(3.235.41.241) 您好!臺灣時間:2021/04/15 05:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李平善
論文名稱:偵測阿茲海默症光學陣列生醫感測器之製備
論文名稱(外文):Fabrication of Sol-gel-based Optical Array Biosensor for Detection of Alzheimer's Disease
指導教授:董瑞安
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:64
中文關鍵詞:阿茲海默症溶膠凝膠法生醫感測器
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:54
  • 收藏至我的研究室書目清單書目收藏:0
茲海默症(Alzheimer’s disease)是一種普遍性與年紀相關且會使腦部產生漸進式退化及痴呆的疾病。 目前全世界約有一千七百萬至兩千五百萬的人口得到阿茲海默症,有學者預測在21世紀中期時,全球阿茲海默症患者會成長達到六千萬人以上。 因為如此嚴重的情形被預期會發生,阿茲海默症在這近年來受到極大的重視。部分的研究指出,罹患阿茲海默症病人腦中的beta-amyloid, acetylcholine 和glutamate的含量會產生不正常的情況。因此發展可同時偵測 beta-amyloid, acetylcholine和 glutamate三種物質的生醫陣列型光學感測器,並將其應用於阿茲海默症上有其重要性。
此篇論文目的在利用溶膠凝膠法開發陣列型生醫感測器來測量beta-amyloid, glutamate 及 acetylcholine的含量加以應用於阿茲海默症偵測上。將不同的生物辨識酵素分子horseradish peroxidase (HRP), glutamate dehydrogenase (GLdh) 與acetylcholineasterase (AChE)包埋至溶膠凝膠系統中,並結合著螢光染劑amplex red 及 SNARF-1-dextran,利用其發光特性來分別得知beta-amyloid和glutamate, acetylcholine在系統中的含量。研究中也顯示此感測系統對beta-amyloid, glutamate 和 acetylcholine的偵測極限分別為 0.67 �慊/ml, 0.53�嵱 及1.02 �嵱。 當此生醫偵測系統應用於實際血清真實樣品時,對於beta-amyloid 的偵測極限為1.02 �慊/ml,對glutamate 和acetylcholine的偵測極限各為4.5�n�嵱及0.3�n�嵱。 另此感測器系統對於此三種感測物的偵測範圍可以都到4-5個層級(orders),顯示對於在偵測阿茲海默症的生醫應用上,此溶膠凝膠陣列型生醫感測器提供了一個極佳的成效。
Alzheimer’s disease is a progressive neurodegenerative disease of the brain which is the most common form of age-related dementia. Currently, approximately 17-25 million people worldwide suffer from Alzheimer’s disease, and by the middle of the 21st century, the number of patients with this form of dementia is expected to grow to at least 60 million. Due to that, previous studies have depicted that the beta-amyloid, acetylcholine and glutamate will change abnormally in AD patient brain. Therefore, to fabricate a biosensor for detecting Alzheimer’s disease, especially the amounts of beta-amyloid, acetylcholine and glutamate were is important.
In this study, sol-gel array-based optical biosensors for the detection of the Alzheimer’s disease were fabricated by determining of beta-amyloid, glutamate and acetylcholine. The sol-gel array-based optical biosensors were encapsulated with horseradish peroxidase (HRP), glutamate dehydrogenase (GLdh) and acetylcholineasterase (AChE) as biorecognization molecules. By incorporaing amplex red and SNARF-1-dextran into sol-gel matrices, the concentrations of beta-amyloid, glutamate and acetylcholine could be determined using the sol-gel array-based optical biosensor. The detection limits of beta-amyloid, glutamate and acetylcholine were 0.67 �慊/ml, 0.53�嵱 and 1.02 �嵱, respectively. The developed biosensors were also applied to real human serum samples and the detection limits were 1.02 �慊/ml to beta-amyloid, 4.5 �嵱 to glutamate and 0.3 �嵱 to acetylcholine, respectively. The array-based biosensors showed good analytical performance with dynamic range of 4-5 orders of magnitude. Results obtained cleanly show that the successful fabrication of sol-gel array-based optical biosensors that has excellent performances on determination of beat-amyloid, acetylcholine and glutamate in the Alzheimer’s disease.
