# 臺灣博碩士論文加值系統

(35.172.223.251) 您好！臺灣時間：2022/08/11 10:04

:::

### 詳目顯示

:

• 被引用:0
• 點閱:163
• 評分:
• 下載:0
• 書目收藏:1
 在一個資料庫裡，異常是指特性相異於其他資料的資料點。偵測出這些異常在許多應用中是很重要的。大部分傳統異常探勘的資料屬性都著重在數值屬性，但是現實生活中有很多類別屬性的資料，所以傳統的異常探勘方法就不適合使用。FindFPOF (frequent pattern outlier factor)演算法是利用頻繁項目集找出異常交易，但是FindFPOF會產生出許多頻繁樣式集。我們的目的是找出異常而不是在找出頻繁樣式，因此，本論文提出減少頻繁項目集(reduce frequent pattern set ; Rfp)來找出異常交易的方法，稱之為RfpFPOF。實驗結果顯示本論文所提出的方法在類別資料庫中發現異常交易的效能優於FindFPOF。
 An outlier in a database is an observation or a point that is considerably dissimilar to or inconsistent with the remainder of the data. Outlier detection is very import for many applications. Most existing methods are designed for numeric data. They will have problems with real-life applications that contain categorical data. In order to solve this problem, some scholars propose the FindFPOF(Frequent Pattern Outlier Factor) algorithm to detect outliers from discovered frequent patterns. However, FindFPOF generates too many frequent patterns. The purpose of this study is to identify outlier not to find frequent patterns. Therefore, in this study, we present an efficient method to detect outliers by reducing the number of frequent patterns, called the reduce frequent pattern FPOF (RfpFPOF) algorithm. The experimental results have shown that RfpFPOF outperformed the FindFPOF method on identifying outliers execution time.
 摘 要 IABSTRACT II誌 謝 III目錄 IV圖目錄 V表目錄 VI一、緒論 11.1研究背景 11.2 研究動機與目的 21.3 論文架構 2二、文獻探討 32.1 異常探勘 32.2 關聯法則探勘 52.3頻繁樣式基礎之離異探勘 9三、以頻繁樣式為基礎之異常交易偵測演算法 133.1方法概念 133.2演算法分析 16四、實驗結果與效能分析 194.1實驗環境與評估方式 194.2實驗資料集 194.3效能評估 20五、結論與未來研究方向 255.1 結論 255.2 未來研究方向 25參考文獻 26
 [1]C.C. Aggarwal and P.S. Yu, “Outlier Detection for High Dimensional Data,” Proc. ACM-SIGMOD 2001 Int’l. Conf. on Management of Data, pp.37-46, May 2001.[2]C.C. Aggarwal and P.S. Yu, “An Effective and Efficient Algorithm for High-Dimensional Outlier Detection,” The VLDB Journal, vol.14, no.2, pp.211-221, 2005.[3]D. Agrawal and C.C. Aggarwal, “On the Design and Quantification of Privacy Preserving Data Mining Algorithms,” Proc. 20th ACM SIGACT-SIGMOD-SIGART Symposium on PODS, pp.247-255, May 2001.[4]R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules between Sets of Items in Large Databases,” Proc. ACM-SIGMOD 1993 Int’l. Conf. on Management of Data, pp.207-216, May 1993.[5]V. Barnett and T. Lewis. Outliers in Statistical Data. John Whiley, Sons and Chichester, 1994.[6]M.M. Breunig, H.P. Kriegel, R.T. Ng, and J. Sander, “LOF: Identifying Density-based Local Outliers,” Proc. ACM-SIGMOD 2000 Int’l. Conf. on Management of Data, pp.93-104, May 2000.[7]M.S. Chen, J. Han, and P.S. Yu, “Data Mining: An Overview from Database Perspective,” IEEE Trans. Knowledge and Data Eng., vol.8, no.6, pp.866-883, 1996.