跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 18:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳瑞慶
研究生(外文):Jui-Ching Wu
論文名稱:利用X光/中子反射法及布魯斯角顯微儀和原子力顯微鏡研究DNA分子和氣液界面分子單層膜吸附作用之研究
論文名稱(外文):Studies on the DNA Adsorption by the Mixed Lipid Monolayer at the Air-Liquid Interface Using X-ray/Neutron Reflectivity, BAM and AFM
指導教授:林滄浪
指導教授(外文):Tsang-Lang Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學門:工程學門
學類:核子工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:155
中文關鍵詞:Langmuir-Blodgett filmDC-CholDNA adsorptionX-ray reflectivityneutron reflectivityAFM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:321
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
The DNA-lipid bilayer interaction has been widely studied due to the potential applications in gene therapy. However, the interaction with the lipid monolayer at the air-water interface is still not well studied. In this research, we have studied the mixed monolayers and their interaction with DNA by measuring the pressure-surface area isotherm, neutron and X-ray reflectivity. A synthetic charged lipid, DC-Chol (3β-[N-(dimethylaminoethane)-carbamoyl]­cholesterol), was used to mix with the DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) to form monolayers at the air-liquid interface. The pressure-area isotherm showed that typical plateau of DPPC disappears by adding DC-Chol more than 30%. It was observed by BAM that the domains formed in the plateau region of the isotherm become smaller by adding small amounts of DC-Chol. In-situ neutron reflectivity was used to study the DC-Chol and TC-Chol monolayers at the air-liquid interface in the presence and absence of DNA in the subphase. It was found that the DC-Chol is more effective in adsorbing the DNA than the TC-Chol. From the determined neutron scattering length density profiles, the adsorbed DNA somewhat penetrates into the head group region of the charged lipids. As for the DNA interaction with DPPC monolayer, the reflectivity data showed that the film thickness of the DPPC/DNA LB film is very close to that from the DPPC film which indicates there is very little DNA adsorption by the DPPC monolayer. As for the DNA adsorption by the mixed DPPC/DC-Chol monolayers, the LB film thickness increases as the percentage of DC-Chol increases which indicates that DNA molecules interact more strongly with the DC-Chol due to electrostatic force. The effect of adding divalent ions on the DNA adsorption by cationic lipid monolayer at the air-water interface was also investigated by X-ray reflectivity for Langmuir-Blodgett (LB) films supported on silicon wafers and in-situ neutron reflectivity. It was found that adding divalent ions, such as calcium ions, can enhance the DNA adsorption by the DC-Chol monolayer. The adsorbed DNA layer thickness was found to increase with the increase of divalent ion concentrations. The enhanced DNA adsorption can be attributed to the ion-mediated attractive interaction between the DNA strands. However, no sharp condensation transition was found as in the DNA/bilayer complex. It was also found that pH can also affect the DNA adsorption by the lipid monolayer. By lowering the pH, thicker DNA layer was adsorbed to the DC-Chol lipid monolayer. The enhanced DNA condensation to the DC-Chol monolayer could be due to denatured DNA at low pH. In the denatured state, some hydrophobic parts of the DNA could be exposed and cause DNA condensation.
TABLE OF CONTENTS
ACKNOWLEDGEMENTS I
ABSTRACT II
TABLE OF CONTENTS IV
LIST OF TABLES VII
LIST OF FIGURES VIII
1. Introduction 1
1.1. Introduction 1
2. Literature Survey 6
2.1. A Brief Overview of Cationic Liposomes 6
2.2. DNA Condensation 7
2.3. Studies on Cationic Lipid-DNA by LB Technique 10
3. Experimental 29
3.1. Materials and Sample Preparation 29
3.2. Methods 29
3.2.1. Surface Pressure – Area Isotherm 29
3.2.2. Langmuir-Blodgett Film 30
3.2.3. Brewster Angle Microscope 30
3.2.4. X-ray and Neutron Reflectivity 31
3.2.5. Tapping Mode Atomic Force Microscope 36
4. Brewster Angle Microscope and Isotherm Studies on Lipid Monolayers with DNA 49
