跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/18 11:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳威銘
研究生(外文):Wei-Ming Chen
論文名稱:可壓縮管流的理論與數值分析比較
論文名稱(外文):Numerical Analysis of Compressible Channel Flows and Comparison with Theoretical Prediction
指導教授:許文震許文震引用關係
指導教授(外文):Wen-Jenn Sheu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:92
中文關鍵詞:可壓縮流管流微流道
外文關鍵詞:compressible flowchannel flowmicrochannel flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:45
  • 收藏至我的研究室書目清單書目收藏:0
本文之研究乃是利用泛用型計算流體力學軟體STAR-CD作可壓縮管流的模擬,將其結果與一維假設下(Quasi-One-Dimensional Assumption)的可壓縮流理論做比較,藉此希望能對其物理真實現象做深入的了解,並提供日後在應用可壓縮流理論時,作為參考的依據。分析模型共分為低長寬比約13的直流道、L型、U型流道,並且探討截面漸縮效應,及高長寬比為1000的微直流道、U型微流道。模擬結果顯示,在低長寬比的漸縮流道中,摩擦效應可以忽略,且與理論不同的是,在真實流場中摩擦是會造成流體平均流速減少,而熱傳效應僅能使近壁面的流體加熱,截面均溫性甚差;L型及U型流道部分,由模擬結果顯示,在彎道入口時,流體會在外側形成最大壓力區,內側速度高於外側;反之當流體通過彎道後,外側的流速高於內側,溫度也較內側為低。此外,模擬結果亦可發現彎道會造成流體加速,於進出口前後壓差較漸縮流道為小的情況下,管道出口的馬赫數可以達到超音速流的狀態。在高長寬比微流道的模擬中可以發現真實流場與理論預測十分吻合,相同長度的彎管流場現象,溫度部分與直微流道近似,其餘結果也與理論相符合。藉此本研究可知,當流道為高長寬比的微流道時,可以使用理論來計算與預測流場現象,進而節省數值模擬所花費的時間。
The purposes of this study are to simulate compressible channel flows by a CFD commercial software (STAR-CD) and to compare the numerical results with those predicted by the conventional theory based on a quasi-one-dimensional assumption. We expect to obtain the real physical phenomena of channel flows encountered in practical applications. The physical models in the present study include the low-aspect-ratio channels (L/W=13), L-type and U-type channels with a converging effect on the cross sectional area, the high-aspect-ratio microchannels (L/W=1000) and U-type microchannels. Unlike the theory which shows a reduction in the average flow velocity by wall friction, the results reveal that the friction effect for low-aspect-ratio channels is negligible, the fluid is heated only near the wall and the temperature distribution is quite non-uniform across the cross section of channels. For the L-type and U-type channels, a high pressure region is formed at the entry in the outer region of the curved section and the flow velocity in the inner region is higher than that in the outer one. The behavior of flow after the curved section is reversed and the fluid temperature at the outer region is lower than the inner one. In addition, the simulation results also reveal that the fluid is accelerated in the curved section. The Mach number at the channel exit can reach a supersonic state if the pressure difference between the inlet and outlet is lower than that in a converging channel. It is also found that for high-aspect-ratio microchannels the numerical results are in good agreement with those according to the theoretical prediction. With an identical channel length, both the straight and the U-type microchannels have similar velocity and temperature fields. This fact indicates that, for high-aspect-ratio microchannels, one can simply utilize the theory based on a quasi-one-dimensional assumption to predict the phenomena of channel flows.
目錄
摘要......................................................I
Abstract ................................................II
誌謝....................................................III
目錄.....................................................IV
圖目錄...................................................VI
表目錄....................................................X
第一章 緒論...............................................1
1.1 前言..................................................1
1.2 文獻回顧..............................................2
1.3 研究動機..............................................7
第二章 理論分析...........................................9
2.1 可壓縮流..............................................9
2.1.1 可壓縮流場的定義....................................9
2.2 統御方程式...........................................10
2.2.1 流體面積變化效應...................................13
2.2.2 具有摩擦的絕熱管流.................................15
2.2.3 具有熱傳的管流.....................................19
2.2.4 具有熱傳及摩擦的漸縮管流...........................22
2.3 STAR-CD統御方程式....................................22
2.3.1 紊流模式...........................................24
第三章 數值方法..........................................27
3.1 Generalized Quasi-One-Dimensional Method.............27
3.2 STAR-CD數值方法......................................27
3.2.1 SIMPLE法...........................................28
3.2.2 邊界條件與初始條件.................................31
第四章 結果與討論........................................33
4.1 Generalized Quasi-One-Dimensional Flow理論結果.......33
4.2 STAR-CD數值結果......................................37
4.2.1 漸縮管流...........................................37
4.2.2 L型管流............................................39
4.2.3 U型管流............................................40
4.2.4 長型微流道.........................................42
第五章 結論..............................................44
參考文獻.................................................46

