跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/05 20:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖崇維
研究生(外文):Chorng-Wei Liaw
論文名稱:提高電力轉換器效率之功率元件新結構設計及特性探討與改良
論文名稱(外文):New Structures and Improvements of Power Devices for Increasing Power Converter Efficiency
指導教授:林崇榮
指導教授(外文):Chrong Jung Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:122
中文關鍵詞:功率元件功率金氧半電晶體電源轉換馳返式轉換器降壓轉換器電磁干擾
外文關鍵詞:Power DevicePowerMOSPower ConversionFly-back converterBuck convereterEMI
相關次數:
  • 被引用被引用:0
  • 點閱點閱:394
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:1
地球溫室效應所造成的災難日趨明顯,綠色能源的開發已在全球如火如荼的展開。在新能源的開源進行之外,節流也能大大降低二氧化碳的排放量。提高電力轉換器效率及降低待機功率消耗是電力電子領域努力不懈的課題,而在這個課題上,半導體技術扮演著非常重要的角色。
本論文著重在提升整體電力轉換器效能下提出新型態的功率元件,利用對系統架構的了解進行功率元件架構的改良以達到節能的目的。本論文採用的元件架構以原製程技術作為基礎,只需要改變光罩設計就可以達成所需元件,可以直接應用在目前已成熟的製程架構中,而不需耗費長時間開發新的製程技術來達成新的元件特性要求,可以協助許多電源設計廠上通過目前的能源規範,也可以降低對能源的需求。
在本論文中,從交流市電轉成一般電器使用的低壓直流電是首先討論的課題;利用接面場效電晶體來提供電源啟動功能可以達到降低待機功率的效果。第二部份則對離散式功率金氧半電晶體作一製程的簡化。第三部份針對鋰離子電池的保護電路提出一新型態的功率金氧半電晶體。最後則對降壓型電力轉換器中電壓突波原理的分析提出一選擇功率金氧半電晶體的方式。藉由這些研究成果的結合,整體的電源轉換效率不論是在待機或是操作模式中都可被提升。
The disaster caused of greenhouse effects of the earth is becoming more obvious, the development of the green energy has been already in the whole world. Outside increasing income in new energy, reducing expenditure can reduce the emission of the carbon dioxide greatly too. Improve power converter efficiency and reduce stand-by power loss are the subjects that engineers are hard working to do. On this subject, the technology of the semiconductor is playing a very important role.
This dissertation focuses on the improving and creating of the power devices characteristics to increase whole power converter efficiency. Utilize knowledge of systematic structure to carry on the improvement of the power device structure in order to achieve the energy-conserving purpose. Based on the original technology, we won’t need to change any process step to complete the device design. We can only design the layout of the devices in the original processes; it is very great to apply the devices into the applications in a short time without long developing schedule of a new semiconductor process technology.
In the first part, a high voltage JFET is used to be a start-up device. With this device, the stand-by power dissipation can be reduced. In the second part, a trench termination is designed to simplify the process of a low voltage trench power MOSFET. Two solutions for improving the on-state resistance of trench power MOSFET in Li-ion battery protect are provided in the third part. By new cell structure and new device structure design, the on-state resistance can be reduced and the back side metal can also be removed. In the last part, the voltage spike of buck converter is discussed. Several designs of power MOSFET are used to verify the point.
Contents
Abstract- Chinese
Abstract- English
Acknowledgement
Contents
Figure Captions
Table Lists

Chapter 1 Introduction
1.1. Integrated power devices
1.2. Discrete power MOSFET
1.3. Outline of the dissertation

Chapter 2 High Voltage Devices Used for Power Start-up in AC-DC Converters
2.1. Introduction
2.2. Embedded JFET in VDMOS
2.2.1 System Topology of Dual Chips Solution
2.2.2 Device Structure
2.2.3 Experimental Results
2.3. Embedded JFET in LDMOS
2.3.1. System Topology of Monolithic Chip Solution
2.3.2. Device Structure
2.3.3. Experimental Results
2.4. Summary

