跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 19:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇旺申
研究生(外文):Wang Shen Su
論文名稱:電漿處理技術於奈/微米機電系統之應用
論文名稱(外文):Application on nano/micro electromechanical systems using plasma treatment technology
指導教授:方維倫蔡明蒔蔡明蒔引用關係
指導教授(外文):Weileun FangMing Shih Tsai
學位類別:博士
校院名稱:國立清華大學
系所名稱:微機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:190
中文關鍵詞:電漿處理技術薄膜機械性質三維微結構形變控制三維表面加工奈米顆粒自組裝模板
外文關鍵詞:plasma treatment technologymechanical properties of thin filmcontrol of three dimension micro structure deflectionthree dimension surface fabricationnano particles assembled template
相關次數:
  • 被引用被引用:5
  • 點閱點閱:577
  • 評分評分:
  • 下載下載:146
  • 收藏至我的研究室書目清單書目收藏:1
傳統的奈/微米系統元件,主要是利用標準的半導體製程與微加工製程來製作,使得系統元件的功能及應用受到諸多的限制。本論文提出利用電漿處理技術整合奈/微米加工製程,藉由不同的電漿特性的輔助,使奈/微米元件的製程與整合更具彈性,以實現更多功能變化及應用的微系統。在本論文中的研究內容主要可分為四部份。
第一部份是利用氧、氫及氨電漿來對薄膜材料作表面處理,藉由電漿調變表面特性來加強對奈/微米系統元件的功能性及應用性。另外,透過控制不同的電漿種類、處理參數與後續退火程序,能進一步的改善薄膜性質,如表面粗糙度調變、表面化學鍵結控制、硬度、楊氏系數等。此部份的薄膜材料是以二氧化矽及多晶矽薄膜來作為此技術實現的例子。
第二部份是利用氨電漿對二維的微結構作表面處理,並配合奈/微米加工技術製作出懸浮的微結構。藉由電漿處理過後的微結構能產生不同的等效力矩變化,來調變其三維懸浮結構的形變特性。另外,設計不同的電漿處理位置及區域能進一步的控制懸浮微結構的形變結果,如形狀、曲率及挫曲方向等。此部份的懸浮微結構是以微懸臂樑及微橋式樑來作為此技術實現的例子。
在第三部份提出一個新型三維結構表面加工技術,在高深寬比的三維結構表面進行微影與金屬沈積。此部份三維結構表面加工技術主要整合電漿處理技術、單分子自組裝技術與無電鍍接觸置換法,來達成三維結構表面之微影與金屬沈積。利用此三維結構表面加工技術,在不同深度(50-200μm)與不同側壁角度(54.7-90°)的矽凹槽上,成功的完成金屬導線結構定義與沈積。另外在具有懸浮微結構的矽凹槽表面上,亦成功的定義與沈積金屬導線。特別的是,在懸浮微結構底下被遮蓋住的矽凹槽表面,亦能成功的定義與沈積金屬導線。最後,利用此技術實際應用在微靜電致動器元件上。
第四部份是利用電漿對矽基材表面作改質,並配合自組裝單分子接合與定義來製作奈/微米顆粒自組裝模板。利用電漿處理表面區域與自組裝單分子表面區域間不同的親、疏水特性質,來使含有奈/微米顆粒的液珠藉由毛細力進行自組裝。此技術中主要藉由氧與氫電漿處理過後的矽基材表面能產生不同的液珠接觸角度,進一步來控制奈/微米顆粒自組裝高度。另外,使用不同的奈/微米顆粒尺寸和定義自組裝分子的微影方法,可控制顆粒自組裝圖形的解析度與線寬。此部份的奈/微米顆粒自組裝模板是利用氧及氫電漿處理後,藉由商用奈米顆粒聚苯乙烯與二氧化矽膠體顆粒作為此技術實現的例子。
The traditional nano/micro systems devices were fabricated using standard semiconductor processes as well as micro fabrication processes. Thus the design and applications of the nano/micro devices are frequently limited to these processes. In this study, the integration of various plasma treatment technologies with the micro fabrication processes has successfully been established. The applications of the plasma treatments on various nano/micro devices are also demonstrated. This study is organized and presented as the following four parts:
Firstly, the tuning of thin film properties by means of plasma surface modification was discussed. To demonstrate the feasibility of this approach, various plasma treatments, including O2, H2 and NH3 atmospheres, on silicon oxide and ploy silicon films were investigated. Other parameters including, treatment conditions and annealing process, were also used to tune the thin film characteristics (e.g. surface roughness, surface chemical bonding, hardness, Young’s modulus and residual stress).
In the second part, the NH3 plasma was employed to modify the surface characteristic of thin film. Thus, the shape of suspended micromachined structures made of the treated film can be tuned. Moreover, the combination of various plasma treatment positions and areas could further control the deflection profile of three dimension of micro suspension structure, such as shape, curvature and buckling direction. To show the feasibility of this approach, the shape-control of bending cantilevers and buckling bridges (clamped-clamped beam) were demonstrated.
In the third part, the lithography and deposition on a complicated three dimension substrate surface were demonstrated under the assistant of plasma treatment. The selective film deposition on three dimension surface and even underneath the suspended microstructures is realized using the contact displacement electroless plating. In applications, the Cu film was conformally plated and patterned on a Si substrate with 50µm~200µm deep cavities and 54.7�a~90�asidewalls. Moreover, the Cu electrode underneath suspended microbeams was also plated.
Finally, this study has established a plasma-assisted particle assembly template to fabricate nano/micro patterns through self-assembly on hydrophilic regions. The plasma surface modification is employed to tune the contact angle of droplet, so as to further tune the shape and thickness of self-assembled particles. In applications, the micro/nano patterns formed by commercial polystyrene (PS) and colloidal silica slurry (Bayer-50CK) particles after O2 and H2 plasma treatments were successfully demonstrated.
