跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉上弘
研究生(外文):Sang-Hung Yeh
論文名稱:DRAM晶片導線/介電層墊片結構之熱機械行為分析
論文名稱(外文):Thermal Mechanical Analysis of Metal/Dielectric Pad Structure in DRAM Chip
指導教授:陳文華陳文華引用關係鄭仙志
指導教授(外文):Wen-Hwa ChenHsien-Chie Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:122
中文關鍵詞:動態隨機存取記憶體電阻電容遲滯效應銅/低介電常數材料脫層打線接合熱循環測試
外文關鍵詞:DRAMRC delayCu/Low-kdelaminationwire bondingthermal cycling test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:225
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著電子產品高功能需求,電子構裝技術朝高密度、輕薄及微小化發展乃一必然趨勢。當製程微縮後,動態隨機存取記憶體(dynamic random access memory,DRAM)晶片中相對應之線路亦需縮小,導線與介電層間常因而產生電阻電容遲滯(RC delay)效應。一般常採用銅/低介電常數材料(Cu/Low-k)改善此問題,但也造成結構強度下降以及導線層與介電層之間黏著性不佳的問題,使得結構於製程中易發生脫層破壞(delamination)等問題,值得吾人深入研究。
本論文主要以ANSYS®有限單元套裝軟體分析DRAM晶片於打線接合(wire bonding)過程及熱循環測試(thermal cycling test)中,導線/介電層墊片(Pad)相關結構在溫度及機械負載下之熱機械行為。此研究分為兩部分:(1)首先針對X公司現有導線/介電層Pad結構,進行三維廣域-局部(global-local)有限單元分析,並對不同銅/低介電常數材料及幾何參數之影響深入評估;及(2)針對不同分布設計之導孔陣列(via array)結構,進行抵抗打線破壞能力之三維有限單元分析,進而探討其幾何寬度對結構強度之影響。
由分析結果顯示,X公司DRAM晶片導線/介電層Pad結構在選定之熱循環測試溫度效應及打線接合條件下尚無問題。在Cu/Low-k材料選擇上,則可考慮以氟矽玻璃(fluorinated silicate glass,FSG)做為Low-k材料。此外,經參數化分析,在熱循環測試溫度效應下,增加Via結構C2層厚度,將有助於Via結構應力的降低;另在打線負載下,增加Via結構C2層和M2層厚度,亦有降低Via結構應力效果。
至於對不同導孔陣列結構分析結果顯示,以插栓棋盤式在抵抗打線破壞能力上最好。而由其參數化分析,當Via結構C2層寬度為M1層金屬寬度的0.5倍,或C1層寬度為M1層金屬寬度的0.5到0.75倍,將有助於導孔陣列結構應力之降低。
本論文上述獲得之結果,將有助於對DRAM晶片疊層結構於打線接合過程及熱循環測試時熱機械行為之瞭解,而進一步參數化分析所獲得之結果,將可提供業者設計時之參考。
With the increase of need for high-function electronic devices such as DRAM chip, electronic devices are being pushed towards high density, lightweight and miniaturization. To attain the goal, a fine circuit rule and high speed device are generally required. As the line space and width of IC interconnect continue decreasing, the parasitic capacitance and resistance of devices would correspondingly increase and, unfortunately, result in the increase of RC delay. It can be however improved by using copper (Cu) metallization and low dielectric materials. However, in spite of the advantages of enhancing electrical performance, the Cu/Low-k layer results in softer mechanical response and weaker adhesion. This can cause interfacial delamination in the interconnect structure of DRAM chip. These problems of DRAM chip in this research work worth further study.
This work mainly discusses thermal-mechanical analysis of metal/dielectric pad structure in DRAM chip in the process of wire bonding and thermal cycling test with ANSYS® program. Firstly, the three-dimensional global-local finite element method is used to analyze metal/dielectric pad structure offered by X company, and to evaluate the effect of different low-k materials on stress in Cu/Low-k interconnect and different metal/dielectric layer thickness. Secondly, according to different layout design of via array structures, analyze how to improve the pad reliability in the process of wire bonding, and further analyze what the width of via array structure has influence on structure stress.
According to the results, the metal/dielectric pad structure in DRAM chip offered by X company does not have any thermal-mechanical trouble in the process of thermal cycling test and wire bonding. In Cu/Low-k interconnection, FSG is the better Low-k material to choose. Through parametric analysis, increasing C2 layer thickness contributes to decrease stress of via structure in the process of thermal cycling test. Increasing C2 and M2 layer thickness also contributes to decrease stress of via structure in the process of wire bonding.
Based on the analysis of layout design of via array structures, “plug-chessboard” via array structure is the better one to choose. Through parametric analysis of “plug-chessboard” via array structure, it is helpful to decrease stress when the width of metal material of C2 layer is 0.5 times of M1 layer, or metal material of C1 layer is 0.5 ~ 0.75 times of M1 layer.
The results achieved in this work can not only help us to understand the thermal-mechanical behavior of metal/dielectric pad structure in DRAM chip during thermal cycling test and wire bonding process, but also offer an initial design stage for electronic packaging industry.