Chapter 3 Trench Termination Design in Low Voltage Power MOSFET
3.1. Introduction
3.2. Termination Structure and Simulation
3.3. Experimental Results and discussion
3.4. Summary

Chapter 4 Novel Trench Power MOSFET Design in Li-Ion Battery Protection
4.1 Introduction
4.2. Novel trench cell structure
4.2.1. Cell structure
4.2.2. Experimental results
4.3. Novel device structure
4.3.1. Device structure
4.3.2. Experimental results
4.4. Summary

Chapter 5 Analysis of Phase Voltage Spike in Buck Converter with Different Voltage Rating Trench Power MOSFETs
5.1. Introduction
5.2. Device structure and device/circuit simulation
5.3. Experimental results and discussion
5.4. Summary

Chapter 6 Conclusions

Chapter 7 Perspectives

References
[1.1] B. J. Baliga, Power Semiconductor Devices. Boston, MA: PWS, 1995.
[1.2] B. Jayant Baliga, “Trends in Power Semiconductor Devices”, IEEE. Trans.
Electron Device, vol. 43, pp.1717-1731, 1996
[1.3] R. K. Williams, “ Technology Convengence as a Driver of Future Low-Voltage Power Management Semiconductors”, Proc. ISPSD, 2000, pp.19-22.
[1.4] M. Amato, G. Brunings, S. Mukherjee, and I.T. Wacyk, “Power integrated circuits”, Philips Tech. Rev., vol 44, pp. 310-320, 1989.
[1.5] M Morikawa et al., “A30-V, 75-mΩmm2 power MOSFET for intelligent driver LSIs”, Proc. ISPSD, pp.150-153, 1992.
[1.6] O. Kwon, “Optimized 60 V lateral DMOS device for VLSI Power Applications”, Symposium on VLSI Technology, pp. 115-116, 1991.
[1.7] H.M.J. Vaes and J.A. Appels, “High voltage, high current lateral devices”, Proc. IEDM, pp. 87-90, 1980.
[1.8] R. P. Zingg, “New benchmark for RESURF, SOI and super-junction power devices,” Proc. ISPSD, pp. 343-346, 2001.
[1.9] F. Udrea, A. Popescu and W. Milne, “A new class of lateral power devices for HVIC's based on the 3D RESURF concept,” Bipolar/BiCMOS Circuits and Technology Meeting, pp.187-190, 1998.
[1.10] R.S. Wrathall et al., “Charge Controlled 80 Volt Lateral DMOSFET With Very Low Specific On-Resistance Designed for an Integrated Power Process”, Proc. IEDM, pp.954-957, 1990.
[1.11] S. Merchant, E Arnold, H. Baumgart, S. Mukheerjee, H. Pein, R. Pinker, “Realization of high breakdown voltage (>700V) in think SOI devices”, Proc. ISPSD, pp.31-34, 1991.
[1.12] A. G.. M. Strollo and E. Napoli, “Optimal on-resistance versus breakdown voltage tradeoff in super-junction power devices: a novel analytical model,” IEEE Trans. Electron Devices, vol.48, pp. 2161-2167, 2001.
[1.13] G. Charitat, F. Orns, B Beydoun, N. Nolhier, P. Roseel and A. Peyre-Lavigne, “Optimization of high voltage (1200V) MOS transistor: voltage handling capabilities and switching behavior,” Proc. ESSDERC, pp. 887-890, 1993.
[2.1] B. Murari, F. Bertotti, G. A. Vignola. (1995). Smart Power ICs.
[2.2] R. Mitova, J-C. Crebier, L. Aubard and C. Schacffer, “Integrated driver supply with JFET as a linear regulator”, IEEE Power Electronics Specialists Conference, 2004, pp. 4163-4169