目錄
中文摘要 I
Abstract III
誌謝 V
目錄 VII
表目錄 X
圖目錄 XI
第一章 序論 1
1-2研究背景 2
1-2-1 薄膜機械性質調變 2
1-2-2 微結構三維形變控制 3
1-2-3 3D微細加工 4
1-2-4 奈米粒子自組裝模板 5
1-3 研究目標 6
1-4 全文架構 7
第二章 電漿處理技術於薄膜機械性質調變 21
2-1 二氧化矽薄膜機械性質調變 21
2-1-1 實驗步驟 22
�� 二氧化矽微懸臂樑製作 22
�� 薄膜化學與機械性質量測 22
2-1-2 結果與討論 23
不同電漿處理種類對二氧化矽之影響 23
不同氨電漿處理參數對二氧化矽之影響 24
2-2 多晶矽薄膜機械性質調變 25
2-2-1 實驗步驟 25
2-2-2 結果與討論 26
�� 表面形貌及化學性質分析 26
�� 機械性質分析 27
2-3 結論 28
第三章 電漿處理技術於微結構控制 41
3-1 微懸臂樑控制 41
3-1-1 實驗設計概念與步驟 42
3-1-2 實驗結果 43
3-1-3 分析與討論 45
3-2 微橋式樑控制 47
3-2-1 實驗設計概念與步驟 48
3-2-2 結果討論 49
3-3 結論 51
第四章 電漿處理技術於3D微細加工之應用 67
4-1 前言 67
4-2 三維結構表面加工測試 69
4-2-1 實驗與結果討論 69
4-3 新型三維微細加工製程平台 73
4-3-1新型三維加工平台實驗步驟 74
4-3-2結果與討論 77
4-4 整合高深比下電極元件製作 80
4-5 結論 81
第五章 電漿處理技術於奈米顆粒自組裝 109
5-1 X-Y-Z軸奈米顆粒自組裝 109
5-1-1 自組裝實驗設計概念與步驟 110
5-1-2 自組裝實驗結果與討論 110
5-2利用微接觸式印刷技術製備奈米級顆粒自組裝模板 113
5-2-1微接觸式印刷技術自組裝模板製備流程 114
5-2-2微接觸式印刷技術自組裝模板結果討論 114
5-3 結論 116
第六章 總結 135
6-1 研究成果 135
6-2 未來工作 136
參考文獻 138
附錄A 奈米金顆粒自組裝模版 151
A-1 前言 151
奈米顆粒大小對於自組裝模板之影響 153
奈米金顆粒自組裝模板之概念 153
奈米顆粒選擇性作用力的影響 155
A-2 實驗 156
新型奈米金顆粒自組裝模板製作流程 156
奈米金顆粒組裝流程 158
A-3 結果與討論 159
新型奈米金顆粒自組裝模板製作結果 159
金顆粒自組裝於不同選擇性的自組裝膜板 161
A-4結論 164
論文著作 187



表目錄
表1-1 利用不同擴散及退火製程來調變多晶矽薄膜機械性質11
表2-1 二氧化矽薄膜電漿處理參數 29
表2-2 田口法L4(23)直交表因子與水準分配 29
表2-3 田口法L4(23)直交表參數分配 29


圖目錄
圖1-1多晶矽薄膜上不同形狀設計來改變機械性質[15] 11
圖1-2使用形狀設計來改變多晶矽機械性質[15] 12
圖1-3 利用不同沈積系統及退火對鍺化矽薄膜的影響。(●為APCVD-SIGE, ■為RPCVD-SIGE,◆為APCVD-POLY SI) [16] 12
圖1-4利用電沈積法於矽孔洞下製作RF元件鋁導線[43-45] 13
圖1-5利用電沈積法於矽孔洞下製作銅導線[43-45] 13
圖1-6利用電沈積法於375ΜM深的矽孔洞下沈積光阻[43-45] 14
圖1-7利用噴霧被覆法於矽孔洞下沈積光阻[46] 15
圖1-8利用噴霧被覆法於矽孔洞下沈積光阻及利用加溫回溶光阻[46] 15
圖1-9利用噴霧被覆法於矽孔洞下沈積光阻及微影製造3D結構[46] 16
圖1-10 在PH值在9時PBMA-COOH粒子在其甲矽烷上自行組裝的結果[47] 17
圖1-11 利用PDMS微印章壓製備自組裝模板[48] 17
圖1-12利用PDMS微印章壓印後粒子組裝的結果[48] 18
圖1-13 利用礸石尖針加工OTS表面及二氧化矽奈米粒子組裝[49] 18
圖1-14 利用礸石尖針加工的自組裝模板組裝二氧化矽奈米粒子結果[49] 19
圖1-15 利用特殊UV光源定義自組分子模板[50] 19
圖1-16利用特殊UV光源定義自組分子模板組裝聚苯乙烯奈米粒子[50] 20
圖1-17 使用電漿理技術於微/奈米系統之應用 20
圖2-1 二氧化矽微懸臂樑製作流程 30
圖2-2 不同電漿處理後的微懸臂樑SEM圖 (A)無電漿處理 (B)經氫電漿處理(C) 經氧電漿處理(D) 經氨電漿處理 30
圖2-3 經由不同電漿處理的二氧化矽表面XPS圖譜 (A)N1S, (B)SI2P (C)O1S 能階 31
圖2-4 不同電漿處理後的二氧化矽表面SIMS 縱深分佈 32
圖2-5 不同電漿處理後的微懸臂樑靜態端點形變 32
圖2-6 不同電漿處理後的微懸臂樑靜態曲率可靠度測試 33
圖2-7 不同電漿處理過後的微懸臂樑利用動態法求得的等效楊氏係數 33
圖2-8 不同電漿處理過後的表面(A)楊氏係數及(B)硬度與壓痕深度的關係 34
圖2-9 處理不同氨電漿參數後的二氧化矽表面SIMS 縱深分佈 35
圖2-10 處理不同氨電漿參數後的微懸臂樑靜態端點形變 35
圖2-11 處理不同氨電漿參數過後的表面硬度與壓痕深度的關係 36
圖2-12 不同電漿處理後的多晶矽SEM表面形貌 (A)無電漿處理 (B)氨電漿處理 (C) 氧電漿處理(D) 氫電漿處理 36
圖2-13 不同電漿處理後的多晶矽AFM表面形貌 (A)無電漿處理 (B)氨電漿處理 (C)氧電漿處理 (D) 氫電漿處理 37
圖2-14 不同電漿處理後的多晶矽表面FTIR分析 37
圖2-15 不同電漿處理及600℃真空退火的多晶矽薄膜表面XPS分析(A)N1S (B) SI2P 能階 38
圖2-16 不同電漿處理及600℃真空退火的多晶矽薄膜SIMS縱深分析 38
圖2-17 不同電漿處理後的多晶矽薄膜楊氏係數對壓痕深度之關係: (A)無退火 (B) 600℃真空退火 39
圖2-18 不同電漿處理後的多晶矽薄膜硬度對壓痕深度之關係: (A)無退火 (B) 600℃真空退火 40
