跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2025/01/14 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊慧儒
研究生(外文):Hui-Ju Yang
論文名稱:光照剝奪對於發育中兔子視網膜節細胞形態變化的影響
論文名稱(外文):Effect of Light Deprivation on Morphological Changes of Ganglion Cells in the Developing Rabbit Retina
指導教授:焦傳金焦傳金引用關係
指導教授(外文):Chuan-Chin Chiao
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:34
中文關鍵詞:視網膜節細胞樹突發育光照剝奪
外文關鍵詞:retinal ganglion cellsdendritic developmentlight deprivation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:236
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
摘要
脊椎動物的視網膜並非在出生後便發育完成,即使在眼睛睜開後,視網膜節細胞的樹突仍然持續發育。視覺經驗已被證明可以影響腦部的視覺系統發育,但在視網膜發育過程中,視覺經驗是否影響內層視網膜神經網路的成熟過程則尚未有定論。在本篇研究中,我們利用基因槍傳送染劑的方式來標定神經細胞,進而研究無光照刺激對於發育中兔子視網膜節細胞樹突形態的影響。從出生開始,實驗所用的紐西蘭白兔分別在正常光週期或完全黑暗的動物房內養殖,直到二十至二十二天時取下視網膜,並將有染劑包裹的鎢粉顆粒,利用基因槍隨機散布在視網膜上以標記節細胞。接著根據節細胞的樹突形態及樹突分布層別,將每顆標記的節細胞做適當的分類。在具有數量較多的節細胞種類中,利用一般線性模型的統計方法進行分析,來測試光照剝奪對節細胞樹突發育的影響。本篇研究發現,在正常光週期或完全黑暗養殖的幼兔,節細胞的樹突大小並無明顯差異,也就是光照與否並不會影響節細胞發育的趨勢。因此,本實驗結果顯示,在兔子視網膜發育中,視覺經驗對於節細胞樹突範圍大小的成熟並不重要,這也間接指出兔子節細胞感受區域的範圍大小可能也不需要視覺刺激而發育成熟。

關鍵字: 視網膜節細胞、樹突發育、光照剝奪
Abstract
Vertebrate retinas are not fully mature after birth, even after eye opening retinal ganglion cells continue undergo dendritic remodeling. It has been well established that visual experience has a great impact on visual system development in the brain. However, it is not certain whether visual experience exerts similar effects on the maturation of ganglion cells in the retina. Here I applied a Diolistic labeling technique to study the dark-reared effect on dendritic morphologies of ganglion cells in the developing rabbit retina. New Zealand White rabbits (p20~ p22) were reared either in the normal light-dark cycle or in the completely dark environment from birth. Ganglion cells in the whole mount retina preparation were randomly labeled with DiI-coated tungsten particles via the gene gun delivery. According to features of the dendritic pattern and stratification, each labeled neuron was assigned into a specific category of ganglion cell types as described previously. Most ganglion cell types were analyzed using the general linear model (GLM) to test the effect of light deprivation on the dendritic area. Overall, there was no significant difference in the dendritic field size between ganglion cells of the normal- and the dark-reared groups (G1, G4 OFF, G7, G9, G10, G11 OFF). Ganglion cell types which did not have enough numbers to compare also reveal the tendency that light experience does not play an important role in the ganglion cell development. Taken together, these results indicate that the influence of visual experience on morphological maturation of ganglion cells may be insignificant in the rabbit retina development. This also implies that the receptive field size of rabbit ganglion cells may mature normally without the stimulation of visual inputs.

Key words: retinal ganglion cells, dendritic development, light deprivation
Table of Contents
摘要 i
Abstract ii
Table of Contents iii
Introduction 1
Materials and Methods 3
1. Animal and retina preparation 3
2. Gene gun labeling 4
3. Image acquisition and measurements of morphological parameters 5
4. Data analysis 6
Results 8
The G7 ganglion cell 8
The G1 ganglion cell 9
The G4 ganglion cell 9
The G5 ganglion cell 9
The G9 ganglion cell 10
The G10 ganglion cell 11
The G11 ganglion cell 11
The unclassified cells 12
Discussion 13
Visual deprivation and retinal development 13
Unbiased sampling of gene gun? 15
Tables 17
Table 1. Summary of cell numbers in all ganglion cell types at P20-22 of rabbit retinas 17
Table 2. Summary of GLM results for comparable ganglion cell types 18
Figures 19
Appendix 29
References 31
References
Ackert JM, Wu SH, Lee JC, Abrams J, Hu EH, Perlman I, Bloomfield SA. 2006. Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in the mammalian retina. J Neurosci 26(16):4206-4215.
Akerman CJ, Smyth D, Thompson ID. 2002. Visual experience before eye-opening and the development of the retinogeniculate pathway. Neuron 36(5):869-879.