4.1. X-ray Reflectivity and BAM Studies on the LB film of Mixed DPPC/DC-Cholesterol Monolayer 49
4.1.1. Introduction 49
4.1.2. Experimental Section 50
4.1.3. Results and Discussions 51
4.1.4. Conclusion 55
4.2. BAM and AFM Studies on DNA Adsorption by DPPC Monolayers 64
4.2.1. Introduction 64
4.2.2 Experimental Section 64
4.2.3. Results and Discussions 65
4.2.4. Conclusion 66
5. Studies on Lipid Monolayer with and without DNA 74
5.1. Neutron, X-ray Reflectivity and AFM Studies on DNA Adsorption on Mixed DPPC/DC-Cholesterol Monolayers 74
5.1.1. Introduction 74
5.1.2. Experimental Section 75
5.1.3. Results and Discussions 75
5.1.4. Conclusion 77
5.2. Neutron Reflectivity Studies on the DNA Adsorption on Lipid Monolayers at the Air-Liquid Interface 86
5.2.1. Introduction 86
5.2.2. Experimental Section 87
5.2.3. Results and Discussions 87
5.2.4. Conclusion 89
6. Effect of Divalent Ions on DNA Adsorption by DC-Chol Monolayers 94
6.1. X-ray and Neutron Reflectivity Studies on the DNA Adsorption by DC-Cholesterol Monolayer with Divalent Ions 94
6.1.1. Introduction 94
6.1.2. Experimental Section 96
6.1.3. Results and Discussions 97
6.1.4. Conclusion 100
6.2. Effect of Divalent Ions on the DNA Adsorption by Lipid Monolayers 111
6.2.1. Introduction 111
6.2.2. Experimental Section 112
6.2.3. Results and Discussions 112
6.2.4. Conclusion 114
7. pH Effect on DNA Adsorption by Lipid Monolayer 124
7.1. Introduction 124
7.2. Experimental Section 126
7.3. Results and Discussions 126
7.4. Conclusion 128
8. Overall Conclusion 140
List of Publications 142



LIST OF TABLES
Table 2.1. The most key findings of self-assembled structures of DNA-CL complexes. 24
Table 4.1. The data fitting results of in-house X-ray reflectivity of mixed DPPC-d62/DC-Chol 57
Table 5.1. Reflectivity data fitting results of mixed dDPPC/DC-Chol films without DNA. 81
Table 5.2. Reflectivity data fitting results of mixed dDPPC/DC-Chol films with DNA 81
Table 5.3. The data fitting results of neutron reflectivity. 92
Table 6.1. The fitting parameters of X-ray reflectivity 107
Table 6.2. The fitting parameters of neutron reflectivity 108
Table 6.3. The fitting parameters of X-ray reflectivity 121
Table 7.1. The fitting parameters of neutron reflectivity. 134




LIST OF FIGURES
Figure 2-1. The schematic presentations of liposomes. 12
Figure 2-2. Schematic representations of lipid-water phase 13
Figure 2-3. A schematic representation shows mechanisms of uptake and release of plasmid DNA from the liposome–DNA complex. 14
Figure 2-4. Schematic of two distinct pathways from the lamellar phase to the columnar inverted hexagonal phase of CL-DNA complexes. 15
Figure 2-5. Two typical images of the condensed DNA molecules on DPDAP in 20 mM NaCl and the corresponding Fourier transforms. 16
Figure 2-6. SAXS of DOPC/DNA with divalent ions. 17
Figure 2-7. Schematic illustration of the force reversal between DNA chains adsorbed on cationic membrane surfaces within the lamellar LαC phase. 18
Figure 2-8. Percent fo solubilized DNA, as function of polyamine concentration. Squares, spermine; circles, spermidine [38]. 19
Figure 2-9. Schematic illustrations of the formation of a DNA oriented LB film by using a polyion complex of DNA/intercalater and cationic lipid monolayers 20
Figure 2-10. X-ray diffraction patterns of DNA-/proflavine/2C18-glu-N+ LB films (ca. 100 layers). 21
Figure 2-11. AFM images of the surfactant/DNA complex monolayers on the freshly cleaved mica sheets 22
Figure 2-12. Brewster angle microscopy data for DPPC plus 5 mM CaCl2 23
Figure 3-1. Structure of DC-Chol 37
Figure 3-2. Structure of DPPC 37
Figure 3-3. Structure of d62-DPPC 37
Figure 3-4. A scheme of typical surface pressure-area isotherm. There exits three states with gas, liquid and solid. 38
Figure 3-6. The overview of BAM components. 40
Figure 3-7. The picture of BAM on the LB trough in our lab. 40
Figure 3-8. The principle of Brewster angle at alpha = arc tan ( n substrate / n air). There is no reflection at Brewster angle, but reflection is occurring with a film at air-substrate interface. 41
