跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 20:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳仁駿
研究生(外文):Ren-Jun Chen
論文名稱:具升壓直流鏈開關式磁阻馬達驅動系統之開發與控制
論文名稱(外文):DEVELOPMENT AND CONTROL FOR A SWITCHED RELUCTANCE MOTOR DRIVE WITH BOOSTABLE VOLTAGE DC-LINK
指導教授:廖聰明廖聰明引用關係
指導教授(外文):Chang-Ming Liaw
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:146
中文關鍵詞:開關式磁阻馬達切換式整流器功因修正數位控制數位訊號處理器電流控制
外文關鍵詞:Switched-reluctance motorswitch-mode rectifierpower factor correctiondigital controlDSPcurrent control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:290
  • 評分評分:
  • 下載下載:88
  • 收藏至我的研究室書目清單書目收藏:2
本論文旨在研製一由三相單開關升壓型切換式整流器供電之開關式磁阻馬達驅動系統及從事其控制研究。前級與後級之全數位化控制均以數位訊號處理器為之。首先探究馬達驅動系統組成及DSP數位控制實務,然後據以設計組立一以DSP為主之實驗用SRM驅動系統,然後據以設計組立一以DSP為主之實驗用SRM驅動系統。接著妥善設計切換式整流器之組成元件及切換控制機構,以使其工作於不連續導通模式,而具有良好之交流入電電力品質,並建立調節良好及可升壓之直流鏈電壓供給後級馬達驅動系統。其次,開關式磁阻馬達驅動系統之線圈激勵採磁滯電流脈寬調變控制,以獲得強健之電流追蹤控制,進而應用隨機變化磁滯帶之切換控制降低馬達之振動及噪音。在速度控制方面,先估測馬達驅動系統之正規動態模式,並用以設計一雙自由度控制器使馬達驅動系統具有所定之模式參考速度響應。在馬達驅動系統參數或工作點變動下,再應用所提之可變結構系統模式追控誤差調控器,改善速度模式追控響應特性。同時負載轉矩變動之速度調控特性亦可明顯改善。最後本論文從事具切換式整流器前級開關式磁阻馬達驅動系統之總體性能實測評估。
In this thesis, the development and control for switched-reluctance motor (SRM) drive powered by a three-phase single-switch switch-mode rectifier (SMR) are studied. All the controls of these two power stages are realized fully digitally using digital signal processor (DSP). First, in the design and implementation of SMR, the power circuit components and switching scheme are properly designed to let it be operated under discontinuous current mode (DCM) at any case. The satisfactory line drawn power quality can be obtained, and it can provide well-regulated and boostable DC-link voltage for the followed SRM drive. Second, in the developed SRM drive, the hysteresis current-controlled pulse width modulated (CCPWM) scheme is designed to obtain robust winding current tracking control. And the randomly varying hysteresis band is applied to reduce the SRM stator vibration and acoustic noise. In speed control, the SRM drive dynamic model at a chosen nominal case is estimated. And a two-degrees-of-freedom control scheme is designed to let the motor drive possess the defined reference tracking speed responses. As the operating conditions are changed, a variable-structure system (VSS) tracking error regulator is developed to reduce the model tracking error. Moreover, the speed deviation due to load torque change can also be significantly reduced. Finally, the performance evaluation for the whole SMR-fed SRM drive system performance is evaluated experimentally.
