跳到主要內容

臺灣博碩士論文加值系統

(44.192.22.242) 您好!臺灣時間:2021/08/01 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳鴻志
研究生(外文):Hung-Chih, Wu
論文名稱:空氣對流場中生質柴油油滴多重燃燒狀態之實驗研究
論文名稱(外文):Experimental Study on Multiple-State Phenomena of Biodiesel Droplets Burning in Air Flows
指導教授:黃俊賢黃俊賢引用關係
指導教授(外文):Jiunn-Shyan, Huang
學位類別:碩士
校院名稱:北台灣科學技術學院
系所名稱:機電整合研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:45
中文關鍵詞:生質柴油柴油環包火焰尾火焰油滴間距
外文關鍵詞:biodieseldieselenvelope flamewake flamedroplet spacing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:2
本研究以實驗方式探討在常溫空氣對流場中生質柴油油滴及柴油油滴之多重燃燒現象。油滴係採用將燃油注入直徑為6 mm之多孔性球體模擬,分別進行單獨油滴、雙反應油滴之燃燒實驗。實驗結果顯示:(1) 生質柴油及柴油於空氣對流場中之「單獨油滴」及「並列式雙反應油滴」之燃燒實驗觀測均呈現多重燃燒狀態現象; (2) 相同雷諾數下生質柴油油滴之燃燒率大於柴油油滴之燃燒率,生質柴油相應於上分支燃燒火焰由環包火焰轉變為尾火焰之雷諾數及下分支由尾火焰回復為環包火焰之雷諾數均較柴油之數值高;(3)油滴間距較大時,雙反應油滴之燃燒型態及燃燒率之變化與單獨油滴燃燒實驗結果類似;(4) 雙反應油滴之燃燒型態隨著油滴間距由大變小,會由存在個別火焰而發展為一個合併火焰,油滴間距變小導致雙反應油滴之燃燒率降低。
Multiple-state phenomena of both “an isolated droplet” and “two interactive droplets” burning in the air flows are experimentally investigated under various Reynolds numbers for biodiesel and diesel respectively. The fuel was fed into porous spheres in a diameter of 6 mm to simulate as the fuel droplet in the present study. The experimental results are summarized as follows: (1) Multiple-state phenomena of both “an isolated droplet” and “two interactive droplets” burning in the air flow have been observed experimentally; (2) The burning rate of a biodiesel droplet is always more than that of a diesel droplet. Values of both the blow-off and reattachment Reynolds numbers for biodiesel are more than those of diesel;(3) The flame configuration and burning rate of two interactive droplets in parallel exhibit similar results as those of an isolated droplet for large droplet spacing;(4) The flame configurations are transformed from two individual envelope/wake flames into one collective envelope/wake flame as the droplet spacing decreases. The droplet burning rate decreases as the droplet spacing decreases.
目 錄
中文摘要 i
英文摘要 ii
誌 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
符號說明 viii
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 單獨油滴燃燒 3
1.2.2 雙反應油滴燃燒 5
1.3 研究目的 6
第二章 單獨生質柴油油滴之燃燒實驗觀測 8
2.1 實驗設備 8
2.1.1 油滴模擬 8
2.1.2 油滴周圍環境模擬 9
2.1.3 油滴燃燒型態觀測 9
2.2 實驗方法 10
2.3 結果與討論 11
2.3.1 不同雷諾數下之單獨油滴燃燒型態 11
2.3.2 不同雷諾數之單獨油滴燃燒率 12
第三章 並列式雙反應生質柴油油滴之燃燒實驗觀測 15
3.1 實驗設備 15
3.1.1 油滴模擬 15
3.1.2 油滴周圍環境模擬 16
3.1.3 油滴燃燒型態觀測 17
3.2實驗方法 17
3.3結果與討論 18
3.3.1 不同雷諾數下之雙反應油滴燃燒型態 18
3.3.2 不同雷諾數之雙反應油滴燃燒率 20
第四章 結論與建議 22
參考文獻 23
自 傳 44
表目錄
表2-1 生質柴油及柴油之油品特性 28
圖目錄
圖2-1 單獨油滴實驗配置圖 29
圖2-2 Re=87時下之單獨油滴燃燒型態 30
圖2-3 Re=107時之單獨油滴燃燒型態 31
圖2-4 Re=135時之單獨油滴燃燒型態 32
圖2-5 Re=151時之單獨油滴燃燒型態 33
圖2-6 Re=175時之單獨油滴燃燒型態 34
圖2-7 不同雷諾數下之單獨油滴燃燒率 35
圖3-1 並列雙反應油滴之實驗配置圖 36
圖3-2 Re=87時並列雙反應油滴之燃燒型態 37
圖3-3 Re=107時並列雙反應油滴之燃燒型態 38
圖3-4 Re=138時並列雙反應油滴之燃燒型態 39
圖3-5 Re=146時並列雙反應油滴之燃燒型態 40
圖3-6 Re=175時並列雙反應油滴之燃燒型態 41
圖3-7 不同雷諾數下之雙反應生質柴油油滴燃燒率 42
圖3-8 不同雷諾數下之雙反應柴油油滴燃燒率 43
[1] Carraretto, C., Macor, A., Mirandola, A., Stoppato, A. and Tonon, S., “Efficiency, Costs, Optimization, Simulation and Environmental Impact of Energy Systems”, Energy, Vol. 29, pp. 2195-2211., 2004.