謝誌 Ⅰ
中文摘要 Ⅱ
Abstract Ⅲ
Content Index Ⅳ
Table Index Ⅶ
Figure Index Ⅷ
Chapter 1 Introduction 1
1-1 Introduction 1
1-2 Objectives and research plan 2
Chapter 2 Background and Theory 4
2-1 Alzheimer’s Disease 4
2-2 Biosensor 6
2-3 Enzyme-encapsulated biosensors 7
2-3-1 Glutamate biosensors 8
2-3-2 Acetylcholine biosensors 9
2-3-3 Beta-amyloid biosensors 10
2-4 Sol-gel techniques 11
2-3-1 Introduction to sol-gel techniques 11
2-5 Array-based Biosensors 15
2-6 Fluorescence detection 16
Chapter 3 Materials and Methods 20
3-1 Materials 20
3-2 Preparation of array-based biosensor 21
3-3 Substrate determinations 23
3-3-1 Solution form and real sample determination 24
3-3-2 Multi-analyte determinations 25
3-4 Fluorescence detections 25
Chapter 4 Results and Discussions 31
4-1 Fluorescence spectra of dye molecule at various pH values 31
4-2 Optimization of preparing array-based biosensor 34
4-2-1 Acetylcholine determination 34
4-2-1-1 Optimaliztion of pH value 34
4-2-1-2 Optimaliztion of buffer concentration 36
4-2-2 Glutamate determination 38
4-2-2-1 Optimaliztion of amount of NADP+ 38
4-2-2-2 Optimaliztion of buffer concentration 41
4-3 Real sample determination 42
4-4 Determination of enzyme activities 45
4-5 Optical beta-amyloid sensing systems 49
4-5-1 Determination of H2O2 using amplex red-HRP system 49
4-5-2 Optimization of beta-amyloid sensing system 50
4-5-2-1 Optimaliztion of Cu2+ concentration 50
4-2-2-2 Optimaliztion of pH value of Cu2+ solution 51
4-5-3 Optimaliztion of incubation time 52
4-5-4 Real samples determination 54
4-5-5 Multi-analytes determination 56
Chapter 5 Conclusion 60
References 62







Table Index
Table 5-1 The performance of the optical biosensor of detection for Alzheimer’s disease 62

















Figure Index
Figure 2-1. The formation of beta-amyloid in the amyloid cascade model 5
Figure 2-2. The structure of alanine, aspartate, glutamate and glutamine 8
Figure 2-3. The reaction scheme of sol-gel process 13
Figure 2-4. An array-based biosensors 16 Figure 2-5. Absorption spectra of carboxy SNARF-1 17
Figure 2-6. Emission spectra of carboxy SNARF-1 18
Figure 2-7. The structure of carboxy SNARF-1 19
Figure 3-1. The photograph of chambered coverslip with different wells 21
Figure 3-2. The pin-printing system for the fabrication of array-based biosensor 22
Figure 3-3. (A) The working principle of the total immersion 23
Figure 3-3. (B) The photograph of the total immersion system 24
Figure 3-4. The position of the optical chopper 27
Figure 3-5. (A) The developed LabVIEW program for the fluorescence detection system 27
Figure 3-5. (B) Illustration of the front panel and the block diagram of the program 28
Figure 3-6. The photograph of the developed fluorescence detection system 29
Figure 3-7. The schematic diagram of the developed fluorescence detection system 30
Figure 4-1.Fluorescence spectra of SNARF-1-dextran at variant pH values 32
Figure 4-2. Relative fluorescence intensity of SNARF-1-dextran at various pH 33
Figure 4-3. Relative fluorescence intensity of SNARF-1-dextran at various pH 34
Figure 4-4. Effect of pH values on the determination of various concentrations of ACh 36
