(3.238.7.202) 您好!臺灣時間:2021/03/02 00:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張釜源
研究生(外文):Fu-yuan Chang
論文名稱:應用傅立葉轉換於腦機介面之游標控制
論文名稱(外文):Fourier transformation on the brain machine interface cursor control
指導教授:孫光天孫光天引用關係
指導教授(外文):Koun-Tem Sun
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:數位學習科技學系
學門:教育學門
學類:教育科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:79
中文關鍵詞:倒傳遞網路顏色感知游標控制腦機介面
外文關鍵詞:Color perceptionCursor controlBrain Computer Interface (BCI)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:560
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:93
  • 收藏至我的研究室書目清單書目收藏:6
本研究旨在設計一套線上即時大腦-電腦人機介面,其中透過腦電波訊號的處理與統計分析來找出一些腦電波特徵,針對有顯著的徵,利用類神經的方法去做學習與辨識,並進一步用此方法控制滑鼠游標的一維方向移動,提供肢體障礙者一個由大腦意識所控制的實用性輔具。本研究嘗試利用想像不同顏色,與想像和放鬆的兩種方式來找尋控制游標的特徵訊號,所選擇的極點包含了額葉(Fz, Cz, C3, C4)、大腦的頂葉(Pz,P3, P4)、枕葉(O1,O2)和顳葉(T3, T4, T5, T6)。將收集到的腦波資料經過快速傅立葉轉換後,觀察其能量差異,再經統計分析確認兩種方式之效果。最後選定想像和放鬆的方式,搭配α波頻段與較低的β波頻段作為游標控制的特徵訊號,將特徵經過倒傳遞網路的學習分類後,利用其學習後的權重值做臨床的即時測試,辨識正確率可達75%,已具初步實用價值。
The purpose of this research is to design a real-time Brain Computer Interface to find out some EEG characteristics through analyzing the messages from the brain waves. To these significant EEG characteristics, neural network learns and distinguishs them. Then, the brain wave can be used to control the cursor’s one-way motion and becomes a useful tool to the disability. The research is trying to use two ways to search out the characteristic signals to control the movement of cursor: image different colors and compare the status of imagination with the status of relaxation. The selected electrodes include frontal lobe (Fz, Cz, C3, C4) arietal lobe (Pz, P3, P4), occipital lobe (O1,O2), and temportal lobe (T3, T4, T5, T6) in the brain. Collection of brain wave information through the Fast Fourier Transform will be done to observe their differences of energy. And then use the analysis of statistic to confirm the effects between these two ways. In the end, the way of imaging and relaxing, combining with the frequency bands of α and Low-β, was used to control movement. After the training of
neural network, their weights was tested on clinical experiments immediately. The correct classification rate of 75% has reached a preliminary practiciablility.
中文摘要……………………………………………………………………………………….i
英文摘要………………………………………………………………………………………ii
誌 謝……………………………………………………………………………………...iii
目 錄……………………………………………………………………………………...iv
表 目 錄……………………………………………………………………………………...vi
圖 目 錄…………………………………………………………………………………….viii
一、 緒論............................................................................................................................1
1.1 研究背景與動機....................................................................................................1
1.2 研究目的................................................................................................................2
1.3 研究限制................................................................................................................2
二、 文獻探討....................................................................................................................3
2.1 大腦與腦波............................................................................................................3
2.1.1 大腦的功能....................................................................................................3
2.1.2 腦波概述........................................................................................................4
2.2 腦機介面................................................................................................................5
2.2.1 基本架構........................................................................................................5
2.2.2 相關的量測方法............................................................................................6
2.2.3 相關的特徵擷取............................................................................................7
2.3 腦機介面的應用....................................................................................................9
2.3.1 應用於游標的控制........................................................................................9
三、 實驗與方法.............................................................................................................. 11
3.1 實驗設備.............................................................................................................. 11
3.2 實驗設計..............................................................................................................13
3.2.1 實驗對象......................................................................................................13
3.2.2 實驗流程......................................................................................................13
3.3 實驗資料的收集與分析......................................................................................15
3.3.1 腦波資料處理概觀......................................................................................15
3.3.2 腦波資料收集..............................................................................................15
3.3.3 腦波資料的前置處理..................................................................................17
3.3.4 腦波資料的分析方法..................................................................................20
3.3.5 腦波資料的特徵辨識...............................................................................22
3.4 臨床的應用:腦機介面游標控制系統..............................................................24
四、 結果與討論..............................................................................................................26
4.1 EEGLab 分析結果與討論.....................................................................................26
4.1.1 想像紅色與想像黑色的分析......................................................................26
4.1.2 想像綠色與想像黑色的分析......................................................................36
4.1.3 想像狀態與放鬆狀態的分析......................................................................46
4.2 統計分析結果與討論..........................................................................................56
4.3 倒傳遞網路分類結果與討論..............................................................................72
4.4 臨床實驗結果與討論..........................................................................................73
五、 結論與建議..............................................................................................................76
參考文獻.................................................................................................................................78
劉育芳(2005)。人腦-電腦介面系統臨床實驗流程之分析研究。國立台南大學資訊教育
研究所碩士論文,未出版,台南市。
劉明機(2006)。應用腦波控制於電腦游標。國立台南大學資訊教育研究所碩士論文,
未出版,台南市。
洪蘭 譯(2002)。大腦的秘密檔案。台北:遠流出版社。
連國珍(1995)。數位信號處理簡介。台北:茂昌圖書公司。
Cooley, J. W., & Tukey, J. W. (1965). "An Algorithm for the Machine Calculation of Complex
Fourier Series." Mathematics of Computation, 19(90): 297-301.