Figure 3-9. Reflectivity principle and typical reflectivity curve. From data curve fitting, the reflectivity can support the information about thin film thickness, density and surface and interface roughness. 41
Figure 3-10. a scheme of the relation of film thickness and the width of Kiessig fringe. The simulation of these reflectivity was SiO2 on Si wafer. 42
Figure 3-11. a scheme of the influence of reflectivity roughness . The simulation of these reflectivity was SiO2 on Si wafer with different roughness of SiO2. 42
Figure 3-12. the reflectivity curves are plotted by (a) typical R v.s. q. and (b) Rq4 v.s. q. 43
Figure 3-13. NSRRC 17A hutch setup. 44
Figure 3-14. LB trough and neutron experimental in ARISA, KENS, KEK in Japan. 45
Figure 3-15. Neutron experimental in AMOR, SINQ, PSI in Switzerland. 46
Figure 3-16. The principle of AFM. 47
Figure 3-17. Production of P47 AFM 47
Figure 4-1. Surface pressure-area isotherms of mixed DPPC/DC-Chol at different molar ratios. 58
Figure 4-2. (a) Area per molecule as a function of composition for mixed DPPC/DC-Chol monolayers at different surface pressures. (b) Excess area as a function of composition for mixed DPPC/DC-Chol monolayers at different surface pressures. 59
Figure 4-3. BAM images of mixed DPPC/DC-Chol monolayers at the pressure of 7 mN/m with the BAM analyzer angle set at 0. The scale bar is 20 μm. 60
Figure 4-4. BAM images of mixed DPPC/DC-Chol monolayers with the analyzer angle set to - 30o. The scale bar is 50 μm. The units of the surface pressure is mN/m. 60
Figure 4-5. X-ray reflectivity of mixed DPPC-d62/DC-Chol LB film on silicon wafer. 61
Figure 4-6. X-ray scattering length density profile of the mixed DPPC-d62/DC-Chol LB films on silicon wafer. The position of the silicon wafer surface is set at zero. 62
Figure 4-7. The π-A isotherm of pure DPPC and DPPC/DNA . 67
Figure 4-8. The reflectivity data of pure DPPC and DPPC/DNA. 67
Figure 4-9. The BAM images of DPPC while compressing. Image size : 430 μm × 540 μm. Scale bar is 50 μm. 68
Figure 4-10. The BAM images of DPPC while opening. Scale bar is 50 μm. 69
Figure 4-11. The BAM images of DPPC/DNA while compressing. Image size : 430 μm × 540 μm. Scale bar is 50 μm. 70
Figure 4-12. The BAM images of DPPC/DNA while compressing to solid film. Scale bar is 50 μm. 71
Figure 4-13. The BAM images of DPPC/DNA while opening. Scale bar is 50 μm. 71
Figure 4-14. The AFM image of DPPC/DNA dipping at pressure = 30 mN/m. 72
Figure 4-15. The possible model of DPPC/DNA. (a) top view, (b)side view. 73
Figure 5-1. X-ray reflectivity of dDPPC and DC-Chol films with and without DNA adsorption on silicon wafer. 78
Figure 5-2. Neutron reflectivity of mixed dDPPC/DC-Chol films on silicon wafer. 79
Figure 5-3. Neutron reflectivity of mixed dDPPC/DC-Chol/DNA films on silicon wafer. 80
Figure 5-4. The schematic model of the LB monofilm of DC-Chol/DNA on silicon wafer. 80
Figure 5-5. Tapping mode AFM image of dDPPC/DC-Chol ( 100 : 0 ) with DNA on wafer. Left : height image. Right : 2D gradient image. Image size : 2500 nm × 5100 nm. 82
Figure 5-6. Tapping mode AFM image of dDPPC/DC-Chol ( 95 : 5 ) with DNA on wafer. Left : height image. Right : 2D gradient image. Image size : 5100 nm × 5100 nm. 82
Figure 5-8. Tapping mode AFM image of dDPPC/DC-Chol ( 80 : 20 ) without DNA on wafer. Left : height image. Right : 2D gradient image. Image size : 2500 nm × 2500 nm. 83
Figure 5-9. Tapping mode AFM image of dDPPC/DC-Chol ( 50 : 50 ) with DNA on wafer. Left : height image. Right : 2D gradient image. Image size : 2500 nm × 2500 nm. 83
Figure 5-10. Tapping mode AFM image of dDPPC/DC-Chol (0 : 100 ) with DNA on wafer. Left : height image. Right : phase image. Image size : 2300 nm × 2300 nm. 84
Figure 5-11. In-situ neutron reflectivity of TC-Chol and DC-Chol monolayers at the air-liquid interface with and without DNA in the subphase. 90
Figure 5-12. The neutron scattering length density profiles determined from the in-situ neutron reflectivity data. 91