圖3-1 利用電漿處理技術於微懸臂樑製造流程圖 52
圖3-2 經由氨電漿處理後的二氧化矽表面XPS圖譜 (A)N1S, (B)SI2P能階 53
圖3-3 經過不同參數氨電漿處理後的二氧化矽表面SIMS 縱深分佈 54
圖3-4 經過不同參數氨電漿處理後的二氧化矽微懸臂樑變形結果 54
圖3-5 不同參數氨電漿對X1與X2區域作處理後之微懸臂樑SEM結果 55
圖3-6 不同參數氨電漿對X1與X2區域作處理後之微懸臂樑變形結果 55
圖3-7 (A)不同參數氨電漿對微懸臂樑長度方向作處理之SEM結果(B)不同參數氨電漿對微懸臂樑長度方向作處理之變形結果 56
圖3-8 不同參數氨電漿對Y1與Y2區域作處理後之微懸臂樑SEM結果 57
圖3-9 不同參數氨電漿對Y1與Y2區域作處理後之微懸臂樑變形結果 57
圖3-10 利用有限元素法模擬不同參數氨電漿對(A)X1與X2 (B) Y1與Y2區域作處理後之微懸臂樑變形結果 58
圖3-11 不同參數氨電漿對長度方向不同區域作處理後之複雜變形形狀微懸臂樑變形結果 59
圖3-12 不同曲率微懸臂樑對氨電漿處理區域Y1作圖 59
圖3-13 利用電漿處理技術控制微橋式樑挫曲方向設計概念(A)向上挫曲 (B)向上挫曲。 60
圖3-14 利用電漿處理技術控制微橋式樑形狀偏移設計概念。 61
圖3-15 利用電漿處理技術於微橋式樑製造流程圖 62
圖3-16 經過氨電漿處理後的二氧化矽表面SIMS 縱深分佈 62
圖3-17氨電漿處理後的二氧化矽微懸臂樑變形結果 63
圖3-18氨電漿局部處理於微橋式樑(A)二側及(B)中間區域之變形圖片 63
圖3-19氨電漿局部處理於微橋式樑(A)二側及(B)中間區域之變形曲線。 64
圖3-20氨電漿局部處理於微橋式樑(A)二側及(B)中間區域之挫曲方向結果。 65
圖3-21氨電漿局部處理於微橋式樑不同區域位置之形變結果(A)實驗量測結果及(B)模擬結果。 66
圖4-1 2D微結構加工製程流程圖 82
圖4-2 2D微結構加工製程結果 83
圖4-3 3D微結構加工製程流程圖 84
圖4-4 利用ICP製作矽晶片遮罩 85
圖4-5 圖案轉移相反之3D微結構加工製程結果 86
圖4-6 圖案轉移相反之3D微結構加工製程原因 86
圖4-7 新型整合電漿技術於3D微細加工製程平台流程圖 87
圖4-8利用ICP矽遮罩轉移圖案的銅置換3D微結構SEM照片 88
圖4-9不同電化學接觸置換參數與無電鍍金屬 89
圖4-10利用鈀電化學接觸置換與還原無電鍍鎳金屬導線結果 90
圖4-11 3D微結構加工中(A)頂部的雷射矽遮罩與(B)底部的矽孔洞照片 91
圖4-12 3D微結構加工對準設計(A)雷射矽遮罩對準十字與 (B) 相對應底部的對準矽孔洞 (C)對準後經銅置換後的結果照片 91
圖4-13經雷射加工後的雷射矽遮罩之光學顯微鏡照片 92
圖4-14經銅置換後的3D微結構照片 93
圖4-15各式不同圖案設計的銅置換3D微結構SEM照片 94
圖4-16 三維表面加工技術概念圖 95
圖4-17 三維表面加工技術製程流程圖 96
圖4-18 三維表面加工技術整合於微機電系統元件製程流程圖 97
圖4-19 三維表面加工技術於側壁為54.7°矽凹槽表面進行微影與金屬沈積之SEM照片 98
圖4-20 利用無電鍍接觸置換法沈積銅金屬之X光繞射圖譜 99
圖4-21 不同準直性氧電漿參數於高深寬比結構表面作銅金屬線寬尺寸調變 99
圖4-22 三維表面加工技術於(A)側壁為90°矽凹槽與(B)複雜的側壁角度表面進行微影與金屬沈積之SEM照片 100
圖4-23 三維表面加工技術於具有懸浮結構之矽凹槽表面進行微影與金屬沈積之SEM照片 101
圖4-24 三維表面加工技術於懸浮結構底部進行微影與金屬沈積SEM照片 102
圖4-25 三維表面加工技術整合於微機電系統元件之SEM照片(A)側示圖 (B)截面圖 103
圖4-26 矽凹槽下電極(CU/SI)之SEM照片與EDS圖譜量測結果 103
圖4-27 矽凹槽下電極(CU/SI)之SEM照片 104
圖4-28 (A)靜電式吸附致動器量測架設 (B) 微懸臂樑位移量與趨動電壓之結果 105
圖4-29 無電漿預處理與氧電漿預處理所造成3D圖案定義結果 105
圖4-30氫與氧電漿預處理在具備懸浮結構的矽基材上所造成3D圖案定義結果 106
圖4-31 利用電化學接觸置換與無電鍍銅製作高深寬比上下電極致動器 106
圖4-32利用電化學接觸置換與無電鍍銅製作下電極概念應用於聚焦透鏡之設計 107
圖4-33製作上下電極聚焦透鏡流程圖 107
圖4-34製作上下電極聚焦透鏡結果 108
圖5-1 奈米粒子自組裝模板流程圖 118
圖5-2 奈米粒子之SEM照片(A)PS-800NM (B) PS-300NM (C) SILICA-100NM 119
圖5-3 無電漿處理之粒子自組裝SEM結果 120
圖5-4 利用800NM PS奈米粒子自組裝之SEM照片 121
圖5-5 利用300NM PS奈米粒子自組裝之SEM照片 122
圖5-6 利用100NM SILICA奈米粒子自組裝之SEM照片 123
圖5-7 利用不同微影方法定義尺寸之奈米粒子自組裝結果SEM照片 124
圖5-8 利用不同電漿處理技術控制奈米粒子Z軸方向組裝概念圖 125
圖5-9不同電漿處理矽基材表面之FTIR分析 125
圖5-10 利用不同電漿處理技術來控制奈米粒子Z軸方向組裝結果SEM照片 126
圖5-11不同電漿處理矽基材表面之AFM分析 127
圖5-12不同電漿處理矽基材表面之SIMS分析(A)氧電漿 (B)氫電漿 127
圖5-13不同電漿處理矽基材表面及自組裝單分子接合後之接觸角結果 128
圖5-14不同電漿處理矽基材表面時間之奈米粒子自組裝厚度結果 128
圖5-15 ZETA電位與平均粒子粒徑於不同PH值下之量測結果 129
圖5-16 不同PH值下奈米粒子自組裝厚度結果 129
圖5-17 利用微加工技術製備PDMS微印章流程 130
