [49] J. E. Lennard-Jones, “Forces between atoms and ions,” Proc. R. Soc. (Lond.) A, vol. 109, pp. 584, 1925. [50] P. M. Morse, “Diatomic molecules according to the wave mechanics II vibrational levels,” Physical Review, vol. 34, pp.57-64, 1929. [51] M. S. Daw, and M. I. Baskes, “Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals,” Physical Review B, vol. 29, pp.6443-6453, 1984. [52] D. W. Brenner, O. A. Shenderova, J. A. Harrison. S. J. Stuart, B. Ni, and S. B. Sinnott, “A second-feneration reactive empirical bond order (REBO) potential energy expression for hydrocarbons,” Journal of Physics: Condensed Matter, vol. 14, pp. 783-802, 2002. [53] W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, Jr. D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, “A second generation force filed for the simulation of proteins, nucleic, acids, and organic molecules,” Journal of American Chemical Society, vol. 117, pp. 5179-5197, 2995. [54] S. M. Foiles, M. I. Baskes, and M. S. Daw, “Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pb, Pt. and their alloys,” Physical Review B, vol. 33, pp.7983-7991, 1984. [55] L. A. Girifalco and V. G. Weizer, “Application of the Morse Potential Function to Cubic Metals,” Physical Review, Vol.114, No. 3, pp.687-690, 1959. [56] G. C. Abell, “Empirical chemical pseudopotential theory of molecular and metallic bonding,” Physical Review B, vol.31, pp.6184-6196, 1985. [57] E. Blaisten-Barojas, and D. Levesque, “Molecular-dynamics simulation of silicon clusters,” Physical Review B, vol.34, pp.3910-3916, 1986. [58] B. P. Feuston, R. K. Kalia and P. Vashishta, “Fragmentation of silicon microclusters: A molecular-dynamics study,” Physical Review B, vol.35, pp.6222-6239, 1987. [59] R. Osgood, III and W. A. Harrison, “Long-range forces and the moments method,” Physical Review B, vol.43, pp.14255-14256, 1991. [60] I. P. Batra, F. F. Abraham, and S. Ciraci, ”Molecular-dynamics study of self-interstitials in silicon,” Physical Review B, vol.35, pp.9552-9558, 1987. [61] M. Schneider, I. K. Schuller, and A. Rahman, “Exitaxial growth of silicon: A molecular-dynamics simulation,” Physical Review B, vol.36, pp.1340-1344, 1987. [62] D. Conrad, K. Scheerschmidt, and U. Gösele, “Molecular dynamics simulation of silicon wafer bonding,” Applied Physics A, vol. 62, pp.7-12, 1996. [63] Z. Q. Wang and D. Stroud, “Monte Carlo studies of liquid semiconductor surfaces: Si and Ge,” Physical Review B, vol.38, pp.1384-1391, 1988. [64] K. Ding, and H. C. Andersen, “Molecular dynamics simulation of amorphous germanium,” Physical Review B, vol.34, pp.6987-6991, 1986. [65] F. H. Stillinger, and T. A. Weber, ”Molecular dynamics simulation for chemically reactive substances. Fluorine,” Journal of Chemical Physics, vol. 88, pp. 5123-5133, 1988. [66] F. H. Stillinger, and T. A. Weber, ”Fluorination of the dimerized Si(100) surface studied by molecular-dynamics simulation,” Physical Review Letters, vol.62, pp.2144-2147, 1989. [67] J. Tersoff, “Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon,” Physical Review Letters, vol. 61, pp.2879-2882, 1988. [68] J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems,” Physical Review B, vol.39, pp.5566-5568, 1989. [69] Furio Ercolessi, “A molecular dynamics primer,” website: http://www.sissa.it/furio/. [70] W. Bolton, Engineering Materials Technology, Newnes, 1993. [71] D. S. Moore, Statistics: Concepts and Controversies, W. H. Freeman and Company, New York, 1985. [72] P. V. Sukhatme, and B. V. Sukhatme, Sampling theory of surveys with applications, Iowa State University Press, U.S.A., 