摘要.....................................I
目錄.....................................V
表目錄.................................VII
圖目錄................................VIII
第一章、導論.............................1
第二章、熱循環測試 .......................4
第三章、打線接合技術.....................5
3.1 熱壓接合............................5
3.2 墊片接合強度量測實驗................6
第四章、導線/介電層墊片結構分析..........8
4.1 等效材料常數計算....................8
4.2 三維廣域-局部有限單元分析...........9
第五章、導孔陣列結構分析................12
5.1 導孔陣列結構設計...................12
5.2 三維有限單元分析...................13
第六章、結果與討論 ......................15
6.1 導線/介電層墊片結構................15
6.1.1 熱循環測試溫度效應...............15
6.1.2 打線接合.........................16
6.1.3 銅/低介電常數材料選擇............17
6.1.4 參數化分析.......................19
6.2 導孔陣列結構.......................21
6.2.1 拉力測試實驗驗證.................21
6.2.2 打線接合.........................22
6.2.3 參數化分析.......................23
第七章、結論與未來展望..................26
參考文獻................................30
[1] International Technology Roadmap for Semiconductors, SIA, 2003
[2] Akella, G.K., Wang, F., Xiaowu, Z., Ganesh, V.P., Lim, L.A., “Numerical analysis by 3D finite element wire bond simulation on Cu/low-K structures,” Proceedings of 7th Electronics Packaging Technology Conference, EPTC 2005, p 215-220, 2005
[3] Brunner, J.W., Keller, F., Pan, T., “Optimization of Wire Bonding over Cu-Low K Pad Stack,” Proceedings of SPIE - The International Society for Optical Engineering, v5288, 2003 International Symposium on Microelectronics, p136-140, 2003
[4] Cheng, H.C., Yu, C.Y., Chen, W.H., “An Effective Thermal-mechanical Modeling Methodology for Large-scale Area Array Typed Packages,” CMES, vol.7, No.1, pp.1-17, 2005
[5] Du, Y., Wang, G., Merrill, C., Ho, P.S., “Thermal Stress and Debonding in Cu/Low k Damascene Line Structures,” IEEE Electronic Components and Technology Conference, Proceedings. 52nd, 2002
[6] Degryse, D., Vandevelde, B., Beyne, E., “Mechanical FEM simulation of bonding process on Cu lowk wafers,” IEEE Transactions on Components and Packaging Technologies, vol. 27, no. 4, pp. 643–650, Dec. 2004
[7] Degryse, D., Vandevelde, B., Beyne, E., “Cu bonding to Cu low K wafers: a systematic study of the mechanical bonding process,” Thermal, Mechanical and Multi-Physics Simulation and Experiments in Micro-Electronics and Micro-Systems, p41- 48, 2005
[8] Harman, G.G., Cannon, C.A., “The microelectronic wire bond pulltest- how to use it, how to abuse it,” IEEE Trans. Compon., Hybrids,Manuf. Technol., vol.CHMT-1, no.3, p203–210, Sep. 1978.
[9] Harman, G.G., Johnson, C.E., “Wire Bonding to Advanced Copper, Low-K Intergrated Circuits, the Metal/Dielectric Stacks, and Materials Considerations,” IEEE Transactions on Components and Packaging Technologies, vol.25, No.4, December 2002
[10] Hess, K.J., Downey, S.H., Hall, G.B., Lee, T.M., Lei L., Miller, J.W., Ng, W.C., Wontor, D.G., “Reliability of bond over active pad structures for 0.13-μm CMOS technology,” Proceedings - Electronic Components and Technology Conference, p1344-1349, 2003
[11] Ker, M.D., Jiang, H.C., Chang, C.Y., “Design on the Low-Capacitance Bond Pad for High-Frequency IO Circuits in CMOS Technology,” IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 12, DECEMBER, 2001
[12] Ker, M.D., Peng, J.J., “Fully Process-Compatible Design on Bond Pad to Improve Wire Bond Reliability in CMOS ICs,” IEEE Transactions on Components and Packaging Technologies, vol.25, No.2, June 2002
[13] Kripesh, V., Sivakumar, M., Lim, L. A., Kumar, R., Iyer, M.K., “Wire bonding process impact on low-k dielectric material in damascene copper integrated circuits,” Electronic Components and Technology Conference, Proceedings. 52nd, 2002
[14] Li, H.Y., Su, Y.J., Tsang, C.F., Sohan, S.M., Bliznetsov, V., Zhang, L., “Process improvement of 0.13 lm CuLow K (Black DiamondTM) dual damascene interconnection,” Microelectronics Reliability, v45, p1134-1143, 2005
[15] Lin, X.W., Pramanik, D., “Future Interconnect Technologies and Copper Metallization,” Solid State Technology, p63-79, October, 1998
[16] Paik, J.M., Park, H., and Joo, Y. C., “Stress and Stress Voiding in Cu/Low-k Interconnets,” Journal of Semiconductor Technology and Science, vol.3, No.3 September, 2003.
[17] Yeh, C.L., Lai, Y.S, “Transient analysis of the impact stage of wirebonding on Cu low K wafers,” Microelectronics Reliability, v45, n2, p371-378, February, 2005
[18] Yeh, C.L., Lai, Y.S, “Comprehensive Dynamic Analysis of Wirebonding on Cu/Low-K Wafers,” IEEE Transactions on Advanced Packaging, 2006
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文