[2.3] L. Vincent, B. Nguyen-Dac, J-C Crebier, F. Alkayal, C. Schaeffer, “V-JFET Transistors for over voltage protection in power device series connected applications.”, Proceedings of Int. Sym. On Power Semiconductor Devices & IC’s, 2006, pp. 253-256
[2.4] J. A. Appels, H. M. J. Vaes and W. N. J. Ruis. (1981, Feb). Thin layer high-voltage junction FET (Resurf JFET). IEEE Electron Device Letters. EDL-2, pp. 38-40
[2.5] Tatsuo Sakai, Yasuaki Sakina, Kunio Hane and Tokio Suzuki. (1984, Jul). Breakdowns in Si JFET’s. IEEE Trans. Electron Devices. ED-31, pp. 873-879
[3.1] C. Kocon, A.Challa and P. Thorup, “Self-aligned High Density Low Voltage P-Channel Trench MOSFET with Ultra Low Resistance and Robust Ruggedness”, Proc. Int. Sym. Power Semiconductor Devices & IC’s, 2006, pp. 101-104.
[3.2] M. A. A. Zandt, E. A. Hijzen, R. J. E. Hueting and G. E. J. Koops, “Record low specific on-resistance for low-voltage trench MOSFETs”, Proc. Circuit, Devices and Systems, 2004, pp. 269-272.
[3.3] P. Goarin, R. V. Dalen, G. Koops and C. L. Cam, “Power trench MOSFETs with very low specific on-resistance for 25V applications”, Solid-State Device Research Conference, 2006, pp. 274-277.
[3.4] I. –Y. Park, S. –G. Kim, J. –G. Koo and J. Kim, “Reduced cell pitch and on-resistance of trench MOSFET by employing source on trench sidewall”, Electronics Letters. 39 (2003), No. 19, pp.1414-1415.
[3.5] S. Ono, Y. Kawaguchi and A. Nakagawa, “30V new fine trench MOSFET with ultra low on-resistance” Proc. Int. Sym. Power Semiconductor Devices & IC’s, 2003, pp. 28-31.
[3.6] M. Darwish, C. Yue, K. H. Lui, F. Giles, B. Chen, K. Chen, D. Pattanayak, Q. Chen, K. Terrill and K. Owyang, “A new power W-gated trench MOSFET (WMOSFET) with high switching performance”, Proc. Int. Sym. Power Semiconductor Devices & IC’s, 2003, pp. 24-27.
[3.7] L.Ma, A. Amali, S. Kiyawat, A. Mirchandani, D. He, N. Thapar, R. Sodhi, K. Spring and D. Kinzer, “New trench MOSFET technology for DC-DC converter applications” Proc. Int. Sym. Power Semiconductor Devices & IC’s, 2003, pp. 354-357.
[3.8] S. T. Peake, R. Grover, R. Farr, C. Rogers and G. Petkos, “Fully self-aligned power trench-MOSFET utilising 1 /spl mu/m pitch and 0.2 /spl mu/m trench width” Proc. Int. Sym. Power Semiconductor Devices & IC’s, 2002, pp. 29-32.
[3.9] A. Finney, J. Evans, P. Blair, J. Earnshaw, P. Jerred, K. Lowe, D. Mottram, N. Wolstenholme and A. Wood, “Recessed trench MOSFET process without critical alignments makes very high densities possible” Proc. Int. Sym. Power Semiconductor Devices & IC’s, 2001, pp. 283-286.
[4.1] Takeno, K.; Ichimura, M.; Takano, K.; Yamaki, J., “Methods of energy conservation and management for commercial Li-ion battery packs of mobile phones”, Telecommunications Energy Conference, 2003. 19-23 Oct. 2003 , pp. 310-316.
[4.2] Chen, L.R.; Lin, C.H.; Hsu, R.C.; Ku, B.G.; Liu, C.S., “A study of Li-ion battery charge forecasting using Grey theory”, Telecommunications Energy Conference, 2003.19-23 Oct. 2003, pp. 744–749
[4.3] Potanin, V.; Potanin, V.Y., “Li-Ion Battery Charger with Three-Parameter Regulation Loop”, Power Electronics Specialists Conference, 2005, pp.2836–2840