1970. [73] R. D. Mason, D. A. Lind, and W. G. Marchal, Statistical techniques in business and economics, McGraw-Hill Companies, New York, 1999. [74] ANSYS 5.7 user manual, 2000. [75] L. H. Li, and J. E. Lowther, “Lattice relaxation at vacancy aggregates in diamond,” Physical Review B, vol. 53, pp. 11277-11280, 1996. [76] A. S. Barnard, and S. P. Russo, “Development of an improved Stillinger-Weber potential for tetrahedral carbon using an initio (Hartree-Fock and MP2) methods,” Molecular Physics, vol. 100, pp. 1517-1525, 2002. [77] E. Anastassakis, and M. Siakavellas, “Elastic properties of textured diamond and silicon,” Journal of Applied physics, vol. 90, pp. 144-152, 2001. [78] J. J. Wortman, and R. A. Evans, “Young’s modulus, shear modulus, and Poisson’s ratio on silicon and Germanium,” Journal of Applied Physics, vol. 36, pp. 153-156, 1965. [79] C. J. Wilson, A. Oremggi, and M. Narbutovskih, “Fracture testing of silicon microcantilever beams,” J. Appl. Phys., vol. 79, no. 5, p. 2386, 1996. [80] F. Pourahmadi, P. Barth, and K. Petersen, “Modeling of thermal and mechanical stresses in silicon microstructure,” Sensor and Actuator A, vol. 21-23, pp.850-855, 1990. [81] X. Li, T. Kasai, S. Nakao, T. Ando, M. Ahikida, K. Sato and H. Tanaka, “Anisoropy in fraacture of single crystal silicon film characterized under uniaxial tensile condition”, Sensor and Actuator A, Vol.117, pp. 143-150, 2005. [82] F. F. Meroni, and E. Mazza, “Fracture behaviour of single crystal silicon microstructures,” Microsystem Technologies, vol. 10, p.412-418, 2004. [83] S. Johansson, J. Schweitz, L. Tenerz, and T. Tiren, “Fracture testing of silicon microelements (in suit) in a scanning electron microscope,” J. Appl. Phys., vol. 63, pp.4799-4801, 1988. [84] F. Ericson, and J. Schweitz, “Micromechanical fracture strength of silicon,” J. Appl. Phys., vol. 68, pp.5840-5844, 1990. [85] A. M. Krivtsov, and N. F. Morozov, ”On mechanical characteristics of nanocrystals,” Physics of the solid state, vol. 44, no. 12, pp.2260-2265, 2002. [86] K. K. Mon, “Mechanical properties of model nanostructure,” Physical Review B, vol. 50, no. 22, pp. 16718-16721, 1994. [87] D. Holland, and M. Marder, “Cracks and atoms,” Advanced Materials, vol. 11, no. 10, pp793-806, 1999. [88] H. A. Wu, “Molecular dynamics study on mechanics of metal nanowire,” Mechanics Research Communications, vol. 33, pp. 9-16, 2006. [89] S. J. Clark and G.. J. Ackland, “Vibrational and elastic effect of point defects in silicon,” Physical Review B, vol. 48, pp. 10899-10908, 1993. [90] D. Maroudas and R. A. Brown, “Atomistic calculation of the self-interstitial diffusivity in silicon,” Applied Physics Letter, vol. 62, pp. 172-174, 1993. [91] T. Sinno, Z. K. Jiang, and R. A. Brown, “Atomistic simulation of point defects in the silicon at high temperature,” Applied Physics Letter, vol. 68, pp. 3028-3030, 1996. [92] Y. Mishin, M. R. Sorensen and A. F. Voter, “Calculation of point-defect in metals,” Philosophical Magazine A, vol. 81, pp. 2591-2612, 2001. [93] L. Nurminen, F. Tavazza, D. P. Landau, A. Kuronen, and K. Kaski, ”Comparative study of Si(001) durface structure and interatomic potentials in finite-temperature simulations,” Physical Review B, vol. 67, pp. 035405-1-035405-10, 2003. [94] H. Balamane, T. Halicioglu, and W. A. Tiller, “Comparative of silicon empirical interatomic potentials,” Physical Review B, vol. 46, pp. 2250-2279, 1992. [95] S. J. Cook, and P. Clancy, “Comparison of semi-empirical potential functions for silicon and germanium,” Physical Review B, vol. 47, pp. 7686-7699, 1993. [96] R. Komanduri, and L. M. Raff, “A review on the