Figure 5-13. A probable structure of DC-Chol/DNA at air-water interface. 92
Figure 6-1. The π-A isotherms of the pure DC-Chol and DC-Chol/DNA at different calcium ion concentrations. 101
Figure 6-2. The X-ray reflectivity of the DC-Chol and DC-Chol/DNA LB films prepared at different calcium ion concentrations. 102
Figure 6-3. The X-ray Scattering Length Density (SLD) profiles determined from the fitting results of X-ray reflectivity data. 103
Figure 6-5. The in-situ neutron reflectivity of DC-Chol/DNA with adding different concentration of CaCl2. (a) R v.s. qz, (b) Rq4 v.s. qz . 105
Figure 6-6. The neutron Scattering Length Density (SLD) profile by in-situ neutron reflectivity data fitting results of DC-Chol/DNA with adding different concentration of CaCl2. 106
Figure 6-7. The π- A isotherms of the pure DC-Chol and DC-Chol/DNA at different ion concentrations. (a) DC/DNA + 1 mM ions, (b) DC/DNA + 10 mM ions, (c) DC/DNA + 20 mM ions, (d) DC/DNA + 30 mM ions. 115
Figure 6-8. The X-ray reflectivity of the pure DC-Chol and DC-Chol/DNA + MgCl2 at different ion concentrations. 116
Figure 6-9. The X-ray reflectivity of the pure DC-Chol and DC-Chol/DNA + CaCl2 at different ion concentrations. 117
Figure 6-10. The X-ray reflectivity of the pure DC-Chol and DC-Chol/DNA + BaCl2 at different ion concentrations. 118
Figure 6-11. The adsorbed DNA layer thickness as a function of the divalent ion concentration. 119
Figure 6-12. The X-ray Scattering Length Density (SLD) profiles in the case of DC/DNA + 30 mM ions determined from the fitting results of X-ray reflectivity data. 120
Figure 7-5. The in-house X-ray reflectivity of mixed lipid with DNA at different pH. 133
Figure 7-6. Tapping mode AFM image of DC/DNA pH2 on wafer. Image size (a) 5.1 μm × 5.1 μm, (b) 10.2 μm × 10.2 μm. 135
Figure 7-7. Tapping mode AFM image of dDPPC:DC(1:1)/DNA pH2 on wafer. Image size (a) 12 μm × 12 μm, (b) line profile. 136
Figure 7-8. Tapping mode AFM image of dDPPC/DNA pH2 on wafer. (a) Height image, (b) Phase image. Image size: 5 μm × 5 μm. 137
Figure 7-9. Tapping mode AFM image of DNA pH2 on wafer. (a) Height image, (b) Phase image. Image size: 10 μm × 10 μm. 138
Ch.1
[1] Krauch, T.; Zaitsev, S. Yu.; Zubov, V. P. Colloids Surf. 1991, 57,383
[2] Ahuja, R.; Caruso, P.; Mo¨bius, D.; Paulus, W.; Ringsdorf, H.; Wildburg, G. Angew. Chem., Int. Ed. Engl. 1993, 32, 1033
[3] Shimomura, M.; Nakamura, F.; Ijiro, K.; Taketsuna, H.; Tanaka, M.; Nakamura, H.; Hasebe, K. Thin Solid Films 1996, 284/285, 691
[4] Shimomura, M.; Nakamura, F.; Ijiro, K.; Taketsuna, H.; Tanaka, M.; Nakamura, H.; Hasebe, K. J. Am. Chem. Soc. 1997, 119, 2341
[5] Shimomura, M. Prog. Polym. Sci. 1993, 18, 295
[6] Miyano, K.; Asano, K.; Shimomura, M. Langmuir 1991, 7, 444
[7] Okahata, Y.; Kobayashi, T.; Tanaka, K. Langmuir 1996, 12, 1326
[8] Ijiro, K.; Shimomura, M.; Tanaka, M.; Nakamura, H.; Hasebe, K. Thin Solid Films 1996, 284/285, 780
[9] Ijiro, K.; Ikeda, T.; Shimomura, M.; Kago, K.; Matsuoka, H.; Yamaoka, H. Polym. Prepr. Jpn. 1998, 47, 767
[10] Carvana, D. J.; Heller, A. J. Am. Chem. Soc. 1999, 121, 769
[11] Sergeyev, V. G.; Pyshkina, O. A.; Lezov, A. V.; Melnikov, A. B.; Ryumtsev, E. I.; Zezi, A. B.; Kabanov, V. A. Langmuir 1999, 15, 4434
[12] Higashi, N.; Takahashi, M.; Niwa, M. Langmuir 1999, 15,111
[13] Winfree, E.; Liu, F.; Wenzier, L. A.; Seeman, N. C. Nature 1998, 394, 539
[14] Braun, E.; Eichen, E.; Sivan, U.; Ben-Yoseph, G. Nature 1998, 391, 775
[15] Okahata, Y.; Kobayashi, T.; Tanaka, K. Langmuir 1996, 12,1326
[16] Kago, K.; Matsuoka, H.; Yoshitome, R.; Yamaoka, H.; Ijiro, K.; Shimomura, M. Langmuir 1999, 15, 5193
[17] Fukushima, T.; Inoue, Y.; Hayakawa, T.; Taniguchi, K.;Miyazaki, K.; Okahata, Y. J. Dent. Res. 2001, 80, 1772
[18] Oliveira Brett, A.M.; Chiorcea, A.M. Electrochemistry Communications 2003, 5, 178
[19] Butler, J. C.; Angeline, T.; Tang, J. X.; Wong C.L. Phys. Rev. Lett. 2003, 91, 028301
[20] Koltover, I.; Wagner, K.; Safinya, C. R. PANS 2000, 97, 14049
[21] Koltover, I.; Salditt, T.; Radler, J. O.; Safinya, C. R. Science 1998, 281, 78


Ch.2.
