跳到主要內容

臺灣博碩士論文加值系統

(44.222.218.145) 您好!臺灣時間:2024/03/05 20:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:彭子怡
研究生(外文):Chi-yee Pang
論文名稱:二維形狀之美─幼兒型式積木之幾何解題歷程
論文名稱(外文):The Beauty of Two-Dimensional Shapes:Young Children’s Geometry Problem-Solving Processes with Pattern Blocks
指導教授:許惠欣許惠欣引用關係
指導教授(外文):Huei-hsin Hsu
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:幼兒教育學系碩士班
學門:教育學門
學類:學前教育學類
論文種類:學術論文
畢業學年度:95
語文別:中文
論文頁數:215
中文關鍵詞:幾何概念解題策略型式積木
外文關鍵詞:geometric conceptpattern blockproblem-solving strategy
相關次數:
  • 被引用被引用:14
  • 點閱點閱:872
  • 評分評分:
  • 下載下載:167
  • 收藏至我的研究室書目清單書目收藏:5
本研究旨在探討幼兒在型式積木之幾何解題活動的解題歷程,並分析幼兒使用的解題策略和展現的幾何概念。
本研究採觀察和訪談的方式進行質性研究,研究者利用型式積木設計十種幾何解題活動,以台南市仔仔幼稚園某班常到益智區操作型式積木之六位大班幼兒為研究對象,蒐集其觀察紀錄、錄影和錄音轉譯之觀察紀錄、訪談資料、幼兒作品和照片、與研究者之省思札記等質性資料,進行分析與歸納。研究結果如下:
一、幼兒於幾何解題活動中所使用的解題策略有:二十五種排列策略、五種分組策略、四種辨識策略、五種連接策略、四種數算策略、兩種嵌入策略、以及十種比較策略。在排列策略中,幼兒最常使用其中九種排列策略,並在幾何解題活動之後,使用其他九種新的排列策略。
二、幼兒於幾何解題活動中共使用十二種設計策略佈題,且其設計策略會因幾何解題活動之類型而異。
三、幼兒於幾何解題活動中共展現十一種幾何概念;幼兒最常展現其中九種幾何概念。在幾何解題活動之後,幼兒仍展現相似的幾何概念。
四、幼兒經過十種型式積木之幾何解題活動後,在解題策略的使用以及幾何概念的展現上皆有所轉變。
最後,本研究也提供型式積木幾何解題活動之難易度,並提出建議以供未來研究者和幼教老師的參考。
The main purpose of this study is to investigate young children’s problem-solving strategies and geometric concepts in the geometry problem-solving processes by using pattern blocks.
This is a qualitative study through observing and interviewing six children of Zai-Zai Kindergarten in Tainan City, who participated in ten pattern-block geometry problem-solving activities. Prior to this research, these six children played pattern blocks in the toy areas more often than the other children did. The researcher of this study collected observational records and children’s works via photography during the activities, translated transcripts from photos and video tapes, and analyzed all the qualitative data including interviews with children and researcher’s reflective notes. Results of this study are as follows:
First, the problem-solving strategies the children used include 25 arrangement strategies, 5 grouping strategies, 4 identification strategies, 5 adjoining strategies, 4 counting strategies, 2 inserting strategies, and 10 comparison strategies. Concerning the arrangement strategies, the children used nine of them more often, and they learned the other nine new strategies through the pattern-block geometry problem-solving activities.
Second, the children used 12 designing strategies during geometry problem-solving activities, and they changed the strategies according to the type of the pattern-block geometry activities.
Third, the children showed 11 kinds of geometric concepts in this study. Nine kinds of them were understood more evidently, and they still showed the similar geometric concepts after the pattern-block geometry activities.
Fourth, having gone through ten kinds of pattern-block geometry activities planned in this study, the children did change their problem-solving strategies and showed different geometric concepts.
In this research a proper sequence of the geometry activities is proposed and some suggestions for future studies and for kindergarten teachers are made.
摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表目錄 v
圖目錄 vii
第一章 緒論 1
第一節 研究動機 2
第二節 研究目的與問題 6
第三節 名詞釋義 7
第四節 研究限制 9
第二章 文獻探討 11
第一節 數學解題歷程和解題策略 11
第二節 兒童的幾何概念 16
第三節 型式積木之數學活動和相關研究 24
第三章 研究方法 41
第一節 研究程序 41
第二節 研究工具 47
第三節 研究場域和研究對象 55
第四節 資料蒐集 56
第五節 資料整理與分析 60
第四章 研究結果與討論 63
第一節 型式積木之幾何解題活動 63
第二節 幼兒佈題之幾何解題活動 121
第三節 幼兒在前後自由遊戲的轉變 141
第四節 幼兒在型式積木之幾何解題活動後的自由遊戲 161
第五章 結論與建議 169
第一節 結論 169
第二節 建議 178
參考文獻 179
附錄一 園長同意書 187
附錄二 教師同意書 188
附錄三 型式積木之幾何解題活動 189
附錄四 家長同意書 202
附錄五 幼兒訪談問題集 203
王真瑤(譯)(1997)。西久保禮造、野村睦子(編)。積木─遊戲與活動計劃。台北:財團法人成長文教基金會。
吳芝儀(譯)(2001)。R. C. Bogdan & S. K. Biklen 著。質性教育研究之基礎。載於黃光雄(主譯),質性教育研究:理論與方法(Qualtative research for education: An introduction to theory and methods)(頁219-263)。嘉義市:濤石文化。
吳德邦(1998)。台灣中部地區國小學童 van Hiele 幾何思考層次之研究。載於行政院國家科學委員會舉辦之「八十六年度數學教育專題研究計畫成果討論會摘要」(頁47-64),台北。
吳德邦(1999)。簡介范析理幾何思考理論。進修學訊年刊,5,47-86。
吳德邦(2000)。台灣中部地區國小學童van Hiele 幾何思考層次之研究─晤談部分。進修學訊年刊,6,11-32。
吳德邦(2004)。使用 van Hiele 五階段學習模式開發九年一貫課程第一階段圖形與空間教材教法之詮釋性研究。行政院國家科學委員會專題研究成果報告(NSC 92-2522-S-142-004),未出版。
李文貞(2004)。幼兒幾何形體概念發展研究。國立臺灣師範大學人類發展與家庭研究所碩士論文,未出版,台北市。
沈佩芳(2002)。國小高年級學童的平面幾何圖形概念之探究。國立台北師範學院數理教育研究所碩士論文,未出版,台北市。
周淑惠(1999)。幼兒數學新論:教材教法(第二版)。台北市:心理出版社。
林秀瑾、張英傑(2005)。台灣地區三十年來國編版小學幾何教材內容範圍分析研究。國立臺北教育大學學報,18(2),65-92。
林意紅(2000,5月)。「玩•學•戲─操作•互動•學習」幼兒遊戲性非正式數學學習教材在幼兒園實施與觀察。載於國立台北師範學院幼教系舉辦之「幼兒的數學與生活─老師與媽媽們的對話」研討會論文集(頁61-70),台北市。
洪碧霞、謝堅、林素微(2004)。九年一貫數學能力指標的詮釋:國小連結部分。行政院國家科學委員會專題研究計畫成果報告(NSC92-2522-S-024-001-)。台南市:國立臺南大學測驗統計研究所。
胡炳生(1991)。數學解題思維方法。台北市:九章出版社。
涂金堂(1999)。國小學生數學解題歷程之分析研究。初等教育學刊,7,295-332。
馬祖琳(2000,4月)。幼兒數學教學活動之分析研究。載於教育部技術及職業教育司舉辦之「第十五屆全國技術及職業教育」研討會論文集(頁23-32),台中。
高菁霙(2004)。實踐「七巧板」教學模組之個案研究。國立嘉義大學國民教育研究所碩士論文,未出版,嘉義。
高耀琮(2002)。兒童平面幾何圖形概念之探討。國立臺北師範學院數理教育研究所碩士論文,未出版,台北市。
張世宗(1998,5月)。非正式學習理論與教材開發之研究。載於國立臺北師範學院舉辦之「生活•遊戲•數學」幼兒數學概念學習研討會論文集(頁57-98),台北市。
張英傑(1993)。兒童幾何形體認知概念之發展(I)。行政院國家科學委員會專題研究計畫成果報告(NSC82-0111-S-152-003)。台北市:台北市立師範學院數理教育學系。
張英傑(2001)。兒童幾何形體概念之初步探究。國立台北師範學院學報,14,491-528。
張憶壽(譯)(1990)。G. Pólya著。怎樣解題(How to solve it)。台北市:眾文圖書。
