跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 08:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉榮富
研究生(外文):Rong-fu Ye
論文名稱:採用蕭特基二極體線性器之WiMAX系統專用高線性度混波器設計
論文名稱(外文):Highly Linear Mixer Design with a Schottky Diode inearizer for WiMAX Applications
指導教授:李世明李世明引用關係吳建銘吳建銘引用關係
指導教授(外文):Simon Cimin LiJian-ming Wu
學位類別:碩士
校院名稱:國立臺南大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:95
語文別:中文
論文頁數:48
中文關鍵詞:蕭特基二極體混波器二極體線性器
外文關鍵詞:Diode LinearizerMixerSchottky Diode
相關次數:
  • 被引用被引用:1
  • 點閱點閱:432
  • 評分評分:
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討應用於全球互通微波存取(Worldwide Interoperability for Microwave Access, WiMAX) 2.6 GHz 頻段之降頻混波器線性化設計,首先以WiMAX通訊系統為例,介紹射頻傳收機對於線性度參數的要求,並且討論與比較目前文獻中使用在射頻元件線性化技術。接著在此次研究中,我們採用蕭特基二極體線性器的方法並搭配Gilbert混波器架構,以Agilent Technologies所提供的GaAs製程增強型擬態高速移動電子電晶體(Enhancement Mode Pseudomorphic High Electron Mobility Transisitors, E-pHEMTs),型號為ATF-55143電晶體,進行混成微波積體電路(Hybrid Microwave Integrated Circuits, HMICs)的設計與實作,以驗證使用蕭特基二極體線性器可以提高Gilbert混波器的線性度。最後以WIN所提供的0.15 μm GaAs pHEMT從事傳統Gilbert混波器以及具有蕭特基二極體線性化技術的Gilbert混波器之單晶微波積體電路(Monolithic Microwave IC, MMICs)設計與比較。
This thesis principally investigated the linearizer techniques for enhancing the downconverter linearity in worldwide interoperability for microwave access (WiMAX) systems. The thesis in the early stage studied the demands for the linearity in WiMAX RF transceivers and compared with the linearization techniques in the current literature. 2.6 GHz mixers are designed and implemented in hybrid microwave integrated circuits (HMICs) using Agilent Technologies’s enhancement-mode GaAs pseudomorphic high electron mobiblty transistors (pHEMTs). The proposed design is based on a commonly used Gilbert mixer with a Schottky diode linearizer to enhance the linearity. The late stage of this thesis designed 2.6 GHz mixers with and without a Schottky diode linearizer in monolithic microwave integrated circuits (MMICs) using WIN 0.15 μm GaAs pHEMT process and compared with each other.
摘 要...............................................i
ABSTRACT...............................................ii
誌 謝...............................................iii
目 錄...............................................iv
圖 目 錄...............................................v
表 目 錄...............................................viii
第一章 緒論...........................................1
1.1 全球互通微波存取系統..............................1
1.2 固態電子元件......................................3
1.3 線性化技術........................................5
1.3.1 非線性探討......................................5
1.3.2 線性化方法......................................7
1.4 章節介紹..........................................17
第二章 2.6 GHz混波器混成微波積體電路..................18
2.1 二極體線性器原理..................................18
2.2 pn接面與蕭特基接面................................20
2.2.1 pn接面..........................................20
2.2.2 蕭特基接面......................................21
2.3 採用蕭特基二極體線性器之混波器設計................25
2.3.1 電路操作原理....................................25
2.3.2 模擬與量測結果..................................27
第三章 2.6 GHz混波器單晶微波積體電路..................35
3.1 WIN 0.15 μm InGaAs pHEMT..........................35
3.2 設計原理..........................................36
3.3 模擬結果..........................................39
第四章 結論...........................................44
參考文獻...............................................45
圖 目 錄
第一章
圖1.1 (a)16-QAM與(b)64-QAM訊號星座圖.................6
圖1.2 (a)1dB壓縮點,(b)三階交越點....................6
圖1.3 非線性電路串接.................................7
圖1.4 順授系統.......................................8