Ames A, 3rd, Nesbett FB. 1981. In vitro retina as an experimental model of the central nervous system. J Neurochem 37(4):867-877.
Amthor FR, Oyster CW, Takahashi ES. 1984. Morphology of on-off direction-selective ganglion cells in the rabbit retina. Brain Res 298(1):187-190.
Amthor FR, Takahashi ES, Oyster CW. 1989. Morphologies of rabbit retinal ganglion cells with complex receptive fields. J Comp Neurol 280(1):97-121.
Amthor FR, Takahashi ES, Oyster CW. 1989. Morphologies of rabbit retinal ganglion cells with concentric receptive fields. J Comp Neurol 280(1):72-96.
Badea TC, Nathans J. 2004. Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. J Comp Neurol 480(4):331-351.
Barlow HB, Levick WR. 1965. The mechanism of directionally selective units in rabbit's retina. J Physiol 178(3):477-504.
Bonaventure N, Goswamy S, Karli P. 1971. Electroretinogram (ERG) and visual evoked response (VER) in rabbits reared in total darkness or continuous illumination. Doc Ophthalmol 30:339-347.
Chalupa LM, Gunhan E. 2004. Development of On and Off retinal pathways and retinogeniculate projections. Prog Retin Eye Res 23(1):31-51.
Chow KL, Riesen AH, Newell FW. 1957. Degeneration of retinal ganglion cells in infant chimpanzees reared in darkness. J Comp Neurol 107(1):27-42.
Cohen-Cory S, Lom B. 2004. Neurotrophic regulation of retinal ganglion cell synaptic connectivity: from axons and dendrites to synapses. Int J Dev Biol 48(8-9):947-956.
Connaughton VP, Graham D, Nelson R. 2004. Identification and morphological classification of horizontal, bipolar, and amacrine cells within the zebrafish retina. J Comp Neurol 477(4):371-385.
Dann JF, Buhl EH, Peichl L. 1987. Dendritic maturation in cat retinal ganglion cells: a Lucifer yellow study. Neurosci Lett 80(1):21-26.
Dann JF, Buhl EH, Peichl L. 1988. Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina. J Neurosci 8(5):1485-1499.
Deich C, Seifert B, Peichl L, Reichenbach A. 1994. Development of dendritic trees of rabbit retinal alpha ganglion cells: relation to differential retinal growth. Vis Neurosci 11(5):979-988.
Demas J, Eglen SJ, Wong RO. 2003. Developmental loss of synchronous spontaneous activity in the mouse retina is independent of visual experience. J Neurosci 23(7):2851-2860.
Der G, Everitt BS. 2002. A handbook of statistical analyses using SAS. Boca Raton, Fla. 2002.: Chapman & Hall/CRC.
Devries SH, Baylor DA. 1997. Mosaic arrangement of ganglion cell receptive fields in rabbit retina. J Neurophysiol 78(4):2048-2060.
Diao L, Sun W, Deng Q, He S. 2004. Development of the mouse retina: emerging morphological diversity of the ganglion cells. J Neurobiol 61(2):236-249.
Famiglietti EV. 1992. New metrics for analysis of dendritic branching patterns demonstrating similarities and differences in ON and ON-OFF directionally selective retinal ganglion cells. J Comp Neurol 324(3):295-321.
Famiglietti EV, Jr., Kolb H. 1976. Structural basis for ON-and OFF-center responses in retinal ganglion cells. Science 194(4261):193-195.
Feller MB. 2003. Visual system plasticity begins in the retina. Neuron 39(1):3-4.
Gan WB, Grutzendler J, Wong WT, Wong RO, Lichtman JW. 2000. Multicolor "DiOlistic" labeling of the nervous system using lipophilic dye combinations. Neuron 27(2):219-225.
Guenther E, Schmid S, Wheeler-Schilling T, Albach G, Grunder T, Fauser S, Kohler K. 2004. Developmental plasticity of NMDA receptor function in the retina and the influence of light. Faseb J 18(12):1433-1435.
Gunhan-Agar E, Kahn D, Chalupa LM. 2000. Segregation of on and off bipolar cell axonal arbors in the absence of retinal ganglion cells. J Neurosci 20(1):306-314.
He S, Masland RH. 1998. ON direction-selective ganglion cells in the rabbit retina: dendritic morphology and pattern of fasciculation. Vis Neurosci 15(2):369-375.
Kong JH, Fish DR, Rockhill RL, Masland RH. 2005. Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits. J Comp Neurol 489(3):293-310.
Krug K, Akerman CJ, Thompson ID. 2001. Responses of neurons in neonatal cortex and thalamus to patterned visual stimulation through the naturally closed lids. J Neurophysiol 85(4):1436-1443.