教育部(2006)。九年一貫課程。2007年1月3日,取自http://www.edu.tw/EDU_WEB/EDU_MGT/EJE/EDU5147002/9CC/9CC.html?TYPE=1&UNITID=225&CATEGORYID=0&FILEID=147654&open
許惠欣(1995)。我國傳統與蒙特梭利教育之幼兒數學能力比較之研究。臺南師院學報,28,533-568。
許惠欣(1997)。我國幼稚園幼兒數算策略之研究。臺南師院學報,30,339-372。
許惠欣(1998)。遊戲化和生活化的幼兒數學活動。載於國立嘉義師範學院「一九九八國際幼兒教育課程」學術研討會論文集(頁167-211),嘉義市。
陳英娥(2003)。幼兒數學型式概念分析。輔英科技大學專題研究計畫成果報告(FIT-91-038)。高雄縣:輔英科技大學幼兒保育系。
陳英娥、李逸嬋(2003,12月)。幼兒數學型式概念的認知。載於國立臺灣師範大學科學教育研究所舉辦之「中華民國第十九屆科學教育學術研討會」論文集(頁84-89),台北市。
程小危(2000)。學前到學齡階段認知發展歷程。載於蘇建文、林美珍、陳李綢、程小危、吳敏而、林惠雅、柯華葳、幸曼玲、陳淑美著,發展心理學(再版八刷)(頁171-220)。台北市:心理出版社。
黃幸美(2000)。兒童解決生活情境問題的推理思考之探討。行政院國家科學委員會專題研究計畫成果報告(NSC89-2413-H-133-003)。台北市:台北市立師範學院初等教育學系。
黃幸美(2001)。兒童在真實情境問題的數學解題思考之探討─台灣與德國之文化差異比較。行政院國家科學委員會專題研究計畫成果報告(NSC89-2511-S-133-005)。台北市:台北市立師範學院初等教育學系。
黃幸美(2003)。兒童討論解決數學問題與批判解題合理性之研究。行政院國家科學委員會專題研究計畫成果報告(NSC91-2413-H-133-004)。台北市:台北市立師範學院初等教育學系。
黃幸美(2004)。兒童的數學問題解決與思考。台北市:心理出版社。
黃敏晃(2005)。漫談幾何與空間能力。科學研習,44(6),16-26。
黃瑞琴(2003)。質的教育研究方法(再版八刷)。台北市:心理出版社。
楊瑞智(1993)。國小五、六年級不同能力學童數學解題的思考過程。國立師範大學科學教育研究所博士論文,未出版,台北市。
當代國語辭典編輯組(編)(1988)。當代國語辭典。台北市:建宏出版社。
劉好(2003)。國小數學實驗班學生幾何概念發展之分析研究。臺中師院學報,17,221-250。
劉錫麒(1989)。國小高年級學生數學解題歷程及其相關因素的研究。花蓮師院學報,3,21-90。
劉錫麒(1997)。數學思考教學研究。台北市:師大書苑。
蔡文煥、林碧珍(2004)。九年一貫數學能力指標的詮釋:國小連結部分。行政院國家科學委員會專題研究計畫成果報告(NSC92-2522-S-134-001)。新竹市:國立新竹師範學院數學教育學系。
蔡慧如(2001a)。好玩的新數學:啟蒙篇。台北市:唐吉出版社。
蔡慧如(2001b)。好玩的新數學:初級篇。台北市:唐吉出版社。
鄭瑞隆(譯)(2001)。R. C. Bogdan & S. K. Biklen 著。質性教育研究之基礎。載於黃光雄(主譯),質性教育研究:理論與方法(Qualtative research for education: An introduction to theory and methods)(頁105-156)。嘉義市:濤石文化。
謝貞秀(2002)。國小中年級學童平面幾何圖形概念之探究。國立臺北師範學院數理教育研究所碩士論文,未出版,台北市。
顏啟麟(1993)。國小學童數學解題過程研究(II)。行政院國家科學委員會專題研究計畫成果報告(NSC82-0111-S-003-007)。台北市:國立台灣師範大學數學系。
蘇英奇(1972)。圖形概念的調查分析。台中師專學報,2,262-299。
Adams, P.K., & Nesmith, J.(1996). Blockbusters: Ideas for the block center. Early Childhood Education Journal, 24(2), 87-92.
Alejandre, S., & Moore, V.(2003). Technology as a tool in the primary classroom. Teaching Children Mathematics, 10(1), 16-19.
