|
[1] T. Kapitaniak, L. J. Kocarev, and L. O. Chua, “Controlling chaos without feedback and control signals,” Int. J. Bifurcation Chaos, vol 3, pp. 459-468, 1993. [2] C. C. Hwang, H. Y. Chow, and Y. K. Wang, “A new feedback control of a modified Chua’s circuit system,” Physica D, vol 92, pp. 95-100, 1996. [3] G. Chen and X. Yu, “On time-delayed feedback control of chaotic systems,” IEEE Trains. Circuit and systems I: Fundamental Theory and Applications, vol 46, pp. 767-772, 1999. [4] B. F. Feeny and F. C. Moon, “Quenching stick-slip chaos with dither,” Journal of Sound and Vibration, vol. 237, pp. 173-180, 2000. [5] M. Aldawod, B. Samali, F. Naghdy, and K. C.S. Kwok, “Active control of along wind response of tall building using a fuzzy controller,” Engineering Structures, vol 23, pp. 1512-1522, 2001. [6] Y. C. Hsiao and P. C. Tung, "Controlling Chaos for Nonautonomous Systems by Decting Unstable Periodic Orbits," Chaos, Solitons and Fractals, Vol. 13, pp. 1043-1051, 2002. [7] J. S. Lin, J. J. Yan, T. L. Liao, “Robust control of chaos in Lorenz systems subject to mismatch uncertainties”, Chaos, Solitons and Fractals, vol 27, pp. 501–510, 2006. [8] H. O. Wang and E. H. Abed, “Bifurcation control of a chaotic system,” Automatica, vol 31, pp. 1213-1226, 1995. [9] P. Colet and Y. Braiman, “Control of chaos in multimode solid state lasers by the use of small periodic perturbations,” Phys. Rev. E, vol 53, pp. 200-206, 1996. [10] E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Phys. Rev. Lett,. vol 64, pp. 1196-1199, 1990. [11] A. R. Tose, “Nonlinear feedback for controlling the Lorenz equation,” Phys. Rev. E, vol 50, pp. 2339-2342, 1994. [12] D. Kuo, “Chaos and its computing paradigm,” IEEE Potentials, vol. 24, pp. 13-15, 2005. [13] H. Nijmeijer, and H. Berghuis, “On Lyapunov of control of the Duffing equation,” IEEE Trans. Circuits system, vol. 42, pp. 473-477, 1995. [14] Y. Zeng, and S. N. Singh, “Adaptive control of chaos in Lorenz system,” Dynamic control, vol. 7, pp. 143-154, 1997. [15] K. Tanaka, “An approach to stability criteria of neural-network control systems,” IEEE Trans. Neural Networks, vol. 7, pp. 629-643, 1996. [16] S. Limanond and J. Si, “Neural-network-based control design: an LMI approach,” IEEE Trans. Neural Networks, vol. 9, pp. 1422-1429, 1998. [17] A. Tascillo and N. Bourbakis, “Neural and Fuzzy Robotic Hand Control,” IEEE Trans. Systems, Man, and Cybernetics- Part B: Cybernetics, vol. 29, pp. 636-642, 1999. [18] S. Limanond, J. Si, and Y. L. Tseng, “Production data based optimal etch time control design for a reactive ion etching process,” IEEE Trans. Semiconductor Manufacturing, vol. 12, pp.139-147, 1999. [19] D. Zhang and S. K. Pal, “Parallel system design for time-delay neural networks,” IEEE Trans. Systems, Men, Cybernetics-C, vol. 30, pp. 265-275, 2000. [20] X. B. Liang and J. Si, “Global exponential stability of neural networks with globally Lipschitz continuous activations and its application to linear variational inequality problem,” IEEE Trans. Neural Networks, vol. 12, pp.349-359, 2001. [21] S. F. Su and F. Y. P. Yang, “On the Dynamical Modeling with Neural Fuzzy Systems,” IEEE Trans. Neural Networks, vol.13, no.6, pp. 1548-1553, 2002. [22] R. Enns and J. Si, “Helicopter trimming and tracking control using direct neural dynamic programming,” IEEE Trans. Neural Networks, vol. 14, pp.929-939, 