圖目錄
圖2-1 流體性質在可變面積導管中的變化 ....................49
圖2-2 使用控制體積來分析在等截面導管的摩擦流動 ..........49
圖2-3 使用控制體積來分析在可變面積導管的摩擦流動 ........50
圖2-4 使用控制體積來分析具熱傳無摩擦的等截面導管流動.....50
圖2-5 使用控制體積來分析具熱傳及摩擦的等截面導管流動.....51
圖2-6 使用控制體積來分析具熱傳且可變面積導管的流動.......51
圖2-7 使用控制體積來分析在具摩擦及熱傳的可變面積導管流動.52
圖3-1 漸縮流道的基本外型.................................52
圖3-2 主格點控制體積示意圖(z方向為出紙方向)[23]..........53
圖3-3(a) 三維漸縮管流道基本外型..........................53
圖3-3(b) 三維L型管流道基本外型...........................54
圖3-3(c) 三維U型管流道基本外型...........................54
圖4-1(a) 壓力沿著漸縮流道軸向分佈圖......................55
圖4-1(b) 速度沿著漸縮流道軸向分佈圖......................55
圖4-1(c) 溫度沿著漸縮流道軸向分佈圖......................56
圖4-1(d) 馬赫數沿著漸縮流道軸向分佈圖....................56
圖4-1(e) 密度沿著漸縮流道軸向分佈圖......................57
圖4-1(f) 具摩擦的絕熱漸縮流道隨著軸向距離其溫度與熵的關係
圖..............................................57
圖4-2(a) 壓力沿著等截面流道軸向分佈圖....................58
圖4-2(b) 速度沿著等截面流道軸向分佈圖....................58
圖4-2(c) 溫度沿著等截面流道軸向分佈圖....................59
圖4-2(d) 馬赫數沿著等截面流道軸向分佈圖..................59
圖4-2(e) 密度沿著等截面流道軸向分佈圖....................60
圖4-2(f) 具摩擦的等截面流道隨著軸向距離其溫度與熵的關係圖 ............................................... 60
圖4-3(a) 壓力沿著漸縮流道軸向分佈圖......................61
圖4-3(b) 速度沿著漸縮流道軸向分佈圖......................61
圖4-3(c) 溫度沿著漸縮流道軸向分佈圖......................62
圖4-3(d) 停滯溫度沿著漸縮流道軸向分佈圖..................62
圖4-3(e) 馬赫數沿著漸縮流道軸向分佈圖....................63
圖4-3(f) 密度沿著漸縮流道軸向分佈圖......................63
圖4-3(g) 隨著軸向距離其溫度與熵的關係圖..................64
圖4-4 漸縮流道外型圖及其尺寸.............................64
圖4-5(a) 壓力沿著漸縮流道軸向分佈圖......................65
圖4-5(b) 速度沿著漸縮流道軸向分佈圖......................65
圖4-5(c) 溫度沿著漸縮流道軸向分佈圖......................66
圖4-5(d) 馬赫數沿著漸縮流道軸向分佈圖....................66
圖4-5(e) 密度沿著漸縮流道軸向分佈圖......................67
圖4-6(a) 壓力沿著漸縮流道軸向分佈圖......................67
圖4-6(b) 速度沿著漸縮流道軸向分佈圖......................68
圖4-6(c) 溫度沿著漸縮流道軸向分佈圖......................68
圖4-6(d) 馬赫數沿著漸縮流道軸向分佈圖....................69
圖4-6(e) 密度沿著漸縮流道軸向分佈圖......................69
圖4-7 L型流道外型圖及其尺寸..............................70
圖4-8(a) L型流道靜壓力分佈圖.............................71
圖4-8(b) L型流道速度分佈圖...............................72
圖4-8(c) L型流道溫度分佈圖...............................73
圖4-8(d) L型流道馬赫數分佈圖.............................74
圖4-9(a) L型流道與L型加上漸縮流道的壓力分佈..............75
圖4-9(b) L型流道與L型加上漸縮流道的速度分佈..............76
圖4-9(c) L型流道與L型加上漸縮流道的溫度分佈..............77
圖4-9(d) L型流道與L型加上漸縮流道的馬赫數分佈............78
圖4-10 U型流道外型圖及其尺寸.............................79
圖4-11(a) U型流道壓力分佈圖..............................80
圖4-11(b) U型流道速度分佈圖..............................81
圖4-11(c) U型流道溫度分佈圖..............................82
圖4-11(d) U型流道馬赫數分佈圖............................83
圖4-11(a) U型流道與U型加上漸縮流道的壓力分佈.............84
圖4-11(b) U型流道與U型加上漸縮流道的速度分佈.............85
圖4-11(c) U型流道與U型加上漸縮流道的溫度分佈.............86
圖4-11(d) U型流道與U型加上漸縮流道的馬赫數分佈...........87
圖4-12(a) 壓力沿著微流道軸向分佈圖.......................88
圖4-12(b) 溫度沿著微流道軸向分佈圖.......................88
圖4-12(c) 速度沿著微流道軸向分佈圖.......................89
圖4-12(d) 馬赫數沿著微流道軸向分佈圖.....................89

表目錄
表1-1 凡諾流中由於摩擦而造成的流體性質改變之歸納表[2]....90
表1-2 瑞里流中由於熱傳效應而造成的流體性質改變之歸納表[2]91
表2-1 標準κ-ε紊流模式的係數一欄表[22] ...................92
[1] 依日光譯著,“熱管技術理論實務,”日本熱管技術協會編,
1986.