ACKNOWLEDGEMENTS I
ABSTRACT II
LIST OF CONTENTS III
LIST OF FIGURES VI
LIST OF TABLES XIII
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 ESTABLISHMENT OF SWITCHED-RELUCTANCE MOTOR DRIVE 6
2.1 Introduction 6
2.2 Fundamentals of SRM 6
2.3 Sources and Remedies of Acoustic Noise and
Vibration of a SRM 10
2.4 Some Typical SRM Converters 15
2.5 DSP-Based SRM Drive 27
2.5.1 Digital Control Basics 27
2.5.2 The Established DSP-Based SRM Drive 29
2.5.3 Motor and Power Circuit 29
2.5.4 DSP-Based Digital Control Environment 32
2.5.5 Interfacing Circuits 34
2.5.5 Control Flowcharts 37
2.6 Some Measured Results 41
CHAPTER 3 ESTABLISHMENT OF SWITCH-MODE
RECTIFIER FRONT-END 46
3.1 Introduction 46
3.2 Overview of Three-Phase SMR 46
3.3 Three-Phase Single-Switch Front-End Boost SMR 50
3.4 Design and Implementation of System Components 57
3.5 Experimental Results 62
CHAPTER 4 CONTROL SCHEMES OF FRONT-END
SMR AND SRM DRIVE 70
4.1 Introduction 70
4.2 Dynamic Model Estimation and Controller Design for Front-End SMR 70
4.3 Current-Controlled PWM Schemes of SRM Drive 78
4.3.1 Ramp Comparison Current-Controlled PWM Scheme 78
4.3.2 Hystersis Current-Controlled PWM Scheme 80
4.4 Speed Control Scheme of SRM Drive 88
4.4.1 System Configuration and Problem Statement 88
4.4.2 Motor Drive Dynamic Model Estimation 88
4.4.3 Design of Feedback Controller 97
4.4.4 Command Feedforward Controller and
Reference Model 98
4.5 VSS Tracking Error Regulator 100
4.5.1 Basic VSS Controller 101
4.5.2 Simulation Results and Experimental Results 104
CHAPTER 5 PERFORMANCE EVALUATION OF THE DEVELOPED SMR-FED SRM DRIVE 114
5.1 Introduction 114
5.2 Static Characteristics 114
5.3 Dynamic Characteristics 125
CHAPTER 6 CONCLUSIONS 135
REFERENCES 136
A. SRM drives and converters
[1] T. J. E. Miller, Switched Reluctance Motors and Their Control, Clarendon Press, Oxford, 1993.
[2] J. J. Cathey, Electric Machines: Analysis and Design Applying Matlab, McGraw Hill, 2001.
[3] R. Krishnan, Switched Reluctance Motor Drives: Analysis, Design and Application , CRC Press, New York, 2001.
[4] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[5] B. Mirzaeian, M. Moallem, V. Tahani and C. Lucas, “Multiobjective optimization method based on a genetic algorithm for switched reluctance motor design,” IEEE Trans. Magnetics, vol. 38, no. 3, pp. 1524-1527, 2002.
[6] W. Wu, J. B. Dunlop, S. J. Collocott and B. A. Kalan, “Design optimization of a switched reluctance motor by electromagnetic and thermal finite-element analysis,” IEEE Trans. Magnetics, vol. 39, no. 5, pp. 3334-3336, 2003.
[7] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Applicat., vol. 27, no. 6, pp. 1034-1049, 1991.
[8] C. Pollock and B. W. Williams, “A unipolar converter for a switched reluctance motor,” IEEE Trans. Ind. Applicat., vol. 26, no. 2, pp. 222-228, 1990.
[9] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Applicat., vol. 28, no. 5, pp. 1017-1022, 1992.
[10] C. Pollock and M. Barnes, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
[11] S. J. Watkins, J. Corda and L. Zhang, “Multilevel asymmetric power converters for switched reluctance machines,” IEE-Proc., Power Electronics, Machines and Drives, 2002, pp. 195-200.
[12] K. Y. Cho, “Power converter circuit for a switched reluctance motor using a flyback transformer,” IEE-Proc., Electr. Power Appl., vol. 150, no. 1, pp. 88-96, 2003.
[13] Y. G. Dessouky, B. W. Williams and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Applicat., vol. 45, no. 5, pp. 815-823, 1998.
[14] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE-Proc., Electr. Power Appl., vol. 147, no. 5, pp. 337-344, 2000.
[15] M. Dahmane, F. M. Tabar and F. M. Sargos, “An adapted converter for switched reluctance motor/generator for high speed applications,” Proc. IEEE Ind. Applicat., 2000, vol. 3, pp. 1547-1554.