圖5-18(A)(B)經ICP蝕刻後之矽基材結構與(C)(D)經PDMS轉印後微結構之SEM形貌 130
圖5-19 微接觸印刷自組裝模板製備及奈米顆粒組裝流程圖 131
圖5-29 奈米二氧化矽膠體顆粒之FESEM表面形貌 132
圖5-21 奈米二氧化矽膠體溶液之粒徑分佈結果 132
圖5-22 SIO2/SI基材經PDMS微印章圖案轉移後之SEM表面形貌 133
圖5-23 SIO2/SI基材表面親/疏水性之接觸角量測結果 133
圖5-24 奈米二氧化矽膠體顆粒在自組裝模板組裝後之SEM形貌 134
圖5-25 組裝後之奈米二氧化矽膠體顆粒之FESEM橫切面形貌 134
圖A-1 自組裝/轉移/整合(SELF-ASSEMBLY, TRANSFER, AND INTEGRATION, SATI) 技術概念[102]。 165
圖A-2 模板輔助自組裝法(TEMPLATE-ASSISTED SELF-ASSEMBLY, TASA)示意圖[106]。 165
圖A-3 利用模板輔助自組裝法,組裝聚苯乙烯顆粒流程圖 [104]。 166
圖A-4 利用模板輔助自組裝法,組裝聚苯乙烯顆粒於微透鏡之應用[104]。 166
圖A-5 不同顆粒尺寸等級的自組裝模式: 100微米等級時,則主要是利用重力(FG)來作組裝; 500奈米等級時,則主要是利用毛細力(FC)來作組裝。[102] 167
圖A-6 不同尺度的顆粒在流體系統下進行自組裝時,顆粒本身與基材間將會有不同的作用力關係:(A)在微米尺度下,毛細力[FC] >界面作用力[FI] (B)在奈米尺度下,毛細力[FC] <界面作用力[FI] (C)在奈米尺度下,毛細力[FC] >靜電力[FE] [106] 168
圖A-7. 利用物理與化學作用力間的選擇性概念,來應用於奈米金顆粒自組裝模板 169
圖A-8. 單層奈米金顆粒組裝方法[110] 170
圖A-9單層奈米金顆粒組裝過程(A)APTS沉積於已定義圖案的PMMA結構上(B)移除PMMA(C) 奈米金顆粒自組裝 [110] 170
圖A-10 20NM金顆粒組裝於APTS/SIO2的表面 [110] 171
圖A-11 利用奈米壓印的方法,將金膜轉印到含有MPTMS自組裝單分子的矽基材上。(A) 矽基材表面改質 (B) 氣相沉積MPTMS自組裝單分子(C) 奈米壓印金膜於MPTMS自組裝單分子上 (D) 移除壓印模仁 [113] 171
圖A-12 三種使用於奈米金顆粒自組裝模板的自組裝單分子化學結構示意圖 172
圖A-13 奈米金顆粒在自組裝模板上藉由不同的物理作用力(毛細力)來達到自組裝 172
圖A-14 奈米金顆粒在自組裝模板上藉由不同的物理作用力(毛細力)來達到自組裝 173
圖A-15 水液滴在不同的材料表面,將產生不同的接觸角物理特性 (A) MUA自組裝單分子表面 [109] (B) 自然氧化層表面[99] (C) 氮化矽表面 (D) 金表面 [110] 173
圖A-16 奈米金顆粒在自組裝模板上藉由不同的物理作用力(毛細力)與化學作用力(靜電吸引力/APTS)來達到自組裝 174
圖A-17 奈米金顆粒在自組裝模板上藉由不同的物理作用力(毛細力)與化學作用力(鍵結力/MPTMS)來達到自組裝 174
圖A-18 利用氮化矽系統作為上表面的奈米金顆粒自組裝模板製作流程 175
圖A-19 利用金系統作為上表面的奈米金顆粒自組裝模板製作流程 176
圖A-20 奈米金顆粒在自組裝模板上組裝流程示意圖 176
圖A-21 用E-BEAM定義圖案後,再經過微加工製程的氮化矽圖案之光學顯微鏡照片(A) 經過RIE蝕刻4分鐘 (B) 經過RIE蝕刻4分鐘並移除表面的光阻 177
圖A-22 利用E-BEAM定義圖案後,再經過RIE蝕刻4分鐘並移除表面光阻的氮化矽電子顯微鏡照片 178
圖A-23 用E-BEAM定義圖案後,再經過微加工製程的氮化矽圖案之光學顯微鏡照片(A) 經過RIE蝕刻8分鐘 (B) 經過RIE蝕刻8分鐘並移除表面的光阻 179
圖A-24 利用E-BEAM定義圖案後,再經過RIE蝕刻8分鐘並移除表面光阻的氮化矽電子顯微鏡照片 180
圖A-25 經過RIE蝕刻8分鐘後,移除表面氮化矽的自組裝模板截面電子顯微鏡照片 181
圖A-26 利用AU/CR回填於矽溝槽的電子顯微鏡照片(A)截面圖 (B)正視圖 181
圖A-27 在AU/CR薄膜上進行微加工製程的光學顯微鏡結果(A) E-BEAM定義光阻於AU/CR薄膜上 (B) 對AU/CR進行傳統濕式蝕刻 (C) 蝕刻後移除表面光阻 182
圖A-28 利用界面活性劑伴隨AU與CR蝕刻液,在AU/CR薄膜表面進行不同的蝕刻時間之光學顯微鏡結果(A) 1MIN/1MIN (B) 45SEC/50SEC (C) 30SEC/30SEC (D) 25SEC/25SEC 183
圖A-29 利用界面活性劑伴隨AU與CR蝕刻液,在AU/CR薄膜表面進行不同的蝕刻時間之電子顯微鏡結果(A) 1MIN/1MIN (B) 45SEC/50SEC (C) 30SEC/30SEC (D) 25SEC/25SEC 183
圖A-30 不同材料表面的接觸角量測結果 184
圖A-31 金奈米顆粒在不同材料表面特性之自組裝模板上進行組裝後的電子顯微鏡照片(A) MUA 自組裝單分子(B) 自然氧化層 (C) 金膜 184
圖A-32 金奈米顆粒在不同材料表面特性之自組裝模板上進行組裝後的電子顯微鏡照片(A)氮化矽/自然氧化層 (B) 氮化矽/APTS自組裝單分子 (C) 氮化矽/ MPTMS自組裝單分子 185
圖A-33 金奈米顆粒在不同材料表面特性之自組裝模板上進行組裝後的電子顯微鏡照片(A) MUA自組裝單分子/自然氧化層(B) MUA自組裝單分子/APTS自組裝單分子 (C) MUA自組裝單分子/ MPTMS自組裝單分子 185
圖A-34 金奈米顆粒在金膜/自然氧化層自組裝模板上進行組裝後的電子顯微鏡照片 186
參考文獻
1.K.E. Petersen, “Silicon as a mechanical material,” Proceedings of IEEE, 70, pp. 420-457, 1982.