圖1.5 回授系統.......................................8
圖1.6 預失真系統.....................................8
圖1.7 Gilbert降頻混波器..............................9
圖1.8 共源極架構.....................................10
圖1.9 圖1.8(b)小訊號等效電路.........................10
圖1.10 源極退化時的轉導增益..........................11
圖1.11 消除三階非線性之Gilbert混波器.................12
圖1.12 具有電流注入機制之Gilbert混波器...............13
圖1.13 採用前饋線性化技術消除三階交越調變項..........13
圖1.14 並聯多閘極之共源極電路........................14
圖1.15 主要電晶體與次要電晶體在不同偏壓時的二階與三階
轉導特性...............................................14
圖1.16 等效之非線性轉導..............................15
圖1.17 串聯式二極體線性器............................16
圖1.18 並聯式二極體線性器............................16
圖1.19 二極體形式電晶體線性器........................16
第二章
圖2.1 二極體形式電晶體線性器.........................18
圖2.2 二極體基射極電壓Vb之時域波形響應...............19
圖2.3 二極體基射極電壓Vb與射頻輸入功率響應...........19
圖2.4 放大器基射極電壓Vbe與射頻輸入功率響應..........19
圖2.5 功率放大器集極電流Ic與射頻輸入功率響應.........20
圖2.6 pn二極體順偏操作...............................21
圖2.7 pn接面二極體小訊號等效電路.....................21
圖2.8 (a)接近的金屬與n型半導體在熱非平衡之下的能帶圖
,(b)接觸的金屬與n型半導體在熱平衡之下的能帶圖.........22
圖2.9 不同偏壓情況下,金屬與n型與p型半導體接觸之能帶
圖.....................................................23
圖2.10 蕭特基二極體小訊號等效模型....................24
圖2.11 使用源極退化之Gilbert混波器...................25
圖2.12 使用蕭特基二極體線性器之源極退化Gilbert混波器.26
圖2.13 Agilent Technologies ATF-5514電晶體直流I-V特性
曲線模擬結果...........................................27
圖2.14 使用蕭特基二極體線性器之源極退化Gilbert混波器
電晶體QD的VGS波形模擬..................................27
圖2.15 使用蕭特基二極體線性器之源極退化Gilbert混波器
QD的VGS直流成分之模擬結果..............................28
圖2.16 使用蕭特基二極體線性器之源極退化Gilbert混波器
中電晶體Q1及Q2的VGS與IDS之模擬結果.....................28
圖2.17 二極體形式pHEMT形成蕭特基二極體...............29
圖2.18 蕭特基二極體I-V特性曲線量測結果...............29
圖2.19 2.6GHz WiMAX混波器HMICs之消耗電流.............30
圖2.20 2.6GHz WiMAX混波器HMICs轉換增益...............30
圖2.21 2.6 GHz WIMAX混波器HMICs三階交越調變失真......31
圖2.22 2.6GHz WiMAX混波器HMICs之射頻輸入端的折返損耗
量測結果...............................................31
圖2.23 2.6GHz WiMAX混波器HMICs之中頻輸出端的折返損耗
量測結果...............................................32
圖2.24 2.6GHz WiMAX混波器HMICs之本地振盪輸入端的折返
損耗量測結果...........................................32
圖2.25 2.6 GHz WiMAX混波器HMICs之射頻-中頻的隔離度量
測結果.................................................33
圖2.26 2.6 GHz WiMAX混波器HMICs之本地振盪-中頻之隔離
度量測結果.............................................33
圖2.27 2.6 GHz WiMAX混波器HMICs......................34
第三章
圖3.1 GaAs HEMT物理結構..............................36
圖3.2 WIN 0.15 μm GaAs pHEMT I-V特性曲線模擬結果.....36
圖3.3 具有源極退化電感之Gilbert混波器................37
圖3.4 具有蕭特基二極體線性器之Gilbert混波器..........37
圖3.5 晶片設計下線流程...............................38
圖3.6 具有蕭特基二極體線性器之Gilbert混波器中二極體形
式電晶體QD的VGS時域波形模擬結果........................39
圖3.7 具有蕭特基二極體線性器之Gilbert混波器中QD的VGS
直流成分之模擬結果.....................................39
圖3.8 具有蕭特基二極體線性器之Gilbert混波器中電晶體Q1
與Q2的VGS跨壓及IDS之模擬結果...........................40
圖3.9 2.6GHz WIMAX混波器MMICs轉換增益................40
圖3.10 2.6 GHz WIMAX混波器中頻與三階交越調變項之輸出
功率...................................................41
圖3.11 2.6 GHz WIMAX混波器三階交越調變失真...........41
圖3.12 2.6 GHz WIMAX混波器MMICs......................43

表 目 錄
第一章
表1.1 各WiMAX技術比較................................2
表1.2 各國頻譜使用狀況...............................2
表1.3 台灣WiMAX 802.16e傳收機模組規格................3
表1.4 砷化鎵與矽製程特性比較.........................5
第二章
表2.1 2.6 GHz WiMAX混波器HMICs之量測規格表...........34
第三章
表3.1 2.6GHz WIMAX混波器MMICs之模擬規格表............42
[1]IEEE Std. 802.16-2001 IEEE Standard for Local and Metropolitan area networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems, IEEE Standard, 2002.