[16] Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” Proc. IEEE Ind. Applicat., 1997, vol. 1, pp. 676-681.
[17] K. T. Chau, T. W. Ching, C. C. Chan and M. S. W. Chan, “A novel zero-current soft-switching converter for switched reluctance motor drives,” Proc. IEEE IECON'98, 1998, vol. 2, pp. 893-898.
[18] H. J. Chen, “Design and implementation of a soft-switching converter-fed switched reluctance motor drive,” Master Thesis, Department of Electrical Engineering, National Tsing Hua University, ROC, 2002.
[19] H. L. Huy, K. Slimani and P. Viarouge, “A current-controlled quasi-resonant converter for switched-reluctance motor,” IEEE Trans. Ind. Electron., vol. 38, no. 5, pp. 355–362, 1991.
B. Dynamic and tuning control
[20] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 14, no. 3, pp. 563–572, 1999.
[21] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Practical application of backstepping nonlinear current control to a switched-reluctance motor,” Proc. American Control, 2000, vol. 1, pp. 594-599.
[22] G. G. Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines,” Proc. IEEE Ind. Applicat., 2002, vol. 2, pp. 1212-1218.
[23] M. R. Benhadria, K. Kendouci and B. Mazari, “Torque ripple minimization of switched reluctance motor using hysteresis current control,” Proc .IEEE ISIE, 2006, pp. 2158-2162.
[24] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 1, pp. 800-808, 1997.
[25] C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” Proc. IEEE Ind. Applicat., 2000, vol. 3, pp. 1573-1577.
[26] G. John and A. R. Eastham “Robust speed control of a switched reluctance drive,” Proc. IEEE CCECE, 1993. pp.317-320.
[27] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE-Proc., Electr. Power Appl., vol. 148, no. 4, pp. 345-353, 2001.
[28] C. Visa, G. Abba and F. Leonard, “Speed control of a switched reluctance motor using non-linear methods,” Proc. Systems, Man and Cybernetics, 2002, vol. 5, pp. 1-6.
[29] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IEE-Proc., Electr. Power Appl., vol. 150, no. 2, pp. 193-200, 2003.
[30] J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” Proc. IEEE ISIE, 2001, vol. 2, pp. 811-815.
[31] J. Seo, H. R. Cha, H. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” Proc. IEEE Ind. Electron., 2001 vol. 2, no. 1, pp. 811-815.
[32] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Electronics System, vol. 38, pp. 955-968, 2002.
[33] A. D. Cheok and N. Ertugrul, “Use of fuzzy logic for modeling, estimation, and prediction in switched reluctance motor drives,” IEEE Trans. Electronics System, vol. 46, no. 6, pp. 1207-1224, 1999.
[34] C. Bian, Y. Man, C. Song and S. Ren, “Variable structure control of switched reluctance motor and its application,” Proc. IEEE WCICA, 2006, vol. 1, pp. 2490-2493.
[35] A. Cabello, J. Rostrepo, V. Guzman, M. I. Gimenez and J. Lara, “Direct torque control of the switched reluctance motor using a variable structure fuzzy controller,” Proc. UPEC, 2006, vol. 1, pp. 180-181.
[36] M. M. A. Morsy, M. S. A. Moteleb and H. T. Dorrah, “Development of robust fuzzy sliding mode control technique for nonlinear drive system,” Proc. Micro-NanoMechatronics and Human Science, 2006, pp. 1-6.
C. Vibration and acoustic noise
[37] D. E. Cameron, J. H. Lang and S. D. Umans, “The origin and reduction of acoustic noise in doubly salient variable-reluctance motors,” IEEE Trans. Ind. Applicat., vol. 28, no. 1, pp. 1250-1255, 1992.
[38] R. S. Colby, F. M. Mottier and T. J. E. Miller, “Vibration modes and acoustic noise in a four-phase switched reluctance motor,” IEEE Trans. Ind. Applicat., vol. 32, no. 2, pp. 1357-1364, 1996.