2003. [23] C. Alippi, C. de Russis, and V. Piuri, “A neural-network based control solution to air-fuel ratio control for automotive fuel-injection systems,” IEEE Trans. Systems, Men, Cybernetics-C, vol. 33, pp. 259-268, 2003. [24] J. T. Tsai, J. H. Chou, and T. K. Liu, “Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm,” IEEE Trans. Neural Networks, vol. 17, pp. 69-80, 2006. [25] F. J. Lin, H. J. Shieh, P. H. Shieh, and P. H. Shen, “An Adaptive recurrent-neural-network motion controller for X-Y table in CNC machine,” IEEE Trans. Systems, Men, Cybernetics-B, vol. 36, no. 2, pp. 286-299, 2006. [26] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans. Fuzzy Systems, vol. 4, pp. 14-23, 1996. [27] X. J. Ma, Z. O. Sun, and Y. Y. He, “Analysis and design of fuzzy controller and Fuzzy observer,” IEEE Trans. Fuzzy Systems, vol. 6, pp. 41-51, 1998. [28] Y. Y. Cao and P. M. Frank, “Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach,” IEEE Trans. Fuzzy Systems, vol. 8, pp. 200-211, 2000. [29] C. S. Tseng, B. S. Chen, and H. J. Uang, “On maximum stability margin design on nonlinear uncertain systems: fuzzy control approach,” Asian Journal of Control, vol. 3, pp. 190-203, 2001. [30] S. H. Liu and C. T. Lin, “A model-based fuzzy logic controller with Kalman filtering for tracking mean arterial pressure,” IEEE Trans. Systems, Men, Cybernetics-A, vol. 31, pp. 676-686, 2001. [31] S. J. Wund and C. T. Lin, “Discrete-time optimal fuzzy controller design: global concept approach,” IEEE Trans. Fuzzy Systems, vol. 10, no. 1, pp. 21-38, 2002. [32] J. J. Wang, C. T. Lin, S.H. Liu, and Z. C. Wen, “Model-based synthetic fuzzy logic controller for indirect blood pressure measurement,” IEEE Trans. Systems, Men, Cybernetics-B, vol. 32, pp. 306-315, 2002. [33] R. J. Wai, “Hybrid fuzzy neural-network control for nonlinear motor-toggle servomechanism,” IEEE Trans. Control Systems Technology, vol. 10, no. 4, pp. 519-532, 2002. [34] C. M. Lin and C. F. Hsu, “Self-learning fuzzy sliding-mode control for antilock braking systems, “IEEE Trans. Control Systems Technology, vol. 11, pp. 273-278, 2003. [35] T. H. S. Li and S. J. Chang, “Autonomous fuzzy parking control of a car-like mobile robot,” IEEE Trans. Systems, Men, Cybernetics-A, vol. 33, no. 4, pp. 451-465, 2003. [36] Y. L. Sun and M. J. Er, “Hybrid fuzzy control of robotics systems,” IEEE Trans. Fuzzy Systems, vol. 12, pp. 755-765, 2004. [37] K. Y. Lian, J. J. Liou, and C. Y. Huang, “LMI-Based Integral Fuzzy Control of DC-DC Converters,” IEEE Trans. Fuzzy Systems, vol. 14, pp. 71-80, 2006. [38] K. Kiriakidis, “Fuzzy model-based control of complex plants,”IEEE Trans. Fuzzy Systems, vol. 6, pp. 517-529, 1998. [39]B. S. Chen, C. S. Tseng, and H. J. Uang, “Robustness design of nonlinear dynamic systems via fuzzy linear control,”IEEE Trans. Fuzzy Systems, vol. 7, pp. 571-585, 1999. [40] B. S. Chen, C. S. Tseng, and H. J. Uang, “Mixed fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach,” IEEE Trans. Fuzzy Systems, vol. 8, pp. 249-265, 2000. [41] Y. Y. Cao and P. M. Frank, “Robust disturbance attenuation for a class of uncertain discrete-time fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 8, pp. 406-415, 2000. [42] Y. Y. Cao and Z. Lin, “Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation,” IEEE Trans. Fuzzy Systems, vol. 11, no. 1, pp. 57-67, 2003. [43] C. S. Tseng, “Model