[2]IEEE Standard for Local and metropolitan area networks --- Part 16: Air Interface for Fixed Broadband Wireless Access Systems--- Amendment 2: Medium Access Control Modifications and Additional Physical Layer Specifications for 2-11 GHz, IEEE Standard, 2003.
[3]Unapproved Draft IEEE Standard for Local and metropolitan area networks Corrigendum to IEEE Standard for Local and Metropolitan Area Networks-Part 16: Air Interface for Fixed Broadband Wireless Access Systems (Revision of IEEE Std 802.16-2001; IEEE Std 802.16c-2002, and IEEE std 802.16a-2003), IEEE Standard, May 2004.
[4]IEEE Std 802.16 – 2004, IEEE Standard for Local and metropolitan area networks, Part 16:Air Interface for Fixed Broadband Wireless Access Systems., IEEE Standard, Oct. 2004.
[5]IEEE Std 802.16e/D12, Draft IEEE Standard for Local and metropolitan area networks, Part 16: Air Interface for Fixed and Mobile Broadband Wireless Access Systems., IEEE Standard, Sept. 2005.
[6]C. Masse, “A 2.4 GHz Direct Conversion Transmitter for Wimax Applications,” IEEE Radio Frequency Integrated Circuits, June 2006. pp. 4–8
[7]K. W. Yeom, and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. Microwave Theory Tech., Vol. 53, pp. 2435–2440, July 2005.
[8]S. E. Gunnarsson, C. Karnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE J. Solid-State Circuits, Vol. 40, pp. 2174–2186, Nov. 2005.
[9]Y. J. Hwang, C. H. Lien, H. Wang, W. M. Sinclair, G. R. Gough, H. Kanoniuk, and T. H. Chu, “A 78-114 GHz monolithic subharmonically pumped GaAs-based HEMT diode mixer,” IEEE Microwave Theory and Wireless Component Letters, Vol. 12, pp. 209–211, June 2002.
[10]B. S. Virdee, et. al., Broadband Microwave Amplifiers, Norwood, MA: Artech House Inc., 2004.
[11]J. Crols and M. S. J. Steyaert, “Low-IF Topologies for High-Performance Analog Front Ends of Fully Integrated Receivers,” IEEE Transactions on Circuits and Systems, Vol. 45, No. 3, pp. 269-282, Mar. 1998.
[12]Z. M. Tsai, C. S. Lin, C. F. Huang, John G. J. Chern, and Huei Wang, “A fundamental 90-GHz CMOS VCO using new ring-coupled quad,” IEEE Microwave and Wireless Component Letters, Vol. 17, No. 3, pp. 226-228, Mar. 2007.
[13]R. C. Liu, T. P. Wang, L. H. Lu, H. Wang, S. H. Wang, C.P. Chao, “A 80GHz Traveling-Wave Amplifier in a 90nm CMOS Technology,” IEEE J. Solid-State Circuits Conf., pp. 154–155, Feb. 2005.
[14]J. B. Johnson, J. A. Joseph, D. C. Sheridan, et. al. “Silicon-Germanium BiCMOS HBT Technology for Wireless Power Amplifier Applications,” IEEE J. Solid-State Circuits, Vol.39, pp. 1605–1614, Oct. 2004.