Figure 4-5. ACh detection by array-based biosensor at various buffer concentrations. 37
Figure 4-6. The response of the array biosensor with respect to various Ach 38
Figure 4-7. L-glutamate determination by adding various concentrations of NADP+. 40
Figure 4-8. Effect of pH on the relative signal intensity of array-based biosensor 40
Figure 4-9. Effect of buffer concentration on the determination of glutamate. 41
Figure 4-10. The response of the biosensor array with respect to various L-glutamate. 42
Figure 4-11. The response of the biosensor array with respect to various Ach in PBS. 44
Figure 4-12. The response of the biosensor to various glu in human serum. 45
Figure 4-13. Response of the biosensor for the determine ach in the presence of glu 47
Figure 4-14. Response of the biosensor for the determine ach in the presence of glu 48
Figure 4-15. The intensity ratio of amplex red -FITC-dextran with various H2O2 50
Figure 4-16. Effect of Cu2+ conc on the determination of various concentrations of �毣 52
Figure 4-17. Effect of pH value of Cu 2+ solution on the determination of �毣 53
Figure 4-18. Effect of incubation time of 0.5 mg/ml �毣 react with 0.5mM Cu2+ 54
Figure 4-19. The response of the biosensor array with respect to various �毣 conc. 55
Figure 4-20. (A) The response of the biosensor in human serum solution 56
Figure 4-20. (B) The response of the biosensor in human serum solution 57
Figure 4-21. (A)Response of the biosensor on �毣 in the presence of glutamate 59
Figure 4-21. (B) Response of the biosensor on �毣 in the presence of Acetylcholine. 59
Figure 4-21. (C) Response of the biosensor on �毣 in the presence of Zn2+ 60
Figure 4-21. (D) Response of the biosensor on �毣 in the presence of Mn2+. 60
1 Doong, R. A.; Shih, H. M. Biosensors & Bioelectronics 2006, 22, 185-191.
2 Tsai, H. C.; Doong, R. A. Biosensors & Bioelectronics 2005, 20, 1796-1804.
3 Zhang, Y.; He, P. L.; Hu, N. F. Electrochimica Acta 2004, 49, 1981-1988.
4 Yu, J. H.; Liu, S. Q.; Ju, H. X. Biosensors & Bioelectronics 2003, 19, 401-409.
5 Yu, J. H.; Ju, H. X. Analytica Chimica Acta 2003, 486, 209-216.
6 Tsai, H. C.; Doong, R. A.; Chiang, H. C.; Chen, K. T. Analytica Chimica Acta 2003, 481, 75-84.
7 Blennow, K.; de Leon, M. J.; Zetterberg, H. Lancet 2006, 368, 387-403.
8 Schoonenboom, N. S. M.; Pijnenburg, Y. A. L.; Mulder, C.; Rosso, S. M.; Van Elk, E. J.; Van Kamp, G. J.; Van Swieten, J. C.; Scheltens, P. Neurology 2004, 62, 1580-1584.
9 PS, A. REVIEW, LANCET LTD, 84 THEOBALDS RD, LONDON WC1X 8RR, ENGLAND, 2002.
10 Asai, M.; Iwata, N.; Yoshikawa, A.; Aizaki, Y.; Ishiura, S.; Saido, T. C.; Maruyama, K. Biochemical and Biophysical Research Communications 2007, 352, 498-502.
11 Hardy, J.; Duff, K.; Hardy, K. G.; Perez-Tur, J.; Hutton, M. Nature Neuroscience 1998, 1, 355-358.
12 Dickson, D. W.; Rogers, J. Neurobiology of Aging 1992, 13, 793-798.
13 Atwood, C. S.; Huang, X. D.; Moir, R. D.; Tanzi, R. E.; Bush, A. I. Metal Ions in Biological Systems, Vol 36 1999, 36, 309-364.
14 Okuizumi, K.; Tsuji, S. Neuropathology 1998, 18, 111-115.
15 Pillot, T.; Brasseur, R.; Vandekerckhove, J.; Rosseneu, M. Nutrition Metabolism and Cardiovascular Diseases 1997, 7, 276-280.