[39] C. Pollock and C. Y. Wu, “Acoustic noise cancellation techniques for switched reluctance drives,” IEEE Trans. Ind. Applicat., vol. 33, no. 1, pp. 477-484, 1997.
[40] M. Brackley and C. Pollock, ”Analysis and reduction of acoustic noise from a brushless DC drive,” IEEE Trans. Ind. Applicat., vol. 36, no. 3, pp. 772-777, 2000.
[41] W. Cai, P. Pillay, Z. Tang and A. Omekanda, “Experimental study of vibrations in the switched reluctance motor,” Proc. IEEE IEMDC, 2001, vol. 1, pp. 576-581.
[42] J. W. Moon, J. Kim, S. G. Oh and J. W. Ahn, “Reduction of vibration and acoustic noise of SRM with hybrid excitation method,” IEEE Trans. Ind. Electron., vol. 2, no. 1, pp. 1407-1412, 2001.
[43] J. O. Fiedler and R. W. D. Doncker, “ Extended analytic approach to acoustic noise in switched reluctance drives,” Proc. IEEE PESC., 2002, vol. 4, pp. 1960-1964.
[44] M. Takemoto, A. Chiba, H. Akagi and T. Fukao, “ Radial force and torque of a bearingless switched reluctance motor operating in a region of magnetic saturation,” Proc. IEEE Ind. Applicat., 2002, vol. 1, pp. 35-42.
[45] F. Blaabjerg and J. K. Pedersen, “ Digital implemented random modulation strategies for AC and switched reluctance drives,” Proc. IEEE IECON'93, 1993, vol. 2, no. 3, pp. 676-682.
[46] T. Boukhobza, M. Gabsi and B. Grioni, “Random variation of control angles, reduction of SRM vibrations,” Proc. IEEE IEMDC, 2001, vol. 3, pp. 640-643.
[47] B. Fahimi, G. Suresh, K. M. Rahman and M. Ehsani, “Mitigation of acoustic noise and vibration in switched reluctance motor drive using neural network based current profiling,” Proc. IEEE Ind. Applicat., 1998, vol. 1, pp. 715-722.
[48] J. W. Ahn, S. J. Park and D. H. Lee, “Hybrid excitation of SRM for reduction of vibration and acoustic noise,” IEEE Trans. Ind. Electron., vol. 51, no. 2, pp. 374–380, 2004.
[49] K. H. Ha, Y. K. Kim, G. H. Lee and J. P. Hong, “Vibration reduction of switched reluctance motor by experimental transfer function and response surface methodology,” IEEE Trans. Ind. Electron., vol. 40, no. 2, pp. 577–580, 2004.
[50] J. Y. Chai, Y. W. Lin and C. M. Liaw, “Comparative study of switching controls in vibration and acoustic noise reductions for switched reluctance motor,” IEE-Proc., Electr. Power Appl., vol. 153, no. 3, pp. 348-360, 2006.
D. Torque and speed ripples
[51] N. K. Sheth and K. R. Rajagopal, “Optimum pole arcs for a switched reluctance motor for higher torque with reduced ripple,” IEEE Trans. Magn., vol. 39, no 5, pp.3214-3216, Sep. 2003.
[52] R. S. Wallace and D. G. Taylor, “A balanced commutator for switched reluctance motors to reduce torque ripple,” IEEE Trans. Power Electron., vol. 7, pp. 617–626, Oct. 1992
[53] A. M. Stankovic, G.. Tadmor, Z. J. Coric and I. Agirman, “On torque ripple reduction in current-fed switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 46, no. 1, pp. 177-183, Feb. 1999.
[54] L. Venkatesha and V. Ramanarayanan, “A comparative study of pre-computed current methods for torque ripple minimisation in switched reluctance motor,” in Proc. IEEE IAS, Oct. 2000, vol. 1, pp. 119-125.