Andrews, A. G.(1999). Solving geometric problems by using unit blocks. Teaching Children Mathematics, 5(6), 318-323.
Andrews, A.G.(2004). Adapting manipulatives to foster the thinking of young children. Teaching Children Mathematics, 11(1), 15-17.
Baratta-Lorton''s, M.(1995). Mathematics their way. Menlo Park, Calif.: Addison-Wesley Publishing Company.
Baroody, A.J.(1987). Children’s mathematical thinking: A developmental framework for preschool, primary, and special education teachers. New York: Teachers College, Columbia University.
Berk, L.E.(2006). Child development(7th ed). Boston : Pearson/Allyn and Bacon.
Berman, S., Plummer, G.A., & Scheuer, D.(1998). Investigating mathematics with pentablocks. (ERIC No.ED418890)
Blake, S., Hurley, S., & Arenz, B.(1995). Mathematical problem solving and young children. Early Childhood Education Journal, 23(2), 81-84.
Bloomer, A.M., & Carlson, P.A.T.(1993). Activity math: Using manipulatives in the classroom. Menlo Park, Calif.: Addison-Wesley Publishing Company.
Bohning, G., & Althouse, J.K.(1997). Using tangrams to teach geometry to young children. Early Childhood Educational Journal, 24(4), 239-242.
Bresser, R., Sheffield, S., & Burns, M.(1997). Use pattern-block puzzles to teach shape and area. Instructor-Primary, 106(8), 46-47.
Burns, M.(1996). How to make the most of math manipulatives. Instructor, 105(7), 45-51.
Buschman, L.(2003). Children who enjoy problem solving. Teaching Children Mathematics, 9(9), 539-544.
Cai, J.(2000). Mathematical thinking involved in U.S. and Chinese students? Solving of process-constrained and process-open problems. Mathematical Thinking and Learning, 2(4), 309-340.
Caldwell, J.H.(1995). Communicating about fractions with pattern blocks. Teaching Children Mathematics, 2(3), 156-161.
Casey, B., & Bobb, B.(2003). The power of block building. Teaching Children Mathematics, 10(2), 98-102.
Charlesworth, R., & Radeloff, D. J.(1991). Experiences in math for young children(2nd ed). Albany, NY: Delmar Publishers Inc.
Christie, J.F., & Johnson, E.P.(1983). The role of play in social-intellectual development. Review of Educational Research, 53(1), 93-115.
Civil, M.(1995). Everybody mathematics, “Mathematicians’ Mathematics,” and school mathematics: Can we(should we) bring these there cultures together? Paper presented at the Annual Meeting of the American Educational Research Associatio.(ERIC Document Reproduction Service No.ED394788)
Clement, L.L.(2004). A model for understanding, using, and connecting representations. Teaching Children Mathematics, 11(2), 97-102.
Clements, D.H.(2004). Geometric and spatial thinking in early childhood education. In D.H. Clements, & J. Sarama(Eds), Engaging young children in mathematics: Standards for early childhood mathematics education(pp.264-297). Nahwah, N.J.: Lawrence Erlbaum Associates.
Clements, D.H., & McMillen, S.(1996). Rethinking “concrete” manipulatives. Teaching Children Mathematics, 2(5), 270-279.
Clements, D.H., & Sarama, J.(2000). Young children’s ideas about geometry shapes. Teaching Children Mathematics, 6(8), 482-489.
Clements, D.H., Swaminathan, S., Hannibal, M.A., & Sarama, J.(1999). Young children’s concept of shape. Journal for Research in Mathematics Education, 30(2), 192-212.
Clements, D.H., Wilson, D.C., & Sarama, J.(2004). Young children’s composition of geometric figures: A learning trajectory. Mathematical Thinking and Learning, 6(2), 163-184.
Cobb, P., Wood, T., & Yackel, E.(1993). Discourse, mathematical thinking, and classroom practice. In E.A. Forman, N. Minick, & C.A. Stone(Eds.), Contexts for learning: Socio-cultural dynamics in children’s development(pp.91-119). New York: Oxford University Press.
Cobb, P., Yackel, E., & Wood, T.(1992). Interaction and learning in mathematics classroom situations. Educational Studies in Mathematics, 23, 99-122.
Davis, G., & Pepper, K.(1992). Mathematical problem solving by pre-school children. Educational Studies in Mathematics, 23, 397-415.