[1] Lasic, D. D.; Templeton, N. S. Adv. Drug Delivery Rev. 1996, 20, 221.
[2] Miller A. D. Angew. Chem. Int. Ed. 1998, 37, 1768.
[3] Gennis, R. B. Biomembranes: Molecular Structure and Function. Springer-Verlag Press: New York, 1989.
[4] Israelachvili, J. Innermolcular and Surface Forces. Academic Press: New York,
1985.
[5] Nakanishi, M.; Noguchi, A. Advanced Drug Delivery Reviews 2001, 52, 197
[6] Felgner, P. L.; Gadek, T. R.; Holm, M.; Roman, R.; Chan, H. W.; Wenz, M., Northrop, J. P.; Ringold, G. M.; Danielsen, M. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 7413.
[7] Sternberg, B.; Sorgi, F. L.; huang, L. FEBS Lett. 1994, 356, 361.
[8] Gustafsson, J.; Arvidson, G..; Karlsson, G.; Almgren, M. Biochim. Biophys. Acta. 1995, 1235, 305.
[9] Lasic, D. D.; Strey, H.; Stuart, M. C. A.; Podgornik, R.; Frederik, P. M. J. Am. Chem. Soc. 1997, 119, 832.
[10] Rädler, J. O.; Koltover, I.; Salditt, T.; Safinya, C. R. Science 1997, 275, 810.
[11] Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 441.
[12] Fang, Y.; Yang, J. J. Phys. Chem. B 1997, 101, 3453.
[13] Koltover, I.; Salditt, T.; Rädler, J. O.; Safinya, C. R. Science 1998, 281, 78.
[14] O’Hern, C. S.; Lubensky, T. C. Phys. Rev. Lett. 1998, 80, 4345.
[15] Battersby, B. J.; Grimm, R.; Huebner, S.; Cevc, G. Biochim. Biophys. Acta. 1998, 1235, 379.
[16] Schmutz, M.; Durand, D.; Debin, A.; Palvadeau, Y.; Etienne, A.; Thierry, A. R. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 12293.
[17] Safinya, C. R. Curr. Opinion Struct. Biol. 2001, 11, 440.
[18] Felgner, P. L. Nature 1991, 349, 351.
[19] Koltover, I.; Salditt, T.; Safinya, C. R. Biophys. J. 1999, 77, 915.
[20] Rädler, J.O.; Koltover, I.; Jamieson, A.; Salditt, T.; Safinya, C. R. Langmuir 1998, 14, 4272.
[21] Subramanian, G.; Hjelm, R. P.; Deming, T. J.; Smith, G. S.; Li, Y.; Safinya, C. R. J. Am. Chem. Soc. 2000, 122, 26.
[22] Wong, G. C. L.; Tang, J. X.; Lin, A.; Li, Y.; Janmey, P. A.; Safinya, C. R. Science 2000, 288, 2035.
[23] Huebner, S.; Battersby, B. J.; Grimm, R.; Cevc, G. Biophys J. 1999, 76, 3158.
[24] Wagner, K.; Harries, D.; May. S.; Kahl, V.; Rädler, J. O.; Ben-Shaul, A. Langmuir 2000, 16, 303.
[25] Lin, A. J.; Slack, N. L.; Ahmad, A.; George, C. X.; Samuel, C. E.; Safinya, C. R. Biophys. J. 2003, 84, 3307.
[26] Fang, Y.; Hoh, J. H. J. Am. Chem. Soc. 1998, 120, 8903.
[27] Koltover, I.; Wagner, K.; Safinya, C. R. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 14046.
[28] Bloomfield, V. A. Biopolymers 1991, 31, 1471.