[4.4] Bently, W.F.; Heacock, D.K., “Battery management considerations for multichemistry systems”, Aerospace and Electronic Systems Magazine, IEEE, Volume 11, Issue 5, May 1996, pp. 23–26
[4.5] Fu, Y.; Cheng, X.; Chen, Y.; Liou, J. J.; Shen, Z. J., “A 20-V CMOS-Based Monolithic Bidirectional Power Switch”, Electron Device Letters, IEEE, Volume 28, Issue 2, Feb. 2007, pp. 174–176
[4.6] Power MOSFETs for Battery Pack Applications Selector Guide, Santa Clara, CA: Vishay Siliconix.
[4.7] M. Pavier, H. Schofield, T. Sammon, A. Arzumanyan, R. Sodhi, and D. Kinzer, “Flip chip power MOSFET: a new wafer scale packaging technique”, Proc. PCIM, 2001, pp. 121–127.
[4.8] D. H. Lu, N. Fujishima, A. Sugi, M. Sugimoto, S. Matsunaga, M. Sawada, M. Iwaya, and K. Takagiwa, “Integrated Bi-directional Trench Lateral Power MOSFETs for One Chip Lithium-ion Battery Protection ICs”, Proc.17th Int. Symp. Power Semicond. Devices & ICs, Santa Barbara, CA, May 23–26, 2005, pp. 355–358.
[5.1] Dan Kinzer, “Advanced power semiconductors and ICs for DC/DC converter applications”, Microelectronics Journal 35, 2004, pp. 225-233.
[5.2] Peng Xu, Jia Wei, Kaiwei Yao, Yu Meng, Fred C. Lee., “Investigation of Candidate VRM Topologies for future microprocessors”, Power Electronics, 2000, pp. 1172-1182.
[5.3] M. T. Rahimo, N. Y. A. Shammas, “Design considerations of the diode effective area with regard to the reverse recovery performance”, Microelectronics Journal 30, 1999, pp. 499-503.
[5.4] P. Cova, R. Menozzi, M. Portesine, “Experimental and numerical study of the recovery softness and overvoltage dependence on p-i-n diode design”, Microelectronics Journal 37, 2006, pp. 409-416.
[5.5] Syotaro Ono, Yoshihiro Yamaguchi, Noboru Matsuda, Akio Takano, Miwako Akiyama, Yusuke Kawaguchi, et al, “High density MOSBD for Synchronous Buck Converters”, Int. Sym. On Power Semiconductor Devices & IC’s. 2006, pp.1-4.
[5.6] Scott Deuty, ”Optimizing Transistor Performance in Synchronous Rectifier Buck Converters”, Applied Power Electronics Conference and Exposition, 2000, pp. 675-678.
[5.7] K. Shenai, C. Cavallaro, S. Musumeci, R. Pagano, A. Raciti, “Modeling Low-Voltage Power MOSFETs as Synchronous Rectifiers in Buck Converter Applications”, Industry Applications Conference, 2003, pp. 1794-1801.
[5.8] C. S. Mitter, “Device Considerations for High Current, Low Voltage Synchronous Buck Regulators(SBR)”, WESCON, 1997, pp. 281-288.
[5.9] Zhe Li, David Pommerenke, “EMI Specifics of Synchronous DC-DC Buck Converters”, Int. Sym. On Electromagnetic Compatibility, 2005, pp. 711-714.
[5.10] Tobias Tolle, Thomas Duerbaum, Reinhold Elferich, “De-Embedding of Reverse Recovery Loss in Fast Switching VRM Applications”, Applied Power Electronics Conference and Exposition, 2003, pp. 958-963
[5.11] C. T. Sah. Fundamentals of Solid-State Electronics. 3rd ed. World Scientific. 1991
[5.12] Hansjochen Benda, Eberhard Spenke, “Reverse Recovery Processes in Silicon Power Rectifiers”, Proceedings of The IEEE, 1967, pp. 1331-1354.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top