[8]J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000.[9]S. Harkins, H. He, G.J. Williams, and R.A. Baxter, “Outlier Detection Using Replicator Neural Networks,” Proc. 4th Int’l. Conf. DaWaK 2002, pp.170-180, Sep. 2002.[10]Z. He, X. Xu, and S. Deng, “Discovering Cluster-based Local Outliers,” Pattern Recognition Letters, vol.24, no.9-10, pp.1641-1650, 2003.[11]Z. He, X. Xu, J.Z. Huang, and S. Demg, “A Frequent Pattern Discovery Method for Outlier Detection,” Proc. 5th Int’l. Conf. WAIM 2004, pp.726-732, July 2004.[12]Z. He, X. Xu, J.Z. Huang, and S. Deng, “FP-Outlier: Frequent Pattern Based Outlier Detection,” Computer Science and Information System, vol.2, no.1, 2005.[13]Z. He, X. Xu, and S.Deng, “A Unified Subspase Outlier Ensemble Framework for Outlier Detection in High Dimensional Spaces,” Proc. 6th Int’l Conf. Web-Age Information Management, pp.632-637, Oct. 2005.[14]M.F. Jiang, S.S. Tseng, and C.M. Su, “Two-Phase Clustering Process for Outliers Detection,” Pattern Recognition Letters, vol.22, no.6-7, pp.691-700, 2001.[15]E.M. Knorr and R.T. Ng, “Algorithms for Mining Distance-based Outliers in Large Data Sets,” Proc. 24th Int’l. Conf. on Very Large Data Bases, pp.392-403, Sep. 1998.[16]E.M. Knorr, R.T. Ng, and V. Tucakov, “Distance-based Outliers: Algorithms and Applications,” The VLDB Journal, vol.8, no.3-4, pp. 237–253, 2000.[17]M.E. Otey, A. Ghoting, and A. Parthasarathy, “Fast Distributed Outlier Detection in Mixed-Attribute Data Sets,” Data Mining and Knowledge Discovery, vol.12, no.2-3, pp.203-228, 2006.[18]S. Ramaswamy, R. Rastogi, and S. Kyuseok, “Efficient Algorithms for Mining Outliers from Large Data Sets,” Proc. ACM-SIGMOD 2000 Int’l. Conf. on Management of Data, pp.93-104, May 2000.[19]G.J. Willams, R.A. Baxter, H. He, S. Hawkins, and L. Gu, “A Comparative Study of RNN for Outlier Detection in Data Mining,” Proc. IEEE ICDM 2002, pp.709-712, Dec. 2002.[20]L. Wei, W. Qian, A. Zhou, W. Jin, and J.X. Yu, “HOT: Hypergraph-based Outlier Test for Categorical Data,” Proc. 7th Pacific-Asia Conf. PAKDD 2003, pp.399-410, April-May 2003.[21]D. Yu, G. Sheikholeslami, and A. Zang, “Findout: Finding Outliers in Very Large Datasets,” Knowledge and Information Systems, vol.4, no.3, pp. 387-412, 2002.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 無相關論文

 無相關期刊

 1 針對時空性交易資料考量樣式連結度於關聯法則探勘之研究 2 植基於頻繁項目集合與群集技術之模糊關聯法則探勘法之研究 3 頻繁嵌入式樹狀結構資料探勘方法之研究 4 運用不插電遊戲式學習活動對運算思維成效影響之研究 5 以GNS沉浸設計科技複合立體書之心流探究 6 考量國小學童思考風格之教學策略以提升運算思維成效之研究 7 運用資料探勘技術於大學課程學習預警模組之分析與探究 8 虛擬實境應用在高中全民國防教育射擊訓練課程之成效 9 改良式SPOC教學模式應用在國小蝴蝶生態教學成效之研究 10 採用鷹架導引系統提升國小學童運算思維能力之研究 11 數位遊戲運用於高中程式語言教學之研究 12 探討不同認知風格中結合隨境遊戲與擴增實境於廟宇導覽之應用 13 運用體驗式學習設計提升國小學童停格動畫能力之研究 14 運用字幕動態遮蔽機制於英語學習視訊對國小學童英語單字學習成效影響之研究 15 協作式主題無關學習遊戲系統之研製

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室