2.Ming C. Wu, “Micromachining for Optical and Optoelectronic Systems,” Proceedings of IEEE, 85, pp. 1833-1856, 1997.
3.G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of IEEE, 86, pp. 1536-1551, 1998.
4. J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of IEEE, 86, pp. 1552-1574, 1998.
5. R. S. Muller, and K. Y. Lau, “Surface-micromachined microoptical elements and systems,” Proceedings of IEEE, 86, pp. 1705-1720, 1998.
6. W. Fang and J. A. Wickert, “Determining mean and gradient residual stresses in thin films using micromachined cantilevers,” Journal of Micromechanicas and Microengineering, 6, pp.301-309, 1996.
7. J. F. Manceau, L. Robert, F. O. Bastien, C. Oytana and S. Biwersi, ”Measurement of residual stresses in a plate using a vibrational technique-application to electrolytic nickel coatings,” Journal of microelectromechanical systems, 5, pp. 243-249, 1996.
8. L. Kiesewetter, J. M. Zhang, D. Houdeau and A. Steckenborn, “Determination of Young’s moduli of micromechanical thin films using the resonance method, “ Sensors and Actuators A, 35, pp. 153-159, 1992.
9. O. Tabata, K. Kawahata, S. Sugiyama and I. Igarashi, “Mechanical property measurements of thin films using load-deflection of composite rectangular membranes,” Sensors and actuators A, 20, pp. 135-141, 1989.
10. J. H. Jou and L. J. Chen, “Simultaneous determination of the biaxial relaxation modulus and thermal expansion coefficient of regid-rod polymide films using a bending beam technique,” Macromolecules, 25, pp. 179-184, 1992.
11. J. J. Vlassak and W. D. Nix, “A new bulge test technique for the determination of Young’s modulus and Poisson’s ration of thin films,” J. Mater, Res., 7, pp. 3242-3249, 1992.
12. F. Volklein and H. Baltes, “A microstructure for measurement of thermal conductivity of polysilicon thin films,” Journal of microelectromechanical system, 4, pp. 193-196, 1992.
13. W. Fang and C.Y. Lo, “On the thermal expansion coefficients of thin films,” Sensors and Actuators A, 84, 310-314, 2000.
14. H. Mahfoz-Kotb, A.C.Salaun, T. Mohammed-Brahim, F. Le Bihan, M.El-Marssi, ”Polycrystalline silicon thin films for MEMS applications,” Thin Solid Films , 427, pp. 422-426, 2003.
15. Ioannis Chasiotis, Wolfgang G. Knauss, “The mechanical strength of polysilicon films: Part 2. Size efects associated with elliptical and circular perforations,” Journal of the Mechanics and Physics of Solids, 51, pp. 1551-1572, 2003.
16. Sherif Sedky, Paolo Fiorini, Matty Caymax, Stefano Loreti, Kris Baert, Lou Hermans, and Robert Mertens, ”Structural and mechanical properties of polycrystalline silicon germanium for micromachining applications,” Journal of microelectromechanical systems, 7 , pp. 365-372, 1998
17. M. C. Kim, S. H. Yang, J. -H. Boo and J. G. Han, “Surface treatment of metals using an atmospheric pressure plasma jet and their surface characteristics”,, Surface and Coatings Tech., 174-175, pp. 839-844, 2003.
18. W. S. Su, W. Fang, M. S. Tsai, “Tuning the Mechanical Properties of SiO2 Thin Film for MEMS Applications”, Mat. Res. Soc. Symp. Proc., 795, pp. U8.25.1-U8.25-4, 2003.
19. W. S. Su, W. Fang, M. S. Tsai, “Tuning the Mechanical Properties of Poly-Silicon Film by Surface Modification Using Plasma Treatment”, Mat. Res. Soc. Symp. Proc., 820, pp. O8.9.1-O8.9.4, 2004.
20. M. F. A. M. Van Hest, A. Klaver, D. C. Schram and M. C. M. Van De Sanden, “Argon oxygen plasma treatment of deposited organosilicon thin films”, Thin Solid Films, 449, pp. 40–51, 2004.
21. Y. H. Wang, R. Kumar, X. Zhou, J. S. Pan and J. W. Chai, “Effect of oxygen plasma treatment on low dielectric constant carbon-doped silicon oxide thin films”, Thin Solid Films, 473, pp. 132-136, 2005.
22. K. K. Choi, J. H. Yun and S. W. Rhee, “Effect of hydrogen remote plasma annealing on the characteristics of copper film”, Thin Solid Films, 429, pp. 255-260, 2003.
23. Y. M. Chung, M. J. Jung, J. G. Han, M. W. Lee and Y. M. Kim, “Atmospheric RF plasma effects on the film adhesion property”, Thin Solid Films, 447-448, pp. 354-358, 2004.
24. W. Brandl and G. Marginean, “ Functionalisation of the carbon nano fibres by plasma treatment”, Thin Solid Films, 447-448, pp. 181-186, 2004.
25. John A. Thornton and D. W. Hoffman, “Stress-related effects in thin films”, Thin Solid Films, 171, pp. 5-31, 1989.
26. M. Ohring, The Materials Science of Thin Films, San Diego, CA:Academic Press, 1992.
27. M. Ataka, A. Omodaka, and H. Fujita, “ A biomimetic micro motion system,” The 7th International Conference on Solid-State Sensors and Actuators (Transducer ’93), Yokohama, Japan, June, 1993, pp.38-41.
28. C. Goll, W. Bacher, B. Büstgens, D. Maas, W. Menz, and W. K. Schomburg, „Microvalves with bistable buckled polymer diaphragms,“ Journal of Micromechanics and Microengineering, 6, pp.77-79, 1996.
29. B. Hälg, “On a micro electro-mechanical nonvolatile memory cell,”IEEE Transactions on Electron Devices, 37, pp2230-2236.1990.