Lau KC, So KF, Tay D. 1990. Effects of visual or light deprivation on the morphology, and the elimination of the transient features during development, of type I retinal ganglion cells in hamsters. J Comp Neurol 300(4):583-592.
Lee EJ, Merwine DK, Mann LB, Grzywacz NM. 2005. Ganglion cell densities in normal and dark-reared turtle retinas. Brain Res 1060(1-2):40-46.
Leventhal AG, Hirsch HV. 1983. Effects of visual deprivation upon the morphology of retinal ganglion cells projecting to the dorsal lateral geniculate nucleus of the cat. J Neurosci 3(2):332-344.
Lin B, Wang SW, Masland RH. 2004. Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron 43(4):475-485.
Lohmann C, Myhr KL, Wong RO. 2002. Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418(6894):177-181.
Lom B, Cogen J, Sanchez AL, Vu T, Cohen-Cory S. 2002. Local and target-derived brain-derived neurotrophic factor exert opposing effects on the dendritic arborization of retinal ganglion cells in vivo. J Neurosci 22(17):7639-7649.
Lom B, Cohen-Cory S. 1999. Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J Neurosci 19(22):9928-9938.
MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH. 1999. The shapes and numbers of amacrine cells: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. J Comp Neurol 413(2):305-326.
Masland RH. 1977. Maturation of function in the developing rabbit retina. J Comp Neurol 175(3):275-286.
Masland RH. 2001. The fundamental plan of the retina. Nat Neurosci 4(9):877-886.
Maslim J, Webster M, Stone J. 1986. Stages in the structural differentiation of retinal ganglion cells. J Comp Neurol 254(3):382-402.
Mehta V, Sernagor E. 2006. Early neural activity and dendritic growth in turtle retinal ganglion cells. Eur J Neurosci 24(3):773-786.
Morgan J, Huckfeldt R, Wong RO. 2005. Imaging techniques in retinal research. Exp Eye Res 80(3):297-306.
Mumm JS, Godinho L, Morgan JL, Oakley DM, Schroeter EH, Wong RO. 2005. Laminar circuit formation in the vertebrate retina. Prog Brain Res 147:155-169.
O'Brien J, Lummis SC. 2004. Biolistic and diolistic transfection: using the gene gun to deliver DNA and lipophilic dyes into mammalian cells. Methods 33(2):121-125.
Peichl L, Buhl EH, Boycott BB. 1987. Alpha ganglion cells in the rabbit retina. J Comp Neurol 263(1):25-41.
Peichl L, Ott H, Boycott BB. 1987. Alpha ganglion cells in mammalian retinae. Proc R Soc Lond B Biol Sci 231(1263):169-197.
Pu ML, Amthor FR. 1990. Dendritic morphologies of retinal ganglion cells projecting to the lateral geniculate nucleus in the rabbit. J Comp Neurol 302(3):675-693.
Pu ML, Amthor FR. 1990. Dendritic morphologies of retinal ganglion cells projecting to the nucleus of the optic tract in the rabbit. J Comp Neurol 302(3):657-674.
Reuter JH. 1976. The development of the electroretinogram in normal and light-deprived rabbits. Pflugers Arch 363(1):7-13.
Reuter JH, Legein CP, van der Mark F, van Hof MW. 1971. The electroretinogram in normal and light-deprived rabbits. Doc Ophthalmol 30:349-361.
Robinson SR. 1991. Development of the Mammalian Retina. In: Robinson BDaSR, editor. Vision and Visual Dysfunction: CRC press, Inc. p 69~128.
Rockhill RL, Daly FJ, MacNeil MA, Brown SP, Masland RH. 2002. The diversity of ganglion cells in a mammalian retina. J Neurosci 22(9):3831-3843.
Seki M, Nawa H, Fukuchi T, Abe H, Takei N. 2003. BDNF is upregulated by postnatal development and visual experience: quantitative and immunohistochemical analyses of BDNF in the rat retina. Invest Ophthalmol Vis Sci 44(7):3211-3218.
Sernagor E, Eglen SJ, Wong RO. 2001. Development of retinal ganglion cell structure and function. Prog Retin Eye Res 20(2):139-174.
Sernagor E, Grzywacz NM. 1995. Emergence of complex receptive field properties of ganglion cells in the developing turtle retina. J Neurophysiol 73(4):1355-1364.
Sernagor E, Grzywacz NM. 1996. Influence of spontaneous activity and visual experience on developing retinal receptive fields. Curr Biol 6(11):1503-1508.
Sernagor E, Grzywacz NM. 1999. Spontaneous activity in developing turtle retinal ganglion cells: pharmacological studies. J Neurosci 19(10):3874-3887.