DeGeorge, B., & Santoro, A.M.(2004). Manipulatives: A hands-on approach to math. Principal, 84(2), 28.
DeVries, R.(n.d.). Pattern blocks and pattern block frames. Retrieved February 27, 2005, from http://www.uni.edu/coe/regentsctr/Activity%20Sheets/PATBLOCK.pdf
DeVries, R., Zan, B., Hildebrandt, C., Edmiaston, R., & Sales, C.(Eds.). Developing constructivist early childhood curriculum: Practical principles and activities. New York: Teachers College Press.
Early Grades Ideas(1984). Early grades ideas. Classroom Computer Learning, 4(9), 70-71.
Elizabeth, W.(1995). Facility with plane shapes: A multifaceted skill. Educational Studies in Mathematics, 28(4), 365-383.
Fielder, D.R.(1986). Project hands-on math: Making a difference in K-2 classrooms. Arithmetic Teacher, 36(8), 14-16.
Fuys, D., Geddes, D., & Tischler, R.(1988). The van Hiele model of thinking in geometry among adolescents. Reston, VA: The National Council of Teachers of Mathematics, Inc.
Guberman, S.R., & Saxe, G.B.(2000). Mathematical problems and goals in children’s play of an educational game. Mind, Culture & Activity, 7(3), 201-216.
Hartweg, K., Swarthout, M., & Mann, R.(2003). Pattern-block quilts. Teaching Children Mathematics, 10(1), 52-53.
Hartweg, K.(2004). Response to the patten-block quilts problem. Teaching Children Mathematics, 11(1), 28-37.
Hatfield, M. M.(1994). Use of manipulative devices: Elementary school cooperating teachers self-report. School Science and Mathematics, 94(6), 303-309.
Heddens, J.W.(1978). Reaction paper to counting performance and achievement: Some preliminary observations. In W.R. Speer, Clinical investigations in mathematics education(pp.102-107). Thematic addresses from the Fourth National Conference on Diagnostic and Prescriptive Mathematics.(ERIC No.ED243702)
Holly, K.(1995). Shape up! Teaching Children Mathematics, 4(2), 226-227.
Kennedy, L. M., & Tipps, S.(1991). Guiding children’s learning of mathematics (6th ed). Belmont, Calif.: Wadsworth.
Kim, S.(2002). Hands-on learning. Discover, 23(12), 88.
Koester, B.(2003). Prisms and pyramids: Constructing three-dimensional models to build understanding. Teaching Children Mathematics, 9(8), 436-442.
Leeb-Lundberg, K.(1985). Mathematics is more than counting. Paper presented at the Association for Childhood Education International, Wheaton, MD. (ERIC No.ED255305)
Litwiller, B.H., & Duncan, D.R.(1997). Forming and adjusting conjectures: Perimeter and pattern blocks. Mathematics in school, 26(2), 22-25.
Mary, A.H.(1999). Young children’s developing understanding of geometric shapes. Teaching Children Mathematics, 5(6), 353-357.
Mayer, R.E.(1992). Thinking, problem solving, cognition. New York: Freeman.
Miller, B.B., & Harsh, A.(1984). M & M''s: Mathematics and manipulatives, m-m-m good! Paper presented at the annual meeting of the Conference of the Southern Association, Lexington, KY. (ERIC No.ED245813)
Moore, D.A. & Cortes-Figueroa, J.E.(2001). Hands-on discovery of mirror planes. Journal of Chemical Education, 78(1), 49.
Moyer, P.S.(2001). Patterns and symmetry: Reflections of culture. Teaching Children Mathematics, 8(3), 140-144.
National Council of Teacher of Mathematics(1989). Curriculum and evaluation standards for school mathematics. Reston, VA: The National Council of Teachers of Mathematics.
National Council of Teacher of Mathematics(1999). Mathematics in the early years. Reston, VA: The National Council of Teachers of Mathematics.
National Council of Teacher of Mathematics(2000). Geometry standard for grades Pre-K-2. Retrieved February 21, 2005, from http://standards.nctm.org/document/chapter4/geom.htm
Naylor, M.(2003). Fill in the fractions. Teaching Pre K-8, 33(8), 28-29.
Newton, J. E.(1988). From pattern-block play to Logo programming. Arithmetic Teacher, 35(9), 6-9.