[29] Bloomfield, V. A. Curr. Opinion Struct. Biol. 1996, 6, 334.
[30] Bloomfield, V. A. Biopolymers 1997, 44, 269.
[31] Symietz, C.; Schneider, M.; Brezesinski, G.; Mohwald, H. Macromolecules 2004, 37, 3865
[32] Chen, X.; Li, L.; Liu, M. Langmuir 2002, 18, 4449
[33] Chen, X.; Wang, J.; Shen, N.; Luo, Y.; Li, L.; Liu, M.; Thomas, R. K. Langmuir 2002, 18, 6222
[34] Okahata, Y.; Kobayashi, T.; Tanaka, K. Langmuir 1996, 12, 1326
[35] Kago, K.; Matsuoka, H.; Yoshitome, R.; Yamaoka, H.; Ijiro, K.; Shimomura, M. Langmuir 1999, 15, 5193.
[36] McLoughlin, D.; Disa, R.; Lindman, B.; Cardenas, M.; Nylander, T.; Dawson, K.; Miguel, M.; Langevin, D. Langmuir 2005, 21, 1900
[37] Pelta, J.; F. Livolant; J.-L. Sikorav, J. Biol. Chem. 1996 ,271, 5656.
[38] Burak, Y.; Ariel, G.; Andelman, D. Biophys. J. 2003 ,85, 2100.
[39] Raspaud, E.; Olvera de la Cruz, M. ; Sikorav, J.-L.; Livolant, F. Biophys. J. 1998, 74, 381.


Ch.3.
[1] Hénon, S., and Meunier, J. J., Rev. Sci. Instrum. 1991, 62, 936
[2] Hönig, D.G., and Möbius, D. J. Phys. Chem. 1991, 95, 4590
[3] Hossain, M.M., Islam, M.N., Okano, T., and Kato, T. Colloids Surf. A 2002, 205, 249
[4] Kjaer, K., J. Als-Nielsen, C.A. Helm, L.A. Laxhuber and H. M¨ohwald, Phys. Rev. Lett. 1987, 58(21), 2224
[5] Dutta, P., J.B. Peng, M. Lin, J.B. Ketterson, M. Prakash, P. Geogopoulos and S. Ehrlich, Phys. Rev. Lett. 1987, 58(21), 2228–2231.
[6] Helm, C.A., M¨ohwald, H., Kjaer K. and Als-Nielsen J. Biophys. J. 1987, 52, 381
[7] Als-Nielsen, J., W. Sommers, P. Blanckenhagen (eds), 1986, in: Structure and Dynamics of Surfaces, Vol. 2 (Springer, Berlin) ch. 5.
[8] Helm, C.A., M¨ohwald, H., Kjaer, K. and Als-Nielsen, J. Europhys. Lett. 1987 4(6), 697
[9] Buldt, G., H.U. Gally, A.S.J. Seelig and G. Zaccai, Nature 1978, 271, 182
[10] Vaknin, D., K. Kjaer, J. Als-Nielsen and M. L¨osche, Biophys. J. 1991, 59(6), 1325
[11] Vaknin, D., J. Als-Nielsen, M. Piepenstock and M. L¨osche, Biophys. J. 1991, 60, 1545
[12] Grundy, M., R.M. Richardson, S.J. Roser, J. Penfold and R.C. Ward, Thin Solid Films 1988, 159, 43
[13] Bayerl, T.M., R.K. Thomas, J. Penfold, A. Rennie and E. Sackmann, Biophys. J. 1990, 57, 1095


Ch.4.
[1] H. Rapaport, I. Kuzmenko, S. Lafont, K. Kjaer, P.B. Howes, J. Als-Nielsen, M. Lahav, L. Leiserowitz, Biophys. J. 81 (2001) 2729-2736.
[2] K. Gong, S.S. Feng, M.L. Go, P.H. Soew, Colloids Surf. A 207 (2002) 113-125.
[3] M.R. Brzustowicz, V. Cherezov, M. Caffrey, W. Stillwell, S.R. Wassall, Biophys. J. 82 (2002) 285-298.
[4] X. Gao, L. Huang, Biochem. Biophys. Res. Commun. 179 (1991) 280.
[5] C.M. Wu, H.L. Chen, T.L. Lin, W. Liou, J.S. Lin, Langmuir 20 (2004) 9432-9436.
[6] C.M. Wu, W. Liou, H.L. Chen, T.L. Lin, U.S. Jeng, Macromolecules 37 (2004) 4947-4980.
[7] H. Farhood, N. Serbina, L. Huang, Biochim. Biophys. Acta 1235 (1995) 289-295.
[8] S. Huebner, B.J. Battersby, R. Grimm, G. Cevc, Biophys. J. 76 (1999) 3158-3166.