[2] R. W. Fox, and A. T. McDonald,“Introduction to Fluid
Mechanics,”8th Edition.

[3] P. Y. Wu and W. A. Little,“Measurement of friction
factor for the flow of gases in very fine channels used
for microminiature-Joule Thompson refrigerators,”
Cryognics, 23, 273-277, 1983.

[4] P. Y. Wu and W. A. Little,“Measurement of the heat
transfer characteristics of gas flow in fine channel
heat exchangers used for microminiature
refrigerators,”Cryognics, 24, 415-420, 1984.

[5] S. B. Choi,“Friction factors and heat transfer in
microtube,”Ph D thesis, Louisiana Tech University,
Louisiana, 1991.

[6] S. B. Choi, R. F. Barron and R. O. Warrington“Fluid
flow and heat transfer in microtubes,”ASME DSC
Symposium on Micro- mechanical Sensors, Actuator, and
Systems, 32, 123-134, 1991.

[7] D. Yu,“The Effect of The Prandtl Number in Micro Heat
Transfer ,”Ph D thesis, Louisiana Tech University,
Louisiana, 1994.

[8] E. B. Arkilic, K. S. Breuer and M. A. Schmdit“Gaseous
flow in microchannels,”ASME. FED. Application of
Microfabrication to Fluid Mechanics, 197, 57-66, 1994.

[9] E. B. Arkilic, M. A. Schmdit and K. S. Breuer“Gaseous
slip flow in long microchannels ,”IEEE Journal of
Microelectromechanical Systems, 6, 167-178, 1997.

[10] J. C. Harley, Y. Huand, H. Bau and J. N. Zemel“Gas
flow in microchannels,”Journal of Fluid Mechanics,
46, 257-274, 1995.

[11] H. P. Kavehpour, M. Faghri, and Y. Asako“Effects of
compressibility and rarefaction on gaseous flows in
microchannels,”Numerical Heat Transfer, Part A:
Applications, 32, 677-695, 1997.
[12] Z. Y. Guo and X. B. Wu“Compressibility effects on the
gas flow and heat transfer in a micro tube,”
International Journal of Heat and Mass Transfer, 40,
3251-3254, 1997.

[13] J. Dai, D. Xu, B. C. Khoo and K. Y. Lam“Navier-Stokes
simulations of gas flow in micro devices,”Journal of
Micromechanics and Microengineering, 10, 372-379, 2000.

[14] S. Roy and R. Raju“Modeling gas flow through
microchannels with and nanopores,”Journal of Applied
Physics, 93, 4870-4879, 2003.

[15] C. S. Chen, S. M. Lee and J. D. Sheu“Numerical
analysis of gas flow in micro-channels,”Numerical
Heat Transfer, Part A: Applications, 33, 7, 749-762,
1998.

[16] C. S. Chen and W. J. Kuo“Numerical study of
compressible turbulent flow in microtubes,”Numerical
Heat Transfer, Part A: Applications, 45, 85-99, 2004.

[17] C. S. Chen“Numerical method for predicting three-
dimensional steady compressible flow in long
microchannels,”Journal of Micromechanics and
Microengineering, 14, 7, 1091-1100, 2004.

[18] S. S. Hsieh, H. H. Tsai, C. Y. Lin, C. F. Huang and C.
M. Chien“Gas flow in long microchannels,”
International Journal of Heat and Mass Transfer, 47,
3877-3887, 2004.

[19] P. van Male, M. H. J. M. de Croon, R. M. Tiggelaar, A.
van den Berg and J. C. Schouten“Heat and mass
transfer in a square microchannel with asymmetric
heating,”International Journal of Heat and Mass
Transfer, 47, 87-89, 2004.

[20] V. Jain, C. X. Lin“Numerical modeling of three-
dimensional compressible gas flow in microchannnels,”
Journal of Micro- mechanics and Microengineering, 16,
2, 292-302, 2006.

[21] B. R. Munson, D. F. Young, T. H. Qkiishi“Fundamentals
of Fluid Mechanics,”4th Edition.
[22] Computational Fluid Dynamics Software, STAR-CD Version
3.2, Methodology.

[23] S. V. Patankar“Numerical Heat Transfer and Fluid
Flow,”
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top