Reference Output Feedback Fuzzy Tracking Control Design for Nonlinear Discrete-Time Systems with Time-Delay,” IEEE Trans. Fuzzy Systems, vol. 14, pp. 58-70, 2006. [44] A. M. Steinberg and I. Kadushin, “Stabilization of nonlinear systems with dither control,” J. Math. Analysis and Application, vol. 43, pp. 273-284, 1973. [45] G. Zames and N. A. Shneydor, “Dither in Nonlinear Syatems,” IEEE Trans. Automatic Control, vol. 21, no. 5, pp. 660-667, 1976. [46] G. Zames and N. A. Shneydor, “Structural Stabilization and Quenching by Dither in Non-linear Systems,” IEEE Trans. Automatic Control, vol. 22, no. 3, pp. 352-361, 1977. [47] S. Mossaheb, “Application of a Method of Averaging to the Study of Dither in Non-linear Systems,” International Journal of Control, vol. 38, no. 3, pp. 557-576, 1983. [48] C. A. Desoer and S. M. Shahruz, “Stability of the dithered nonlinear system with backlash or hysteresis,” International Journal of Control, 43, 1045-1060, 1986. [49] F. H. Hsiao and J.D. Hwang, “Stabilization of Nonlinear Singularly Perturbed Multiple Time-delay Systems by Dither”, ASME Trans. Journal of Dynamic Systems, Measurement, and Control, Vol. 118, No. 1, pp. 176-181, 1996. [50] F. H. Hsiao and J. D Hwang, “Dither in linear systems with memoryless nonlinearity and optimal control,” IEEE Trans. Circuits and Systems-I, vol. 44, no. 5, 1997. [51] B. F. Feeny and F. C. Moon, “Quenching stick-slip chaos with dither,” Journal of Sound and Vibration, vol. 237, pp. 173-180, 2000. [52] A. A. Pervozvanski and C. Canudas-de-wit, “Asymptotic analysis of the dither effect in systems with friction,” Automatica, vol. 38, pp. 105-113, 2002. [53] L. Iannelli, K. H. Johansson, U. T. Jonsson, and F. Vasca “Dither for smoothing relay feedback systems,” IEEE Trans. Circuits and Systems-I, vol. 50, pp. 1025-1035, 2003. [54] L. Iannelli, K. H. Johansson, U. T. Jonsson, and F. Vasca “Averaging of nonsmooth systems using dither,” Automatica, vol. 42, pp. 669-676, 2006. [55] K. K. Shyu and Y. Y. Lee, “Compensation and control of dither-smoothed nonlinearities,” JSME International Journal.Series C, Mechanical Systems, machine elements and manufacturing, vol. 49, pp. 512-519, 2006. [56] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, “Linear matrix inequalities in system and control theory,” Philadelphia, PA: SIAM, vol. 15, 1994. [57] M. Akar and Ü. Özgüner, “Decentralized parallel distributed compensator design for Takagi-Sugeno fuzzy systems,” IEEE. Conf. on Decision and Control, vol. 5, pp. 4834-4839, 1999. [58] W. J. Wang and C. F. Cheng, “Stabilising controller and observer synthesis for uncertain large-scale systems by the Riccati equation approach,” IEE Proceeding-D, vol. 139, pp. 72-78, 1992. [59] H. O. Wang, and K Tanaka, “An LMI-based stable fuzzy control of nonlinear systems and its application to control of chaos,” IEEE Int. Conf. on Fuzzy Systems, pp. 1433-1438, 1996. [60] P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox User’s Guide. The MathWorks, Inc., 1995. [61] L. Weiss and E. F. Infante, “Finite time stability under perturbing forces and on product spaces,” IEEE Trans. Automatic Control, vol. 12, pp. 54-59, 1967. [62] K. Tanaka, I. Takayuki, and H. O. Wang, “A unified approach controlling chaos via an LMI-based fuzzy control system design,” IEEE Trans. Circuits and Systems-I, vol. 45, pp. 1021-1040, 1998.
|