Delorme, A., & Makeig, S. (2004). "EEGLAB: an open source toolbox for analysis of
single-trial EEG dynamics including independent component analysis." J. Neuroscience
Methods, 134(1): 9-21.
Hillyard, S. A., & Kutas, M. (1983). "Electrophysiology of cognitive processing." Annual
Review Psychology, 34: 33-61.
Hochberg, L. R., Serruya, M. D., Friehs, G. M., Mukand, J. A., Saleh, M., Caplan, A. H.,
Branner, A., Chen, D., Penn, R. D., & Donoghue, J. P. (2006). "Neuronal ensemble control of
prosthetic devices by a human with tetraplegia." Nature, 442: 164-171.
Jasper, H. H. (1958). "The ten-twenty electrode system of the International Federation."
Electroencephalography and Clinical Neurophysiology, 10(1): 371-375.
Kozelka, J. W., & Pedley, T. A. (1990). "Beta and mu rhythms." J Clinical Neurophysiology,
7(2): 191-207.
Pfurtscheller, G. (1992). "Event-related synchronization (ERS): an electrophysiological
correlate of cortical areas at rest." Electroencephalogr Clinical Neurophysiology, 83(1):
62-69.
Pfurtscheller, G., & Aranibar, A. (1977). "Event-related cortical desynchronization detected by
power measurements of scalp EEG." Electroencephalogr Clinical Neurophysiology, 42(6):
79
817-826.
Pfurtscheller, G., Brunner, C., Schlögl, A., & Lopes da Silva, F. H. (2006). "Mu rhythm (de)
synchronization and EEG single-trial classification of different motor imagery tasks."
Neuroimage, 31(1): 153-159.
Pfurtscheller, G., & Klimesch, W. (1990). "Topographical display and interpretation of
event-related desynchronization during a visual-verbal task" Brain Topography, 3(1): 85-93.
Pfurtscheller, G., & Neuper, C. (1997). "Motor imagery activates primary sensorimotor area in
humans." Neuroscience Letters, 239(2-3): 65-68.
Pfurtscheller, G., & Neuper, C. (2001). "Motor imagery and direct brain-computer
communication." Proceedings of the IEEE, 89(7): 1123-1134.
Picton, T. W., & Hillyard, S. A. (1988). "Endogenous event-related potentials." Human
Event-Related Potentials, 3: 361–426.
Schalk, G., McFarland, D.J., Hinterberger, T., Birbaumer, N., & Wolpaw, J.R. (2004).
"BCI2000: a general-purpose brain-computer interface (BCI) system." IEEE Transactions on
Biomedical Engineering, 51(6): 1034-1043.
Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002).
"Brain-computer interfaces for communication and control." Clinical Neurophysiology,
113(6): 767-791.
Wolpaw, J. R., & McFarland, D. J. (1994). "Multichannel EEG-based brain-computer
communication." Electroencephalogr Clinical Neurophysiology, 90(6): 444-449.
Wolpaw, J. R., McFarland, D. J., Neat, G. W., & Forneris, C. A. (1991). "An EEG-based
brain-computer interface for cursor control." Electroencephalogr Clinical Neurophysiology,
78(3): 252-259.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