[55] M. Kaiserseder, J. Schmid, W. Amrhein and V. Scheef, “Current shapes leading to positive effects on acoustic noise of switched reluctance drives,” COMPEL, vol. 22, no. 4, pp. 998-1008, Dec. 2003,
[56] S. K. Sahoo, S. K. Panda and J. X. Xu, “Indirect torque control of switched reluctance motors using iterative learning control,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 200-208, Jan. 2005.
[57] N. T. Shaked and R. Rabinovici, “New procedures for minimizing the torque ripple in switched reluctance motors by optimizing the phase-current profile,” IEEE Trans. Magn., vol. 41, no. 3, pp. 1184-1192, March 2005.
[58] L. O. A. P. Henriques, P. J. Costa Branco, L. G. B. Rolim and W. I. Suemitsu, “Proposition of an offline learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 45, no. 3, pp. 433-444, June 1998.
[59] Z. Lin, D. S. Reay, BoW. Williams and X. He, “On-line torque estimation in a switched reluctance motor for torque ripple minimization,” IEEE ISIE vol. 2, pp. 981-985, May 2004.
[60] N. Bhiwapurkar and N. Mohan, “Torque ripple optimization in switched reluctance motor using two-phase model and optimization search technique,” Proc. IEEE SPEEDAM, May 2006, pp. 340-345.
[61] M. Rodrigues, P. J. Costa Branco and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 711-715, June 2001.
[62] E. Bizkevelci, K. Leblebicioglu and H. B. Ertan, “A sliding mode controller to minimize SRM torque ripple and noise,” Proc. IEEE ISIE, May 2004, vol. , pp. 1333-1338.
[63] X. D. Xue, K. W. E. Cheng and S. L. Ho, “A control scheme of torque ripple minimization for SRM drives based on flux linkage controller and torque sharing function,” Proc. IEEE ICPESA, 2006, pp. 79-84.
[64] Z. Qionghua, S. Jianbo, W. Shuanghong and X. Kai, “A fixed-frequency direct instantaneous torque control method of switched reluctance motor contributing to low vibration and acoustic noise,” Proc. IEEE IECON, 2006, pp. 1580-1585.
[65] S. Jianbo, Z. Qionghua, W. Shuanghong and Z. Ma, “A novel control strategy of switched reluctance motor contributing to low vibrative noise and minimal torque ripple, ” Proc. IEEE ISIE, 2006, pp. 2163-2167.
[66] H. Goto, H. J. Guo, O. Ichinokura and M. Sato, “A simple method to reduce torque ripple of SR motor using freewheeling mode,” Proc. EPEPEMC, 2006, pp. 1047-1051.
E. Random switching
[67] A. M. Trzynadlowski, F. Blaabjerg, J. K. Pedersen, R. L. Kirlin and S. Legowski, “Random pulse width modulation techniques for converter fed drive systems-a review,” Proc. IEEE, IAS, 1993, vol. 2, pp. 136-1143.
[68] G. A. Covic and J. T. Boys, “Noise quieting with random PWM AC drives,” IEE-Proc., Electr. Power Appl., 1998, vol. 145, no. 1, pp. 1-10.
[69] K. K. Tse, H. S. H. Chung, S. Y. R. Hui and H. C. So, “A comparative study of using random switching schemes for DC/DC converters,” IEEE APEC '99, vol. 1, pp. 893-898, 1999.
[70] C. M. Liaw and Y. M. Lin, “Random slope PWM inverter using existing system background noise: Analysis, design and implementation,” IEE-Proc., Electr. Power Appl., 2000, vol. 147, no. 1, pp. 45-54.
[71] R. L. Kirlin, M. M. Bech and A. M. Trzynadlowski, “Analysis of power and power spectral density in PWM inverters with randomized switching frequency,” IEEE Trans. Ind. Electron., vol. 49, no. 2, pp. 486-499, 2002.
F. Three phase switch-mode rectifiers
[72] A. Borisavljevic, M. R. Iravani and S.B. Dewan, “Modeling and analysis of a digitally controlled high power switch-mode rectifier,” IEEE Trans. Power Electron., vol. 20, no. 2, pp. 378-394, 2005.