molecular dynamics simulation of maching at the atomic scale,” Proceedings of the Institution of Mechanical Engineers B, vol. 215, pp. 1639-1672, 2001. [97] G. Ackland, “Semiempirical model of covalent bonding in silicon,” Physical Review B, vol. 40, pp. 10351-10355, 1989. [98] D. Conrad, and K. Scheerschmidt, “Empirical bond-order potential for semiconductors,” Physical Review B, vol. 58, pp. 4538-4542, 1998. [99] S. Park, J. S. Lee, Y. K. Choi, S. S. Cho, and J. S. Kim, “Molecular dynamics simulation for size-dependent properties and various nanoscale phenomena,” International Journal of Precision Engineering and Manufacturing, vol. 5, pp. 28-35, 2004. [100] M. Menon, and D. Srivastava, “Nanomechanics of silicon nanowires,” Physical Review B, vol. 70, pp. 125313-1-125313-6, 2004. [101] X. Li, T. Kasai, S. Nakao, H. Tanaka, T. Ando, M. Shikida, and K. Sato, “Measurment for fracture toughness of single crystal silicon film with tensile test,” Sensor and Actuator A, vol. 119, pp. 229-235, 2005. [102] T. Kobayashi, J. Ohsawa, T. Hara, and N. Yamaguchi, “Cantactless measurement of Young’s modulus using laser beam excitation and detection of vibration of thin film microresonantors,” Japanese Journal of Applied Physics, vol. 43, pp. 1178-1182, 2004. [103] C. L. Allred, X. Yuan, M. Z. Bazant, and L. W. Hobbs, “Elastic constants of defects and amorphous silicon with the environment-dependent interatomic potential,” Physical Review B, vol. 70, pp. 134113-1-134113-13, 2004. [104] M. Sammalkorpi, A. Krasheninnikov, A. Kuronen, K. Nordlund, and K. Kaski, ”Mechancial properties of carbon nanotudes with vacancies and related defect,” Physical Review B, vol. 70, pp. 245416-1-2454163-8, 2004. [105] R. Komanduri, N. Chandrasekaran, and L. M. Raff, ”Molecular dynamics (MD) simulation of uniaxial tension of some single-crustal cubic metals at nanolevel,” International Journal of Mechanical Sciences, vol. 43, pp. 2237-2260, 2001. [106] C. S. Moura, and L. Amaral, “Molecular dynamics simulation of silicon nanostructure,” Nuclear Instruments and Methods in Physics Research B, vol. 228, pp. 37-40, 2005. [107] M. T. Yin, and M. L. Cohen, “Theory of static structural properties, crystal stability, and phase transformations: Application to Si and Ge,” Physical Review B, vol. 26, pp. 5668-5687, 1982. [108] T. Tsuchiya, M. Shikida, and K. Sato, “Tensile testing system for sub-micrometer thick film,” Sensor and Actuator A, vol. 97-98, pp. 492-496, 2002. [109] W. A. Brantley, “Calculated elastic constants for stress problems associated with semiconductor devices,” Journal of Applied Physics, vol. 44, pp. 534-535, 1973. [110] H. Liang, M. Upmanyu, and H. Huang, “Size-dependent elasticity of nanowire: nonlinear effects,” Physical Review B, vol. 71, pp. 241403-1-241403-4, 2005. [111] L. M. Zhang, D. Uttamchandani, and B. Culshaw, “Measurement of the mechanical properties of silicon microresonators,” Sensor and Actuator A, vol. 29, pp. 79-84, 1991. [112] T. Tsuchiya, “Tensile testing of silicon thin films,” Fatigue Fracture Engineering Material Structure, vol. 28, pp. 665-674, 2005. [113] Mary K. Campbell, Biochemistry, 3rd edition, Harcourt Asia Pte Ltd., p. 49, 2001. [114] H. Tanaka, S. Shimada, and N. Ikawa, “Brittle-ductile transition on monocrystalline silicon analysed bu molecular dynamics simulation,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 218, pp. 583-590, 2004. [115] Z. Tang, Y. Xu, G. Li, and N. R. Aluru, “Physical models for coupled electromechanical analysis of silicon nanoelectromechanical systems,” Journal of Applied Physics, vol. 97, pp 114304, 2005.
|