Sherman SM, Stone J. 1973. Physiological normality of the retinal in visually deprived cats. Brain Res 60(1):224-230.
Stacy RC, Wong RO. 2003. Developmental relationship between cholinergic amacrine cell processes and ganglion cell dendrites of the mouse retina. J Comp Neurol 456(2):154-166.
Sun W, Li N, He S. 2002. Large-scale morophological survey of rat retinal ganglion cells. Vis Neurosci 19(4):483-493.
Sun W, Li N, He S. 2002. Large-scale morphological survey of mouse retinal ganglion cells. J Comp Neurol 451(2):115-126.
Syed MM, Lee S, He S, Zhou ZJ. 2004. Spontaneous waves in the ventricular zone of developing mammalian retina. J Neurophysiol 91(5):1999-2009.
Syed MM, Lee S, Zheng J, Zhou ZJ. 2004. Stage-dependent dynamics and modulation of spontaneous waves in the developing rabbit retina. J Physiol 560(Pt 2):533-549.
Tian N. 2004. Visual experience and maturation of retinal synaptic pathways. Vision Res 44(28):3307-3316.
Tian N, Copenhagen DR. 2001. Visual deprivation alters development of synaptic function in inner retina after eye opening. Neuron 32(3):439-449.
Tian N, Copenhagen DR. 2003. Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina. Neuron 39(1):85-96.
Vistamehr S, Tian N. 2004. Light deprivation suppresses the light response of inner retina in both young and adult mouse. Vis Neurosci 21(1):23-37.
Walker GA. 2002. Common statistical methods for clinical research with SAS examples.[electronic resource]: NetLibrary, Inc.
Wassle H. 2004. Parallel processing in the mammalian retina. Nat Rev Neurosci 5(10):747-757.
Wassle H, Riemann HJ. 1978. The mosaic of nerve cells in the mammalian retina. Proc R Soc Lond B Biol Sci 200(1141):441-461.
Wassle H, Voigt T, Patel B. 1987. Morphological and immunocytochemical identification of indoleamine-accumulating neurons in the cat retina. J Neurosci 7(5):1574-1585.
Weng S, Sun W, He S. 2005. Identification of ON-OFF direction-selective ganglion cells in the mouse retina. J Physiol 562(Pt 3):915-923.
Wingate RJ, Thompson ID. 1994. Targeting and activity-related dendritic modification in mammalian retinal ganglion cells. J Neurosci 14(11 Pt 1):6621-6637.
Wong RO. 1990. Differential growth and remodelling of ganglion cell dendrites in the postnatal rabbit retina. J Comp Neurol 294(1):109-132.
Wong RO. 1999. Retinal waves and visual system development. Annu Rev Neurosci 22:29-47.
Wong RO, Collin SP. 1989. Dendritic maturation of displaced putative cholinergic amacrine cells in the rabbit retina. J Comp Neurol 287(2):164-178.
Wong RO, Ghosh A. 2002. Activity-dependent regulation of dendritic growth and patterning. Nat Rev Neurosci 3(10):803-812.
Wong ROL, Godinho L. 2003. Development of the Vertebrate Retina. In: Werner LMCaJS, editor. The Visual Neuroscience: MIT press. p 77-93.
Wong WT, Wong RO. 2000. Rapid dendritic movements during synapse formation and rearrangement. Curr Opin Neurobiol 10(1):118-124.
Wong WT, Wong RO. 2001. Changing specificity of neurotransmitter regulation of rapid dendritic remodeling during synaptogenesis. Nat Neurosci 4(4):351-352.
Wyatt HJ, Daw NW. 1975. Directionally sensitive ganglion cells in the rabbit retina: specificity for stimulus direction, size, and speed. J Neurophysiol 38(3):613-626.
Xu H, Tian N. 2004. Pathway-specific maturation, visual deprivation, and development of retinal pathway. Neuroscientist 10(4):337-346.
Xue J, Cooper NG. 2001. The modification of NMDA receptors by visual experience in the rat retina is age dependent. Brain Res Mol Brain Res 91(1-2):196-203.
Yang G, Masland RH. 1992. Direct visualization of the dendritic and receptive fields of directionally selective retinal ganglion cells. Science 258(5090):1949-1952.
Yang G, Masland RH. 1994. Receptive fields and dendritic structure of directionally selective retinal ganglion cells. J Neurosci 14(9):5267-5280.
Zhang J, Yang Z, Wu SM. 2005. Development of cholinergic amacrine cells is visual activity-dependent in the postnatal mouse retina. J Comp Neurol 484(3):331-343.
Zhou ZJ, Zhao D. 2000. Coordinated transitions in neurotransmitter systems for the initiation and propagation of spontaneous retinal waves. J Neurosci 20(17):6570-6577.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top