30. H. Mizoguchi, M. Ando, T. Mizuno, T. Takagi, and N. Nakajima, “Design and fabrication of light driven micropump,” Proceeding of the IEEE Micro Electro Mechanical Systems, Travemünde, Germany, Feb, 1992, pp31-36.
31. M. W. Judy, Y. H. Cho, R. T. Howe and A. P. Pisano, “Self adjusting microstructures (SAMS),”Proceeding of the IEEE MEMS’91 Workshop, Nara, Japan, February, 1991, pp.51-56.
32. G. Lin, C. J. Kim, S. Konish and H. Fujita, “Design, Fabrication, and testing of a C-shape actuator”, The 8th International Conference on Solid-State Sensors and Actuators (Transducers ’95), Eurosensors IX, Stockholm, Sweden, June, 1995, pp.1290-1293.
33. D. C. Miller, W. Zhang and V. M. Bright, “Microrelay packaging technology using flip-chip assembly, “Proceeding of the IEEE MEMS’00 Workshop, Miyazaki, Japan, January, 2000, pp.265-270.
34. R. T. Chen, H. Nguyen and M. C. Wu, “A low voltage micromachined optical switch by stress induced bending”, Micro electro mechanical systems, 1999, pp.424-428.
35. R. T. Chen, H. Nguyen and M. C. Wu, “A high speed low voltage stress induced micromachined 2/sp1 times/2 optical switch, “ IEEE photonics technology letters, 11, No. 11, pp.1396-1398, 1999.
36. M. A. Helmbrecht, U. Srinivasan, C. Rembe, and R. T. Howe, “Micromirrors for adaptive optics arrays”, The 11th International Conference on Solid-State Sensors and Actuators (Transducers ’01), Munich, Germany, June, 2001, pp.1290-1293.
37. V. A. Aksyuk, F. Pardo, C. A. Bolle, S. Arney, C. R. Giles and D. J. Bishop, “Lucent MicrostarTM micromirror array technology for large optical crossconnects, “Processdings of SPIE, Santa Clara, CA, September, 2000, pp.320-324.
38. Lucent Technology, Bell Laboratories Physical Science Research, http://www.bell-labs.com/org/physicalsciences/projects/mems/mems3.html
39. J. Z, Y. C. Lee, V. M. Bright and J. Neff, “ Digitally positioned micromirror for open loop controlled application, “Proceeding of the IEEE MEMS’02 Workshop, Heidelberg, Germany, January, 2000, pp.536-539.
40. Y.-P. Ho, M. Wu, H.-Y. Lin, and W. Fang, “A Robust and Reliable Stress-induced Self-assembly Supporting Mechanism for Optical Devices,” Microsystem Technologies, 11, pp. 214-220, 2005.
41. P. Kersten, S. Bouwstra, J. W. Petersen, “Photolithography on micromachined 3D surfaces using electrodeposited photoresists,” Sensors and Actuators A, 5, pp. 51-54, 1995.
42. Åse Richard, Pelle Rangsten, Carola Strandman and Ylva Bäcklund,” Decreasing the optical path length in an optoelectronic module using silicon micromachining, ” J. Micromech. Microeng. 9, 127–129, 1999.
43. Nga Phuong Pham, Pasqualina M. Sarro, Kiat T. Ng, and Joachim N. Burghartz,” IC-Compatible Two-Level Bulk Micromachining Process Module for RF Silicon Technology,” IEEE Transactions on electron devices, 48, pp.1756-1764, 2001.
44. L.S. Johansen, M. Ginnerup , J.T. Ravnkilde , P.T. Tang , B. Lochel ,“ Electroforming of 3D microstructures on highly structured surfaces,” Sensors and Actuators, 83, 156-160, 2000.
45. Nga Phuong Pham, E. Boellaard, Joachim N. Burghartz, and Pasqualina M. Sarro,” Photoresist Coating Methods for the Integration of Novel 3-D RF Microstructures,” Journal of microelectromechanical systems, 13, pp. 491-499, 2004.
46. V. K. Singh. M. Sasaki, K. Hane, Y. Watanabe, M. Kawakita, H. Hayashi,” Photolithography on three-dimrnsional structures using spray coated negative and positive photoresists” The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, p.1445-1448, June 5-9, 2005
47. Christian Krüger and Ulrich Jonas,” Synthesis and pH-Selective Adsorption of Latex Particles onto Photolithographically Patterned Silane Layers”, Journal of Colloid and Interface Science, 252, pp. 331–338 ,2002.
48. Joanna Aizenberg, Paul V. Braun, and Pierre Wiltzius, “Patterned Colloidal Deposition Controlled by Electrostatic and Capillary Forces” Physical Review Letters, 84, pp. 2997-3000, 2000.
49. Y. Masuda, M. Itoh, T. Yonezawa, and K. Koumoto,” Low-Dimensional Arrangement of SiO2 Particles,” Langmuir, 18, pp. 4155-4159, 2002.
50. Y. Masuda, K. Tomimoto, and K. Koumoto “Two-Dimensional Self-Assembly of Spherical Particles Using a Liquid Mold and Its Drying Process”, Langmuir, 19, pp. 5179-5183, 2003.
51. J. R. Ing Jr., W. Davern and J. Electrochem. Soc. 126, pp. 930,1979.
52. B. K. Tay, D. Sheeja, S. P. Lau, J. X. Guo, “Study of surface energy of tetrahedral amorphous carbon films modified in various gas plasma”, Diam. Relat. Mater., 12, pp. 2072-2076, 2003.
53. Young Suk Kim, Donggeun Jung and Suk-Ki Min, “Effects of N2 plasma treatment of titanium nitride/borophosphosilicate glass patterned substrates on metal organic chemical vapor deposition of copper”, Thin Solid Films, 349, pp. 36-42, 1999.
54. S. Y. Wu, R. D. Souza-Machado and D. D. Denton, “Dielectric and chemical modifications in polyimide films etched in O2/CF4 plasmas”, J. Vac. Sci. Technol., A 11, 1337-1345, 1993.
55. S. Takeda and S. Suzuki, “Improved adhesion of amorphous carbon thin films on glass by plasma treatment” J. Vac. Sci. Technol., A 22, pp. 1297-1300, 2004.
56. C. Yi and S. W. Rhee, “Cyclic plasma deposition of SiO2 films at low temperature (80°C) with intermediate plasma treatment”, J. Vac. Sci. Technol., A 20, pp. 398-402, 2002.