16 McGeer, P. L.; Walker, D. G.; Pitas, R. E.; Mahley, R. W.; McGeer, E. G. Brain Research 1997, 749, 135-138.
17 Poirier, J. Journal of Psychiatry & Neuroscience 1996, 21, 128-134.
18 Aksari, P.; Stoppe, G. Fortschritte Der Neurologie Psychiatrie 1996, 64, 425-432.
19 Mikiciuk-Olasik, E.; Szymanski, P.; Zurek, E. Indian Journal of Experimental Biology 2007, 45, 315-325.
20 Cummings, J. L.; Kaufer, D. Neurology 1996, 47, 876-883.
21 Tabet, N. Age and Ageing 2006, 35, 336-338.
22 Liu, M. T.; Rothstein, J. D.; Gershon, M. D.; Kirchgessner, A. L. Journal of Neuroscience 1997, 17, 4764-4784.
23 Mareysemper, I.; Gelman, M.; Levistrauss, M. Journal of Neuroscience 1995, 15, 5912-5918.
24 Ingram, D. K.; Spangler, E. L.; Iijima, S.; Ikari, H.; Kuo, H.; Greig, N. H.; London, E. D. Life Sciences 1994, 55, 2037-2049.
25 Seiler, N. Neurochemical Research 1993, 18, 235-245.
26 Tsai, H. C.; Doong, R. A. Analytical Biochemistry 2004, 334, 183-192.
27 Chen, X.; Dong, S. J. Biosensors & Bioelectronics 2003, 18, 999-1004.
28 Besanger, T. R.; Chen, Y.; Deisingh, A. K.; Hodgson, R.; Jin, W.; Mayer, S.; Brook, M. A.; Brennan, J. D. Analytical Chemistry 2003, 75, 2382-2391.
29 Altstein, M.; Bronshtein, A.; Aharonson, N. Abstracts of Papers of the American Chemical Society 2001, 221, U54-U54.
30 Simonsen, A. H.; Hansson, S. F.; Ruetschi, U.; McGuire, J.; Podust, V. N.; Davies, H. A.; Mehta, P.; Waldemar, G.; Zetterberg, H.; Andreasen, N.; Wallin, A.; Blennow, K. Dementia and Geriatric Cognitive Disorders 2007, 23, 246-250.
31 Mehta, P. D.; Capone, G.; Jewell, A.; Freedland, R. L. Journal of the Neurological Sciences 2007, 254, 22-27.
32 Levy, S.; McConville, M.; Lazaro, G. A.; Averback, P. Journal of Clinical Laboratory Analysis 2007, 21, 24-33.
33 Bateman, R. J.; Wen, G. L.; Morris, J. C.; Holtzman, D. M. Neurology 2007, 68, 666-669.
34 Parnetti, L.; Lanari, A.; Silvestrelli, G.; Saggese, E.; Reboldi, P. Mechanisms of Ageing and Development 2006, 127, 129-132.
35 Oe, T.; Ackermann, B. L.; Inoue, K.; Berna, M. J.; Garner, C. O.; Gelfanova, V.; Dean, R. A.; Siemers, E. R.; Holtzman, D. M.; Farlow, M. R.; Blair, I. A. Rapid Communications in Mass Spectrometry 2006, 20, 3723-3735.
36 Portelius, E.; Zetterberg, H.; Andreasson, U.; Brinkmalm, G.; Andreasen, N.; Wallin, A.; Westman-Brinkmalm, A.; Blennow, K. Neuroscience Letters 2006, 409, 215-219.
37 Bazoti, F. N.; Bergquist, J.; Markides, K. E.; Tsarbopoulos, A. Journal of the American Society for Mass Spectrometry 2006, 17, 568-575.
38 Ma, Q. F.; Hu, J.; Wu, W. H.; Liu, H. D.; Du, J. T.; Fu, Y.; Wu, Y. W.; Lei, P.; Zhao, Y. F.; Li, Y. M. Biopolymers 2006, 83, 20-31.
39 Hirohata, M.; Hasegawa, K.; Tsutsumi-Yasuhara, S.; Ohhashi, Y.; Ookoshi, T.; Ono, K.; Yamada, M.; Naiki, H. Biochemistry 2007, 46, 1888-1899.