[15]P. Cortese, S. David, T. Le Toux, J. Mayock, I. Pilcher, J. Sanham, “Ultra Linear 3.5GHz RF Front-End for OFDM System,” IEEE Compound Semiconductor Integrated Circuit Symp., pp. 161–164, Nov. 2006.
[16]O. Xu., X. Hu., P. Gao., Jun Yan., Shi Yin., Dai, F.F., Jaeser, R.C., “A Direct-Conversion Mixer with DC-Offset Cancellation for IEEE 802.11a WLAN Receiver,” IEEE Circuits and Systems, pp. 5696–5699, May. 2006.
[17]D. Tse, P. Viswanath, Fundamental of Wireless Communication, Cambridge University, 2005.
[18]C. Toumazou, G. Moschytz, B. Gilbert, Trade-Offs in Analog Circuits Design, Kluwer Academic, 2002.
[19]M. Faulkner, “Amplifier linearization using RF feedback and feedforward techniques,” IEEE Trans. Vehicular Technology, Vol. 47, pp. 209–215, Feb. 1998.
[20]S.G. Kang, I.K. Lee, K.S. Yoo, “Analysis and design of feedforward power amplifier,” IEEE Microwave Symp. Dig., Vol. 3, pp. 1519–1522, 1997.
[21]B. Shi, L. Sundstrom, “Chip for Linearisation of RF Power Amplifiers Using Power Feedback,” Electronics Letters, Vol. 34, pp. 2117–2119, Oct. 1998.
[22]T. Sowlati, Y.M. Greshishchev, C.A.T. Salama, “Phase-correcting feedback system for class E power amplifier,” IEEE J.Solid-State Circuits, Vol. 32, pp. 544–549, Apr. 1997.
[23]J. Yi, Y. Yang, M. Park, W. Kang, B. Kim, “Analog Predistortion Linearizer for High-Power RF Amplifiers,” IEEE Microwave Theory and Techniques Trans., Vol. 48, pp. 2709–2713, Dec. 2000.
[24]G. Hau, T.B. Nishimura, N. Iwata “A Linearized Power Amplifier MMIC for 3.5 V battery operated wide-band CDMA handsets,” IEEE Microwave Symp. Dig., 2000., Vol. 3, pp. 1503–1506
[25]T. Tikka, J. Ryynanen, M. Hotti, K. Halonen, “Design of a High Linearity Mixer for Direct-Conversion Base-Station Receiver,” IEEE Circuits and Systems Proceeding, May. 2006., pp. 2321–2324
[26]F. H. Raab, et al., “RF and Microwave Power Amplifier and Transmitter Technologies — Part 4,” High Frequency Electronics, May 2003.
[27]M. Hossain, M. B. Frank, M. Y. Antar, “Performance of a Low Voltage Highly Linear 24 GHz Down Conversion Mixer in 0.18 um CMOS,” IEEE Silicon Monolithic Integrated Circuits in RF Systems, pp. 135–138, Jan. 2006.
[28]Y. Wang, J. S. Duster, T. K Kornegay, Hyun-min Park, J. Laskar, “An 18 GHz low noise high linearity active mixer in SiGe,” IEEE International Symp. on Circuits and System, Vol. 4, pp. 3243–3246, May. 2005.
[29]B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill, 2004.
[30]W. Simbürger, H. Knapp, G. Schultes, and A. L. Scholtz, “Comparison of linearization techniques for differential amplifiers in integrated circuit design,” in 7th Mediterranean Electrotechnical Conf., Vol. 3, Antalya, Turkey, Apr. 1994., pp. 1222–1225
[31]V. Aparin, E. Zeisel, and P. Gazzerro, “Highly linear SiGe BiCMOS LNA and mixer for cellular CDMA/AMPS applications,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., 2003., pp. 129–132
[32]V. Aparin and L. E. Larson, “Linearization of monolithic LNA’s using low-frequency low-impedance input termination,” in Proc. IEEE Eur. Solid-State Circuits Conf., 2003., pp. 137–140
[33]M. V. Heijden, M. Spirito, M. Pelk, L. deVreede, and J. Burghartz, “On the Optimum Biasing and Out-of-Band-Terminations of Linear and Power Efficient Class-AB Bipolar Amplifiers,” in Proc. IEEE BCTM, pp. 44–47, Sept. 2004.