[2] 美國黃豆協會網站, 2007, 網址:http://www.soybean.org.tw/biodiesel-index.htm。
[3] Graboski, M.S. , and McCormick, R.L., “Combustion of fat and vegetable oil derived fuels in diesel engines”, Progress in Energy and Combustion Science, Vol. 24, pp.125-164., 1998.
[4] Haas, M.J., Scott, K.M., Alleman, T.L., and McCormick, R.L., “Engine Performance of Biodiesel Fuel Prepared from Soybean Soapstock: A High Quality Renewable Fuel Produced from a Waste Feedstock”, Energy & Fuels, Vol. 15, pp. 1207-1212., 2001.
[5] Demirbas, A., “Combustion Characteristics of Different Biomass Fuels,” Progress in Energy and Combustion Science, Vol. 30, pp. 219-230, 2003.
[6] WinLee, S., Herage, T., and Young, B., “Emission reduction potential from the combustion of soy methyl ester fuel blended with petroleum distillate fuel”, Fuel, Vol. 83, pp. 1607-1613., 2004.
[7] Ramadhas, A.S., Muraleedharan, C., and Jayaraj, S., “Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil”, Renewable Energy, Vol. 30, pp. 1789-1800., 2005.
[8] 王振諧, 李宏台, 周桂蘭, 2002, “台北市垃圾車使用生質柴油測試計畫報告”
[9] Lin, C.Y., and Wu, M.S., “Engine Performance and Emissions Characteristics of Biodiesel Refined from Waste Cooking Oil”, The 14th National Conference on Combustion Science and Technology, March 27, Jhongli, Taiwan., 2003.
[10] Lee, T.S., Chen, Y.Z., Lee, H.T., Wang, J.S., and Chang, J.Y., “Emissions and Engine Performance from Biodiesel in a CY-160RE Engine”, The 13th National Conference on Combustion Science and Technology, March 29, Taipei, Taiwan, 2002.
[11] Lin, C.Y. and Chen, L.W., “Emission Characteristics of Emulsions Prepared by Ultrasonic Emulsification Method”, The 13th National Conference on Combustion Science and Technology, March 29, Taipei, Taiwan, 2002.
[12] Lee, T.S. and Shen, F.H., “Characteristics of Emulsification and Spray Atomization of Emulsion Biodiesel B20W10,” The 14th National Conference on Combustion Science and Technology, March 27, Jhongli, Taiwan, 2003.
[13] Spalding, D.B., “The Combustion of Liquid Fuels,”4th Symp. on Combustion, pp. 847-864, 1953.
[14] Gollahalli, S.R. and Brzustowski, T.A., “Experimental Studies on the Flame Structure in the Wake of a Burning Droplet,”14th Symp. On Combustion, pp. 1333-1344, 1973.
[15] Dwyer, H.A., Sander, B.R., “A Detailed Study of Burning Fuel Droplets,” Proceedings of the Combustion Institute, Vol.21, pp.663-693, 1986.
[16] Dwyer, H.A., Sander, B.R., “Calculations of Unsteady Reacting Droplet Flows,” Proceedings of the Combustion Institute, Vol.22, pp.1923-1929, 1988.
[17] Jiang, T.L., Chen, W.S., Tsai, M.J. Chiu, H.H., “A Numerical Investigation of Multiple Flame Configurations in Convective Droplet Gasification,” Combustion and Flame, Vol.103, pp.221-238, 1995.
[18] Chiu, H.H., Huang, J.S., “Multiple State Phenomena and Hysteresis of a Combusting Isolated Droplet,”Atomization and Sprays, Vol.6, pp.1-26, 1996.
[19] Huang, J.S., Chiu, H.H., “Multistate Behavior of a Droplet in Dilute Sprays,” Atomization and Sprays, Vol.7, pp.479-506, 1997.
[20] Huang, J.S., Chiu, H.H., “Comparison of Droplet Combustion Models in Nonpremixed Spray Combustion,” AIAA paper 2002-4181, 2002.
[21] Umemura, A., Ogawa, S., and Oshima, N., “Analysis of the interaction between two burning droplets,”Combustion and Flame, Vol.41, pp.44-55, 1981.
[22] Brzustowski, T.A., Sobiesiak, A., and Wojcicki, S., “Flame Propagation Along an Array of Liquid Fuel Droplets in Zero Gravity,” Proceedings of the Combustion Institute, Vol.18, pp.265-273, 1981.
[23] Miyasaka, K, and Law, C.K., “Combustion of Strongly-Interacting Linear Droplet Arrays,”Proceedings of the Combustion Institute, Vol.18, pp.283-292, 1981.
[24] Tsai, J.S., and Sterling, A.M., “The Combustion of a Linear Droplet Array in a Convective, Coaxial Potential Flow,” Combustion and Flame, Vol. 86, pp. 189-202, 1991.
[25] Chen, W.S., Liu, C.C., and Jiang, T.L., “Hysteresis Effects of Two Interactive Droplets Burning in Convective Flows,” Proceedings of the Combustion Institute, Vol.27, pp.1923-1932, 1998.
[26] Chen, W.S., “Combustion Hysteresis and Vaporization Interaction of Two Burning Droplets with Different Sizes,” Combustion Science and Technology., Vol.154, pp. 229-257, 2000.
[27] Chen, W.S., “Brachial Burning and Gasification Split of a Convecting Two-Droplet System,” Atomization and Sprays, Vol.11, pp.29-47, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top