40 Hu, W. P.; Chang, G. L.; Chen, S. J.; Kuo, Y. M. Journal of Neuroscience Methods 2006, 154, 190-197.
41 Inaba, S.; Okada, T.; Konakahara, T.; Kodaka, M. Journal of Peptide Research 2005, 65, 485-490.
42 Aguilar, M. I.; Small, D. H. Neurotoxicity Research 2005, 7, 17-27.
43 Perez, M.; Cuadros, R.; Benitez, M. J.; Jimenez, J. S. Journal of Alzheimers Disease 2004, 6, 461-467.
44 Liu, R. T.; Yuan, B.; Emadi, S.; Zameer, A.; Schulz, P.; McAllister, C.; Lyubchenko, Y.; Goud, G.; Sierks, M. R. Biochemistry 2004, 43, 6959-6967.
45 Valdes-Gonzalez, T.; Inagawa, J.; Ido, T. Peptides 2001, 22, 1099-1106.
46 Bush, A. I. Trends in Neurosciences 2003, 26, 207-214.
47 Moser, I.; Jobst, G.; Urban, G. A. Biosensors & Bioelectronics 2002, 17, 297-302.
48 Cho, E. J.; Bright, F. V. Analytical Chemistry 2002, 74, 1462-1466.
49 Chen, Q.; Kenausis, G. L.; Heller, A. Journal of the American Chemical Society 1998, 120, 4582-4585.
50 Pankratov, I.; Lev, O. Journal of Electroanalytical Chemistry 1995, 393, 35-41.
51 McCain, K. S.; Hanley, D. C.; Harris, J. M. Analytical Chemistry 2003, 75, 4351-4359.
52 Wang, J.; Pamidi, P. V. A.; Rogers, K. R. Analytical Chemistry 1998, 70, 1171-1175.
53 Wang, J.; Zhang, X. J.; Prakash, M. Analytica Chimica Acta 1999, 395, 11-16.
54 Suzuki, M.; Akaguma, H. Sensors and Actuators B-Chemical 2000, 64, 136-141.
55 Palmisano, F.; Rizzi, R.; Centonze, D.; Zambonin, P. G. Biosensors & Bioelectronics 2000, 15, 531-539.
56 Jobst, G.; Moser, I.; Varahram, M.; Svasek, P.; Aschauer, E.; Trajanoski, Z.; Wach, P.; Kotanko, P.; Skrabal, F.; Urban, G. Analytical Chemistry 1996, 68, 3173-3179.
57 Fu, Y.; Collinson, M. M.; Higgins, D. A. Journal of the American Chemical Society 2004, 126, 13838-13844.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 吳春山(2004)。中國寓言文學的特色。蘭陽學報,3,民93.07,121-129
2. 吳宗立(1996)。閱讀理解教學的後設認知策略。研習資訊,13(1),33-37。
3. 吳宗立(1996)。訊息處理的認知歷程與教學策略。人文及社會學科教學通訊,9(2), 156-164。
4. 方琰(1989)。訊息處理論之分析研究。高雄師範學院「教育文粹」,18,106-125。
5. 吳秋林(2001)。母語教育中的寓言。國文天地,16,12,13-19。
6. 吳福相(2001)。寓言與國文教學。國文天地,16,12,20-27。
7. 李保玉(1993)。由認知學派心理學談語言的心理基礎。國教之聲,26(3),1-3。
8. 杜榮琛(1993)。國小教科書寓言研究。東師語文學刊,6,85-113。
9. 施頂清(2000)。自我發問策略與閱讀理解教學。教育實習輔導季刊,5(4),15-20。
10. 張新仁(1990)。從資訊處理談有效的學習策略。高雄師範大學教育學系及教育研究所「教育學刊」,9,47-66。
11. 許淑玫(1999)。閱讀理解教學—交互教學法。國教輔導,37(6),31-39。
12. 陳李綢(1990)。近代後設認知理論的發展與研究趨勢。資優教育季刊,37,9-12。
13. 陳密桃(1992)。從認知心理學的觀點談閱讀理解。教育文粹,21,10-19。
14. 陳淑敏(2000):兒童隱喻理解能力之發展。屏東師院學報,13,163-182。
15. 陳雪麗(1993)。影響「記憶與檢索過程」之要素及其關連性探討。教育研究雙月刊。34,57-64。
 
系統版面圖檔 系統版面圖檔