( 您好!臺灣時間:2022/12/04 10:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


論文名稱(外文):Simulation of the Impact Test of Aluminum Wheel
  • 被引用被引用:2
  • 點閱點閱:317
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來鋁合金輪圈在市場上的競爭日亦激烈,研發技術的提升為各大廠提昇產品競爭力之主要重點之一。由於電腦輔助工程(Computer Aided Engineering, CAE)分析軟體之發展逐漸成熟、以及電腦硬體功能之運算提升,有限單元法(Finite Element Analysis, FEM)逐漸被應用於鋁輪圈開發測試,成為縮短鋁合金輪圈設計和研發時程之重要工具。為此本研究希望藉由接觸及衝擊的基礎理論,利用電腦輔助工程及有限單元法,針對“鋁輪圈衝擊試驗”進行研究。
本研究中系根據廠商所提供電腦輔助設計(Computer Aided Design, CAD)圖檔,使用Pro/Engineer®進行實體模型的建立。於有限單元分析軟體ANSYS®中進行模型的網格化及分析前處理,並進行靜態組裝預應力求解。將組裝預力分析之結果匯入LS-DYNA®進行輪圈撞擊之分析。以此建立一快速之鋁合金輪圈衝擊測試分析方法,並將分析結果與實物撞擊試驗比對,驗証此分析方法之可靠性。最後,以輪圈輕量化為目標提供一適當的减重策略。
Recently, the market for aluminum wheels used on passenger cars has become more competitive in that manufacturers adopt new technology to increase the quality and efficiency of the production of aluminum wheels. As computer-aided engineering (CAE) technologies and computer efficiency evolve reliably, finite element analysis (FEM) has become widely employed to address engineering problems. FEM is a powerful tool for comprehending the reaction of the aluminum wheel during the standard test within a short period of time. Therefore, based on the contact and impact theories, FEM is carried out to perform the aluminum wheel impact test.
According to the computer-aided design (CAD) file provided by the manufacturer, this research utilizes the CAD software Pro/Engineer® to build a 3D solid model. The preprocessor setting and pretension loading from the model assembly are applied in the CAE software ANSYS®. Then the pretension result solved by ANSYS® is imported to the CAE software LS-DYNA® to continue the analysis of the impact test.
Overall, through the comparison between the simulation results and the experiment on aluminum observation, a fast and reliable method to analyze the wheel impact test is established. Furthermore, suggestions on weight reduction for wheels are also made in the thesis.

第一章 緒論
1.1 研究背景
1.2 開發流程
1.3 研究動機
1.4 文獻回顧
1.5 研究目標

第二章 基礎理論
2.1 接觸力學物理現象與有限單元計算理論
2.1.1 有限單元法基礎理論
2.1.2 接觸力學物理現象概述
2.1.3 數值計算之拉格朗日法
2.1.4 罰函數法
2.1.5 加強型拉格朗日法
2.2 高斯積分法
2.3 零能量模式
2.4 外顯式時間處理理論
2.5 內隱式時間處理理論

第三章 研究方法
3.1 顯式與隱式時間處理之比較
3.2 顯性有限單元法分析
3.3 有限單元分析模型及設定
3.3.1 鋁輪圈模型之建構
3.3.2 有限單元模型之建構
3.3.3 邊界條件與參數之設定
3.3.4 預力與接觸之設定
3.3.5 撞擊條件設定
3.4 輪圈減重分析

第四章 分析結果與討論
4.1 組裝應力分析結果討論
4.2 撞擊分析結果討論
4.2.1 時間增量
4.2.2 應力波的傳遞
4.2.3 單元應力
4.2.4 鋁合金輪圈變形
4.2.5 衝錘剛體運動
4.3 動能、位能與沙漏型能量分析討論
4.4 接觸力分析討論
4.5 減重分析結果與討論