[73] G. Spiazzi and F. C. Lee, “Implementation of single-phase boost power-factor correction circuits in three-phase applications,” IEEE Trans. Ind. Electron., vol. 44, no. 3, pp. 365-371, 1997.
[74] M. Hengchun, F. C. Lee, D. Boroyevich and S. Hiti, “Review of high- performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[75] C. Qiao and K. M. Smedley, “A general three-phase PFC controller for rectifiers with a series connected dual-boost topology,” IEEE Trans. Ind. Applicat., vol. 38, no. 1, pp. 137-148, 2002.
[76] J. Hahn, P. N. Enjeti and I. J. Pitel, “A new three-phase power factor correction (PFC) scheme using two single-phase PFC modules,” IEEE Trans. Ind. Applicat., vol. 38, no. 1, pp. 123-130, 2002.
[77] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[78] S. M. Bashi, N. Mariun, S. B. Noor and H. S. Athab, “Three-phase single switch power factor correction circuit with harmonic reduction,” Journal of Applied Sciences, pp. 80-84, 2005.

[79] D. S. L. Simonetti, J. Sebastian and J. Uceda, “Single-switch three-phase power factor preregulator under variable switching frequency and discontinuous input current,” Proc. IEEE PESC, 1993, pp. 944-950.

[80] D. O. Neacsu, Y. Ziwen and V. Rajagopalan, “Optimal PWM control for single-switch three-phase AC-DC boost converter,” Proc. IEEE PESC, 1996, vol. 1, pp. 727-732.

[81] E. H. Ismail and R. Erickson, “Single-switch PWM low harmonic rectifiers,” IEEE Trans. Power Electron., vol. 11, no. 2, pp. 338-346, 1996.

[82] M. S. Dawande and G. K. Dubey, “Programmable input power factor correction method for switch-mode rectifiers,” IEEE Trans. Power Electron., vol. 11, no. 4, pp. 585-591, 1996.

[83] R. Zhang and F. C. Lee, “Optimum PWM pattern for a three-phase boost DCM PFC rectifier,” Proc. IEEE PESC, 1997, vol. 2, pp. 895-901.

[84] D. Simonetti, J. Sebastian and J. Uceda, “A simplified design approach for constant-frequency single-switch three-phase discontinuous boost power factor preregulators,” IEEE Ind. Electron., vol. 2, pp. 578-582, 1997.

[85] K. Cai and Z. Xu, “A novel control method of three-phase single-switch boost power factor corrector under variable switching frequency,” Proc. IEEE PowCon, 2002, vol. 1, pp. 565-569.

[86] Y. Jang and M. M. Jovanovic, “A comparative study of single-switch three-phase high power-factor rectifiers,” IEEE Trans. Ind. Applicat., vol. 34, no. 6, pp. 1327-1334, 1998.
[87] J. Reinert and S. Schroder, “Power-factor correction for switched reluctance drives,” IEEE Trans. Ind. Electron., vol. 49, no. 1 pp. 54-57, 2002.
[88] R. Krishnan and S. Lee, “Effect of power factor correction circuit on switched reluctance motor drives for appliances,” Proc. IEEE APEC, 1994, vol. 1, pp. 83-89.
[89] T. Gopalarathnam and H. A. Toliyat, “A high power factor converter topology for switched reluctance motor drives,” Proc. IEEE IAS, 2002, vol. 3, pp. 1647-1652.
G. Digital control
[90] F. Nekoogar and G. Moriarty, Digital Control Using Digital Signal Processing, Prentice Hall PTR, New Jersey, 1999.
[91] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic System, 4th ed. Prentice Hall Inc., 2002.
[92] “Single-chip, DSP-based high performance motor controller ADMC401,” Analog Devices Inc., USA, 2000.
[93] “ADSP-2100 family user’s manual,” Analog Devices Inc., 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top