[9] S. Henon, J. Meunier, Rev. Sci. Instrum. J. 62 (1991) 936-939.
[10] D. Honig, D. Mobius, J. Phys. Chem. 95 (1991) 4590-4592.
[11] B.M. Discher, W.R. Schief, V. Vogel, S.B. Hall, Biophys. J. 77 (1999) 2051-2061.
[12] L.G. Parratt, Phys. Rev. 95 (1954) 359-369.
[13] S.S. Feng, Langmuir 15 (1999) 998-1010.


Ch.5.1
[1] D. D. Lasic, H. Strey, M. C. A. Stuart, R. Podgornik, P.M. Frederik, J. Am. Chem. Soc. 119 (1997) 832.
[2] J. O. Rädler, I. Koltover, T. Salditt, C. R. Safinya, Science 275 (1997) 810.
[3] C. S. O’Hern, T. C. Lubensky, Phys. Rev. Lett. 80 (1998) 4345.
[4] B. J. Battersby, R. Grimm, S. Huebner, G. Cevc, Biochim. Biophys. Acta. 1372 (1998) 379.
[5] C. M. Wu, H.L. Chen, T. L. Lin, W. Liou, J.S. Lin, Langmuir 20 (2004) 9432.
[6] R. Dias, S. Mel’nikov, B. Lindman, M.G. Miguel, Langmuir 16 (2000) 9577.
[7] K. Kago, H. Matsuoka, R. Yoshitome, H. Yamaoka, K. Ijiro, M. Shimomura, Langmuir 15 (1999) 5193.


Ch.5.2
[1] S. Li, Z. Ma, Curr. Gene Ther. 1 (2001) 201.
[2] H. Glausen-Schaumann, H.E. Gaub, Langmuir 15 (1999) 8246.
[3] C. Symietz, M. Schneider, G. Brezesinski, H. Mohwald, Macromolecules 37 (2004) 3865.
[4] X. Chen, L. Li, M. Liu, Langmuir 18 (2002) 4449.
[5] X. Chen, J. Wang, N. Shen, Y. Luo, L. Li, M. Liu, R.K. Thomas, Langmuir 18 (2002) 6222.
[6] Y. Okahata, T. Kobayashi, K. Tanaka, Langmuir 12 (1996) 1326.
[7] K. Kago, H. Matsuoka, R. Yoshitome, H. Yamaoka, K. Ijiro, M. Shimomura, Langmuir 15 (1999) 5193.
[8] D. McLoughlin, R. Disa, B. Lindman, M. Cardenas, T. Nylander, K. Dawson, M. Miguel, D. Langevin, Langmuir 21 (2005) 1900.
[9] L.G. Parratt, Phys. Rev. 95 (1954) 359.
[10] R. Dias, S. Mel’nikov, B. Lindman, M.G. Miguel, Langmuir 16 (2000) 9577.


Ch.6.1
[1] Song Li and Zheng Ma, Curr. Gene Ther. 1 (2001) 201.
[2] Ilya Koltover, Tim Salditt, Joachim O. Rädler, and Cyrus R. Safinya, Science 281 (1998) 78.
[3] Ilya Koltover, Kathrin Wagner, and Cyrus R. Safinya, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 14046.
[4] Jennifer J. McManus, Joachim O. Rädler, and Kenneth A. Dawson, Langmuir 19 (2003) 9630.
[5] Barbara Wetzer, Gerardo Byk, Marc Frederic, Marc Airiau, Francis Blanche, Bruno Pitard, and Daniel Scherman, Biochem. J. 356 (2001) 747.
[6] Keitaro Kago, Hideki Matsuoka, Ryuji Yoshitome, Hitoshi Yamaoka, Kuniharu Ijiro, and Masatsugu Shimomura, Langmuir 15 (1999) 5193.
[7] Yoshio Okahata, Takuya Kobayashi, and Kentaro Tanaka, Langmuir 12 (1996) 1326.
[8] Xiaodong Chen, Lin Li, and Minghua Liu, Langmuir 18 (2002) 4449.
[9] Murali Sastry, Vidya Ramakrishnan, Mrunalini Pattarkine, Anand Gole, and K. N. Ganesh, Langmuir 16 (2000) 9142.
[10] Christian Symietz, Marc Schneider, Gerald Brezesinski, and Helmuth Mö1hwald, Macromolecules 37 (2004) 3865.
[11] D. McLoughlin,R. Dias, B. Lindman, M. Cardenas, T. Nylander, K. Dawson, M. Miguel, and D. Langevin, Langmuir 21 (2005) 1900.