第五章 結論與未來展望


SAE Handbook, Society of Automotive Engineers, Inc, vol. 4, pp. 31.01-31.09. , 1992.
J. R. Barber and M. Ciavarella, “Contact mechanics,” International Journal of Solids and Structures, vol. 37, pp. 29-43, 2000.
S. Faik, “Modeling of Impact Dynamics : A Literature Survey,” International ADAMS User Conference, pp. 1-11, Orlando, Florida, USA, 2000.
J. A. Zukas, H. F. Swift, L. B. Greszczuk and D. R. Curran, IMPACT DYNAMICS, John Wiley & Sons, Inc. pp. 1-27, 1982.
H. Hertz, Miscellaneous Papers, McMillan, London, 1896.
N. Kikuchi and J. T. Oden, Contact Problems in Elasticity : A Study of Variational Inequalities and Finite Element Methods, Philadelphia, pp. 19-30, 1988.
T. Belytschko, W. K. Liu and, B. Moran, Nonlinear finite elements for continua and structures, John Wiley & Sons Ltd, New York, pp. 569-613, 2000.
J. C. Simo and T. A. Laursen, “An augmented Lagrangian treatment of contact problems involving friction,” Computers & Structures, vol. 42, pp. 97-116, 1992.
Y. L. Hsu, M. S. Hsu, “Weight reduction of aluminum disc wheels under fatigue constraints using a sequential neural network approximation method,” Computer in Industry, vol. 46, pp. 167-179, 2001.
Y. L. Hsu, S.G. Wang, T. C. Liu, “Prediction of Fatigue Failures of Aluminum Disc Wheels Using the Failures Probability Contour Based on Historical Test Dada,” Journal of the Chinese Institute of Industrial Engineers, vol. 21, No.6, pp. 551-558, 2004.
J. Stearns, T. S. Srivatsan, A. Prakash, P. C. Lam, “Modeling the mechanical response of an aluminum alloy automotive rim,” Materials Science and Engineering ,vol. 366, pp. 262-268, 2004.
J. Stearns, T. S. Srivatsan, X. Gao, P. C. Lam, “Understanding the Influence of Pressure and Radial Loads on Stress and Displacement Response of a Rotating Body:The Automobile Wheel,” International Journal of Rotating Machinery , vol. 2006, Article ID 60193, pp. 1-8, 2006.
J. G. Kim, Y. K. Park, “Experimental Verification of Drop/Impact Simulation for a Cellular Phone,” Society for Experimental Mechanics, vol. 44, No.4, August, pp. 375-380, 2004.
D. Wang, G. Dong, J. Zhang and S. Huang, “Car Side Structure Crashworthiness in Pole and Moving Deformable Barrier Side Impacts,” Tsinghua Science And Technology, vol. 11, No.6, December, pp. 725-730, 2006.
P. O. Marklund and L. Nilsson, “Optimization of a car body component subjected to side impact,” Strut Multidisc Optim, vol. 21, pp. 383-392, 2001.
R. Hosseinzadeh, M. M. Shokrieh, and L. B. Lessard,“Parametric study of automotive composite bumper beams subjected to low-velocity impacts,” Composite Structures, vol. 68, pp. 419-427,2005.
W. Ren and J. Wang, “Assembly-Induced Stress and Its Effect on the Integrity of Assembly System in Drop Simulation,” 7th Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE, pp. 1-7, Milano, Italy, 2006.
T. Belytschko and M. O. Neal, “Contact-impact by the pinball algorithm with penalty and lagrangian methods,” International Journal for Numerical Methods in Engineering, vol. 31, pp. 547-572, 1991.
J. O. Hallquist, “LS-DYNA Theoretical Manual, v970,”Livermore Software Technology Corporation. California, 1998.
X. Y. Zhu and S. Cescotto, “Unified and Mixed Formulation of the 8-node Hexahedral Elements by Assumed Strain Method,” Comput. Methods Appl. Mech. Engrg., vol. 129, pp. 177-184, 1996.
D. P. Flanagan and T. Belyschko, “A Uniform Strain Hexahedron and Quadrilateral with Orthogonal Hourglass Control,” International Journal for Numerical Methods in Engineering, vol. 17, pp.679-706, 1981.
J. O. Hallquist, “LS-DYNA Keyword User Manual, v970,” Livermore Software Technology Corporation. California, 1998.
“ANSYS/LS-DYNA User’s Guide 10.0 ,” ANSYS, 2006.
J.G. Kaufman, Properties of Aluminum Alloys, The Aluminum Association, 2006.
C. C. Lee, K. N. Chiang, “Design and Analysis of Temperature Distribution for 2.0L Cylinder Head in Engine Operation,” The 20th National Conference on Mechanical Engineering, vol. 3, CSME, pp. 1189-1196, Dec. 5-6, 2003. Taipei, Taiwan.
T. Kagiwada and H. Harada, “3-Dimensional Analysis of Deformation of Disk Wheels and Transverse Force of Wheel Bolts,” JSME International Journal, Series A, vol. 48, No.4, pp. 251-255, 2005.
M. Zoroufi, A. Fatemi, A Comparative Study of Forged Steel (Cast Aluminum (A356-T6) And Cast Iron), Department of Mechanical, Industrial, and Manufacturing Engineering, The University of Toledo, March 2003.
CNS 國家標準法規(CNS 3668、CNS 3670、CNS 4678、CNS 4679、CNS 7135)。
第一頁 上一頁 下一頁 最後一頁 top