57. L. Miao, S. Tanemura, H. Watanabe, S. Toh, K. Kaneko, “Structural and compositional characterization of N2-H2 plasma surface-treated TiO2 thin films”, Appl. Surf. Sci., 244, 412-417, 2005.
58. Y. Chan and Q. Yu, “Electrochemical characterization of plasma polymer coatings in corrosion protection of aluminum alloys”, J. Vac. Sci. Technol., A 23, 991-997, 2005.
59. J. Lawrence, L. Li, “Wettability characteristics of carbon steel modified with CO2, Nd:YAG, excimer and high power diode laser”, Appl. Surf. Sci., 154-155, 664-669, 2000.
60. J. J. Kim, H. H. Park, S. H. Hyun, “The effects of plasma treatment on SiO2 aerogel film using various reactive (O2, H2, N2) and non-reactive (He, Ar) gases”, Thin Solid Films, 377-378, 525-529, 2000.
61. W.C. Oliver, G.M. Pharr, J. Mater. Res. 7, 1564 (1992).
62. B. Bhushan, V. N. Koinkar, “Microtribological studies of doped single-crystal silicon and polysilicon films for MEMS devices,” Sensors and Actuactors A, 57, pp. 91-102, 1996.
63. S. M. Spearing, “Materials issues in microelectromechanical systems (MEMS)”, Acta Mater., 48, pp. 179-196, 2000.
64. H. -W. Zhou, B. G. Kharas and P. I. Gouma, “Microstructure of thick polycrystalline silicon films for MEMS application”, Sensors and Actuators A: Physical, 104, pp. 1-5, 2003.
65. Kyung-Mun Byun and Won-Jong Lee, “Water absorption characteristics of fluorinated silicon oxide films deposited by electron cyclotron resonance plasma enhanced chemical vapor deposition using SiH4, SiF4”, Thin Solid Films, 376, pp. 26-31, 2000.
66. N. Banerji, J. Serra, P. González, S. Chiussi, E. Parada, B. León and M. Pérez-Amor, “Oxidation processes in hydrogenated amorphous silicon nitride films deposited by ArF laser-induced CVD at low temperatures”, Thin Solid Films, 317, pp. 214-218, 1998.
67. Y. Feng, M. Zhu, F. Liu, J. Liu, H. Han and Y. Han, “Structural evaluation of polycrystalline silicon thin films by hot-wire-assisted PECVD”, Thin Solid Films, 395, pp. 213–216, 2001.
68. A. Diniz, A. P. Sotero, G. S. Lujan, P. J. Tatsch and J. W. Swart, “High quality of ultra-thin silicon oxynitride films formed by low-energy nitrogen implantation into silicon with additional plasma or thermal oxidation”, Nucl. Instrum. Meth. B, 166-167, pp. 64-69, 2000.
69. F. Ténégal, A. Gheorghiu de la Rocque, G. Dufour, C. Sénémaud, B. Doucey, D. Bahloul-Hourlier, P. Goursat, M. Mayne and M. Cauchetier, “Structural determination of sintered Si3N4/SiC nanocomposite using the XPS differential charge effect”, Journal of Electron Spectroscopy and Related Phenomena, 109, pp. 241-248, 2000.
70. G. E. Muilenberg (Ed.), Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer, 1979.
71. J. Avila and J. L. Sacedón, “Reactivity at the Al/Si3N4 interface”, Appl. Phys. Lett., 66, pp. 757-759 (1995).
72. Y. F. Liu, Z. M. Ren, W. D. Song, D. S. H. Chen, “Electronic and optical properties of carbon nitride thin films synthesized by laser ablation under ion beam bombardment”, J. Appl. Phys., 84, pp. 2133-2137, 1998.
73. R. R. A. Syms, “Long travel electrothermally driven resonant cantilever microactuators”, J. Micromech. Microeng., 12, pp. 211-218, 2002.
74. S. Shoji and M. Esashi, “Microflow devices and systems”, J. Micromech. Microeng., 4, pp.157-171, 1994.
75. T. Numazawa, K. Miura, Y. Kawase Kand Hirata, “ Development of a MEMS optical switch composed of ribbon like actuator”, Sei. Technical Review, 56, pp. 37-40, 2003.
76. S Ryder, K B Lee, X Meng and L Lin, “ AFM characterization of out-of-plane high frequency microresonators”, Sensors and Actuators A 114, pp. 135-140, 2004.
77. E. H. Yang and S. S. Yang, “The quantitative determination of the residual stress profile in oxidized P+ silicon films”, Sensors and Actuators A, 54, pp.684-689, 1996.
78. A. J. Perry , D. E. Geist and D. Rafaja, “ Residual stress in cemented carbide following a coating process and after an ion implantation post-treatment of the coating”, Surface and Coatings Technology , 108-109, pp. 225–229, 1998.
79. J. K. Choi, J. Lee, J. B. Yoo, J. S. Maeng and Y. M. Kim, “Residual stress analysis of SiO2 films deposited by plasma enhanced chemical vapor deposition, Surface and Coatings Technology, 131, pp. 153-157, 2000
80. C. Godoy, E. A. Souza, L. M. M. ima and J. C. A. Batista, “ Correlation between residual stresses and adhesion of plasma sprayed coatings: effects of a post annealing treatment”, Thin Solid Films, 420-421, pp. 438-445, 2002.
81. X. L. Peng and T. W. Clyne, “ Residual stress and debonding of DLC films on metallic substrates”, Diamond and Related Materials, 7, pp. 944-950, 1998.
82. I. H. Kim, K. S. Kim, S. H. Kim and S. R. Lee, “Synthesis of cubic boron nitride films using a helicon wave plasma and reduction of compressive stress”, Thin Solid Films, 290-291, pp. 120-125, 1996.
83. Y. F. Lu, Z. M. Ren, W. D. Song and D. S. H. Chan, “Electronic and optical properties of carbon nitride thin films synthesized by laser ablation under ion beam bombardment”, J. Appl. Phys., 84 pp. 2133-2137, 1998.
84. S. Timoshenko and S. Woinowsky-Krieger, “ Theory of Plates and Shells” (New York: McGraw-Hill) 1959.
85. B. P. van Drieënhuizen, J. F. L. Goosen, P. J. French, and R. F. Wolffenbuttel, “Comparison of techniques for measuring both compressive and tensile stress in thin films,”Sensors and Actuators A, 37-38,pp.756-765,1993.
86. H. Guckel, T. Randazzo, and D. W. Burns, “A simple technique for the determination of mechanical strain in thin films with application to polysilicon,” Journal of Applied Physics, 57, pp1671-1675,1985.