[12] Marité Cárdenas, Tommy Nylander, Bengt Jönsson, and Björn Lindman, J. Colloid Interface Sci. 286 (2005) 166.
[13] Ye Fang and Jie Yang, J. Phys. Chem. B 101 (1997) 441.
[14] Hauke Clausen-Schaumann and Hermann E. Gaub, Langmuir 15 (1999) 8246.
[15] Xiaodong Chen, Jinben Wang, Nan Shen, Yanhong Luo, Lin Li, Minghua Liu, and Robert K. Thomas, Langmuir 18 (2002) 6222.
[16] Shuxi Dai, Xingtang Zhang, Zuliang Du, and Hongxin Dang, Mater. Lett. 59 (2005) 423.
[17] Xiaodong Zhang, Jian Jin, Gang Wang, Wensheng Yang, and Tiejin Li, Mat. Chem. Phys. 77 (2002) 899.
[18] Tsukasa Torimoto, Masahiro Yamashita, Susumu Kuwabata, Takao Sakata, Hirotaro Mori, and Hiroshi Yoneyama, J. Phys. Chem. B. 103 (1999) 8779.
[19] Tsang-Lang Lin, Jui-Ching Wu, U-Ser Jeng, and Naoya Torikai, This will be published in Physica B.
[20] Jui-Ching Wu, Tsang-Lang Lin, U-Ser Jeng, Hsin-Yi Lee, and Thomas Gutberlet, This will be published in Physica B.
[21] Rita Dias, Sergey Mel’nikov, Bjo¨rn Lindman, and Maria G. Miguel, Langmuir 16 (2000) 9577.


Ch.6.2
[1] I. Koltover, K. Wagner, C. R. Safinya, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) 14046.
[2] K. Kago, H. Matsuoka, R. Yoshitome, H. Yamaoka, K. Ijiro, M. Shimomura, Langmuir 15 (1999) 5193.
[3] Y. Okahata, T. Kobayashi, Kentaro Tanaka, Langmuir 12 (1996) 1326.
[4] C. Symietz, M. Schneider, G. Brezesinski, H. Mö1hwald, Macromolecules 37 (2004) 3865.
[5] D. McLoughlin, R. Dias, B. Lindman, M. Cardenas, T. Nylander, K. Dawson, M. Miguel, D. Langevin, Langmuir 21 (2005) 1900.
[6] Y. Fang , J. Yang, J. Phys. Chem. B 101 (1997) 441.
[7] T.-L. Lin, J.-C. Wu, U-Ser Jeng, N. Torikai, This will be published in Physica B.
[8] J.-C. Wu, T.-L. Lin, U-Ser Jeng, H.-Y. Lee, T. Gutberlet, This will be published in Physica B.
[9] R. Dias, S. Mel’nikov, B. Lindman, M. G. Miguel, Langmuir 16 (2000) 9577.
[10] S. Gromelski, G. Brezesinski, Langmuir 22 (2006) 6293.


Ch.7.
[1] Carvana, D. J.; Heller, A. J. Am. Chem. Soc. 1999, 121, 769.
[2] Sergeyev, V. G.; Pyshkina, O. A.; Lezov, A. V.; Melnikov, A. B.; Ryumtsev, E. I.; Zezi, A. B.; Kabanov, V. A. Langmuir 1999, 15, 4434.
[3] Higashi, N.; Takahashi, M.; Niwa, M. Langmuir 1999, 15,111
[4] Okahata, Y.; Kobayashi, T.; Tanaka, K. Langmuir 1996, 12,1326
[5] Kago, K.; Matsuoka, H.; Yoshitome, R.; Yamaoka, H.; Ijiro, K.; Shimomura, M. Langmuir 1999, 15, 5193.
[6] Fukushima, T.; Inoue, Y.; Hayakawa, T.; Taniguchi, K.;Miyazaki, K.; Okahata, Y. J. Dent. Res. 2001, 80, 1772.
[7] Okahata, Y.; Kobayashi, T.; Tanaka, K. Langmuir 1996, 12, 1326.
[8] Ijiro, K.; Shimomura, M.; Tanaka, M.; Nakamura, H.; Hasebe, K. Thin Solid Films 1996, 284/285, 780.
[9] Ijiro, K.; Ikeda, T.; Shimomura, M.; Kago, K.; Matsuoka, H.; Yamaoka, H. Polym. Prepr. Jpn. 1998, 47, 767.
[10] Kago, K.; Matsuoka, H.; Yoshitome, R.; Yamaoka, H.; Ijiro, K.; Shimomura, M. Langmuir 1999, 15, 5193.
[11] L. G. Parratt, Phys. Rev. 1954, 95, 359.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文