Ohanian, S.(1995). Math as a way of knowing. Los Angeles : Galef Institute.
Payne, J.N., & Clements, C.C.E.(Eds.).(1993). Mathematics for the young child (2nd ed). Reston, Va.: The National Council of Teachers of Mathematics, Inc.
Penner, E., & Lehrer, R.(2000). The shape of fairness. Teaching Children Mathematics, 7(4), 210-214.
Piaget, J., Inhelder, B., & Szeminska, A.(1960). The child’s conception of geometry. London: Routledge and Kegan Paul.
Piaget, J., & Inhelder, B.(1967). The child’s conception of space. New York: W. W. Norton & Co.
Prescott, J.O.(2001). Math patterns: Created by kids. Instructor, 111(1), 62-64.
Quinn, R.J.(2001). Using attribute blocks to develop a conceptual understanding of probability. Mathematic Teaching in The Middle School, 6(5), 290-294.
Rigdon, D., Raleigh, J., & Goodman, S.(1999). Pattern-block explorations. Teaching Children Mathematics, 6(3), 182-183.
Rowan, T.E.(1990). Spatial sense: The geometry standards in K-8 mathematics. Arithmetic Teacher, 37(6), 24-28.
Rubenstein, R.N., Lappan, G., Phillips, E., & Fitzgerald, W.(1993). Angle sense: A valuable connector. Arithmetic Teacher, 40(6), 352-358.
Sarama, J., & Clements, D.H.(2003). Building blocks of early childhood mathematics. Teaching Children Mathematics, 9(8), 480-484.
Sales, C., & Hildebrandt, C.(2002). Developing geometric reasoning : Using pattern blocks. In R. DeVries, B. Zan, C. Hildebrandt, R. Edmiaston, & C. Sales(Eds.), Developing constructivist early childhood curriculum: Practical principles and activities(pp.165-180). New York: Teachers College Press.
Schoenfeld, A.H.(1985). Mathematical problem solving. Orlando, Fl: Academic Press.
Shaw, J., & Blake, S.(1998). Mathematics for young children. Upper Saddle River, NJ: Merrill.
Smith, S.S.(2001). Early childhood mathematics(2nd ed). Boston: Allyn & Bacon.
Sowell, E.J.(1989). Effects of manipulative materials in mathematics instruction. Journal for Research in Mathematics Education, 20(5), 498-505.
Souviney, R.J.(1994). Learning to teach mathematics. New York: Macmillan Publisher Company.
Stone, J.I.(1987). Early childhood math: Make it manipulative! Young Children, 42(6), 16-23.
Susan, S.S.(2001). Early childhood mathematics (2nd). Allyn & Bacon.
Suydam, M.N., & Weaver, J.F.(1975). Mathematics learning in early childhood: Research on mathematics learning. National Council of Teachers of Mathematics Yearbook, 37, 43-67.
Taylor, L., Stevens, E., Peregoy, J.J., & Bath, B.(1991). American Indians mathematical attitudes, and the standards. Arithmetic Teacher, 38(6), 14-17.
Troutman, A.P., & Lichtenberg, B.K.(1995). Mathematics: A good beginning(5th ed). Pacific Grove: Brooks/Cole.
Trueblood, C.R.(1986). Hands on: Help for teachers. Arithmetic Teacher, 33(6), 48-51.
van Hiele, P.M.(1999). Developing geometric thinking through activities that begin with play. Teaching Children Mathematics, 5(6), 310-316.
Ward, C.D.(1995). Meaningful mathematics with young children. Dimensions of Early Childhood, 23(2), 7-11.
Welchman, R.(1999). Are you puzzled? Teaching Children Mathematics, 5(7), 412-415.
Wellhousen, K., & Kieff, J.(2001). A constructivist approach to block play in early children. Australia: Delmar/Thomson Learning, Inc.
Willcutt, B.(1995). Pattern blocks: Building algebraic thinking with progressive patterns. US: California. (ERIC Document Reproduction Service No.ED402179)
Wolfgang, C.H., Stannard, L.L., & Jones, I.(2001). Block play performance among preschoolers as a predictor of later school achievement in mathematics. Journal of Research in Childhood Education, 15(2), 173-180.
Wolfgang, C.H., Stannard, L.L., & Jones, I.(2003). Advanced constructional play with LEGOs among preschoolers as a predictor of later school achievement in mathematics. Early Child Development and Care, 173(5), 467-475.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top