87. T. Lisec, S. Hoerschelmann, H. J. Quenzer, B. Wangner, and W.Benecke,“ Thermally driven microvalve with buckling behaviour for pneumatic applications“ Proceeding of the IEEE Micro Electro Mechanical Systems, Oiso, Japan, Jan, 1997,pp19-17.
88. T. Seki, M. Sakata, T. Nakajima, and M. Matsumoto, “Thermal buckling acutator for micro relays,” The 9th Internation Conference on Solid-State Sensors and Actuators (Transducer ’97), Chicago, IL, June, 1997, pp1153-1156.
89. S. Hirata, Y. Ishii, H. Matoba, and T. Inui, “An ink-jet head using diaphragm microactuator,”Proceeding of the IEEE Micro Electro Mechanical Systems, San Diego, CA, Feb, 1996, pp418-423.
90. X. T. Huang, M.T. Saif, and N. C. MacDonald, “A micromotion amplifier,”Proceeding of the IEEE Micro Electro Mechanical Systems, San Diego, CA, Feb, 1996, pp418-423.
91. A. Ettouhami, A. Essaid, N. Ouakrim, L. Michel, and M. Limouri, “Thermal buckling of silicon capacitive pressure sensor”, Sensors and Actuators A, 57, pp.167-171, 1996.
92. T. Matsuura, M. Taguchi, K. Kawata, and K. Tsutsumi, “Deformation control of microbridges for flow sensors,”Sensors and Acturators A, 60, pp.197-201, 1997.
93. W. Fang, C.-H. Lee, and H.-H. Hu, “On the Buckling Behavior of Micromachined Beams,” Journal of Micromechanics and Microengineering, 9, pp. 236-244. 1999
94. V. G. Kutchoukov, M. Shikida, J. R. Mollinger and A. Bossche, “Through-wafer interconnect technology for silicon”, J. Micromech. Microeng., 14, pp. 1029-1036, 2004.
95. M. P. Larsson and R. R. A. Syms, “Self-aligning MEMS in-line separable electrical connecto”, Journal of MEMS, 13, pp. 365-376, 2004.
96. N. P. Pham, E. Boellaard, W. Wien, L. D. M. van den Brekel1, J.N. Burghartz, P. M. Sarro, “Metal patterning on high topography surface for 3D RF devices fabrication”, Sensors and Actuators A, 115, pp. 557-562, 2004.
97. A. Suriadi, Proc. SPIE, pp. 4404 , 2001.
98. W. S. Su, S.T. Lee, C.Y. Lin, M. S. Tsai , M. C. Yip, and W. Fang, “Tuning the Shape and Curvature of Micromachined Cantilever Using Multiple Plasma Treatments Technology”, Sensors & Actuators: A. Physical, 130-131, pp. 553-559, 2006.
99. W. S. Su, W. Fang and M. S. Tsai ,“A Novel Particle Assembly Template using Plasma Surface Modification and Self-assembly Monolayer for Nano/Micro Patterns”, Transducers 05’ (2005) 1453-1456, Seoul, Korea.
100. Y. P. Lee, M. S. Tsai, T. C. Hu, B. T. Dai, and M. S. Feng, “Selective Copper Metallization by Electrochemical Contact Displacement with Amorphous Silicon Film” , Electrochem. and Solid-State Letters, 4, pp. C47-C49 , 2001.
101. Xiaorong Xiong, Yael Hanein, Jiandong Fang, Yanbing Wang, Weihua Wang, Daniel T. Schwartz, and Karl F. Böhringer, ”Controlled Multibatch Self-Assembly of Microdevices,” Journal of Microelectromechanical Systems,12, pp.117-127, 2003.
102. Tobias Kraus, Laurent Malaquin, Emmanuel Delamarche, Heinz Schmid, Nicholas D. Spencer, and Heiko Wolf, “Closing the Gap Between Self-Assembly and Microsystems Using Self-Assembly, Transfer, and Integration of Particles,” Advanced Materials,17, pp.2438–2442, 2005.
103. Sang Hyun Park and Younan Xia, “Macroporous Membranes with Highly Ordered and Three-Dimensionally Interconnected Spherical Proes,” Advanced Materials,10, pp.1045-1048,1998.
104. Yu Lu, Yadong Yin, and Younan Xia, “A Self-Assembly Approach to the Fabrication of Patterned, Two-Dimensional Arrays of Microlenses of Organic Polymers, Advanced Materials,13, pp.34-37, 2001.
105. Yadong Yin, and Younan Xia, “Self-Assembly of Monodispersed Spherical Colloids into Complex Aggregates with Well-Defined Sizes, Shapes, and Structures,” Advanced Materials,13, pp.267-271,2001.
106. Yadong Yin, Yu Lu, Byron Gates, and Younan Xia, “Template-Assisted Self-Assembly: A Practical Route to Complex Aggregates of Monodispersed Colloids with Well-Defined Sizes, Shapes, and Structures,” Journal of American Chemical Society,123, pp.8718-8729,2001.
107. Yadong Yin, and Younan Xia, “Self-Assembly of Spherical Colloids into Helical Chains with Well-Controlled Handedness,” Journal of American Chemical Society,125, pp.2048-2049, 2003.
108. Yadong Yin, Yu Lu, and Younan Xia, “A Self-Assembly Approach to the Formation of Asymmetric Dimers from Monodispersed Spherical Colloids,” Journal of American Chemical Society, 123, pp.771-772,2001.
109. Hideo Notsu, Wakana Kubo, Isao Shitanda and Tetsu Tatsuma, “Super hydrophobic/super hydrophilic patterning of gold surfaces by photocatalytic lithography,” Journal of Maternals Chemistry, 15, pp.1523–1527, 2005.
110. T. Sato, D. G. Harsco, and H. Ahmed, ”Nanoscale colloidal particles: Monolayer organization and patterning,“ Journal of Vacuum Science Technology B, 15, pp.45-48,1997.
111. Julie D. H. Glenn ,and Edmond F. Bowden,“Diffusionless Electrochemistry of Cytochrome b5 Adsorbed on Multilayer Film Electrode,” Chemistry Letters, pp.399-400,1996.
112. Michael V. Pishko, Alexander Revzin, Aleksandr L. Simonian, “Mass Transfer in Amperometric Biosensors Based on Nanocomposite Thin Films of Redox Polymers and Oxidoreductases,” Sensors, 2, pp.79-90,2002.
113. Yueh-Lin Loo, Robert L. Willett, Kirk W. Baldwin, and John A. Rogers, ” Interfacial Chemistries for Nanoscale Transfer Printing,” Journal of American Chemical Society,124, pp.7654-7655,2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top