|
[1]C.C. Aggarwal and P.S. Yu, “Outlier Detection for High Dimensional Data,” Proc. ACM-SIGMOD 2001 Int’l. Conf. on Management of Data, pp.37-46, May 2001. [2]C.C. Aggarwal and P.S. Yu, “An Effective and Efficient Algorithm for High-Dimensional Outlier Detection,” The VLDB Journal, vol.14, no.2, pp.211-221, 2005. [3]D. Agrawal and C.C. Aggarwal, “On the Design and Quantification of Privacy Preserving Data Mining Algorithms,” Proc. 20th ACM SIGACT-SIGMOD-SIGART Symposium on PODS, pp.247-255, May 2001. [4]R. Agrawal, T. Imielinski, and A. Swami, “Mining Association Rules between Sets of Items in Large Databases,” Proc. ACM-SIGMOD 1993 Int’l. Conf. on Management of Data, pp.207-216, May 1993. [5]V. Barnett and T. Lewis. Outliers in Statistical Data. John Whiley, Sons and Chichester, 1994. [6]M.M. Breunig, H.P. Kriegel, R.T. Ng, and J. Sander, “LOF: Identifying Density-based Local Outliers,” Proc. ACM-SIGMOD 2000 Int’l. Conf. on Management of Data, pp.93-104, May 2000. [7]M.S. Chen, J. Han, and P.S. Yu, “Data Mining: An Overview from Database Perspective,” IEEE Trans. Knowledge and Data Eng., vol.8, no.6, pp.866-883, 1996. [8]J. Han and M. Kamber, Data Mining: Concepts and Techniques. Morgan Kaufmann, 2000. [9]S. Harkins, H. He, G.J. Williams, and R.A. Baxter, “Outlier Detection Using Replicator Neural Networks,” Proc. 4th Int’l. Conf. DaWaK 2002, pp.170-180, Sep. 2002. [10]Z. He, X. Xu, and S. Deng, “Discovering Cluster-based Local Outliers,” Pattern Recognition Letters, vol.24, no.9-10, pp.1641-1650, 2003. [11]Z. He, X. Xu, J.Z. Huang, and S. Demg, “A Frequent Pattern Discovery Method for Outlier Detection,” Proc. 5th Int’l. Conf. WAIM 2004, pp.726-732, July 2004. [12]Z. He, X. Xu, J.Z. Huang, and S. Deng, “FP-Outlier: Frequent Pattern Based Outlier Detection,” Computer Science and Information System, vol.2, no.1, 2005. [13]Z. He, X. Xu, and S.Deng, “A Unified Subspase Outlier Ensemble Framework for Outlier Detection in High Dimensional Spaces,” Proc. 6th Int’l Conf. Web-Age Information Management, pp.632-637, Oct. 2005. [14]M.F. Jiang, S.S. Tseng, and C.M. Su, “Two-Phase Clustering Process for Outliers Detection,” Pattern Recognition Letters, vol.22, no.6-7, pp.691-700, 2001. [15]E.M. Knorr and R.T. Ng, “Algorithms for Mining Distance-based Outliers in Large Data Sets,” Proc. 24th Int’l. Conf. on Very Large Data Bases, pp.392-403, Sep. 1998. [16]E.M. Knorr, R.T. Ng, and V. Tucakov, “Distance-based Outliers: Algorithms and Applications,” The VLDB Journal, vol.8, no.3-4, pp. 237–253, 2000. [17]M.E. Otey, A. Ghoting, and A. Parthasarathy, “Fast Distributed Outlier Detection in Mixed-Attribute Data Sets,” Data Mining and Knowledge Discovery, vol.12, no.2-3, pp.203-228, 2006. [18]S. Ramaswamy, R. Rastogi, and S. Kyuseok, “Efficient Algorithms for Mining Outliers from Large Data Sets,” Proc. ACM-SIGMOD 2000 Int’l. Conf. on Management of Data, pp.93-104, May 2000. [19]G.J. Willams, R.A. Baxter, H. He, S. Hawkins, and L. Gu, “A Comparative Study of RNN for Outlier Detection in Data Mining,” Proc. IEEE ICDM 2002, pp.709-712, Dec. 2002. [20]L. Wei, W. Qian, A. Zhou, W. Jin, and J.X. Yu, “HOT: Hypergraph-based Outlier Test for Categorical Data,” Proc. 7th Pacific-Asia Conf. PAKDD 2003, pp.399-410, April-May 2003. [21]D. Yu, G. Sheikholeslami, and A. Zang, “Findout: Finding Outliers in Very Large Datasets,” Knowledge and Information Systems, vol.4, no.3, pp. 387-412, 2002.
|