[34]V. Aparin and C. Persico, “Effect of out-of-band terminations on intermodulation distortion in common-emitter circuits,” in 1999 IEEE MTT-S Int. Microwave Symp. Dig., June 1999., pp. 977–980
[35]L. Sheng and L. E. Larson, “An Si-SiGe BiCMOS Direct-Conversion Mixer with Second-Order Nonlinearity Cancellation for WCDMA Applications,” IEEE Trans. Microwave Theory Tech., Vol.51, pp. 2211–2220, Nov. 2003.
[36]S. G. Lee and J. K. Choi, “Current-reuse bleeding mixer,” Electron. Lett., Vol.36, pp.696–697, Apr. 2000.
[37]L. A. MacEachern and T. Manku, “A Charge-Injection Method for Gilbert Cell Biasing,” in IEEE Canadian Conf. Electrical and Computer Eng., May 1998, pp. 365–368
[38]J. Park, H. C. Lee, S. B. Kim, J. Laskar, , “Design and Analysis of Low Flicker-Noise CMOS Mixers for Direct-Conversion Receivers,” IEEE Trans. Microwave Theory Tech., Vol. 54, pp. 4372–4380, Dec. 2006.
[39]W. Kim, D. Keum, S. Kang, H. B. Park, “A Mixer With Third-Order Nonlinearity Cancellation Technique for CDMA Applications,” IEEE Microwave and Wireless Components Lett., Vol. 17, pp. 76–78, Jan. 2007.
[40]Y. Ding and R. Harjani, “An 18 dBm IIP3 LNA in 0.35 µm CMOS,” in IEEE ISSC Tech. Dig., Feb. 2001, pp. 162–163
[41]T. J. Ellis, “A modified feed-forward technique for mixer linearization,” in IEEE MTT-S Int. Microw. Symp. Dig., 1998, pp. 1423–1426
[42]M. Chongcheawchamnan and I. D. Robertson, “Linearized microwave mixer using simplified feedforward technique,” Electron. Lett., Vol. 35, pp. 724–725, Apr. 1999.
[43]T. W. kim, B. Kim, K. Lee, “Highly Linear RF CMOS Amplifier and Mixer Adopting MOSFET Transconductance Linearization by Multiple Gated Transistors,” in IEEE RFIC Symp., Jun. 2006., pp. 107–110
[44]W. C. Zhan, C. N. Kuo, J. C. Guo, “Low-Power and High-Linearity Mixer Design Using Complex Transconductance Equivalent Circuit,” in IEEE Custom Integrated Ciucuits Conf., Sept. 2005., pp. 365–368
[45]K. Yamauchi, K. Mori, M. Nakayama, Y. Itoh, Y. Mitsui, and O. Ishida, “A Novel Series Diode Linearizer for Mobile Radio Power Amplifiers,” in IEEE MTT-S Int. Microwave Symp. Tech. Dig., 1996., pp. 831–834
[46]C. Haskins, T. Winslow, and S. Raman, “FET Diode Linearizer Optimization for Amplifier Predistortion in Digital Radios,” IEEE Microwave and Guided Wave Lett., Vol. 410, No. 1, pp. 21–23, Jan. 2000.
[47]K. Yamauchi, K. Mori, M. Nakayama, Y. Mitsui, and T. Takagi, “A microwave miniaturized linearizer using a parallel diode with a bias feed resistance,” IEEE Trans. Microwave Theory Tech., Vol.45, pp. 2431–2435, Dec. 1997.
[48]K. Yamauchi, M. Nakayama, Y. Ikeda, H. Nakaguro, N. Kadowaki, and T. Araki, “A 18GHz-Band MMIC Linearizer Using a Parallel Diode with a Bias Feed Resistance and a Parallel Capacitance,” IEEE MTT-S Int. Microwave Symp. Dig., June 2000., pp. 1507–1510
[49]K. Yamauchi, K. Mori, M. Nakayama, Y. Itoh, Y. Mitsui, and O. Ishida, “A Novel Series Diode Linearizer for Mobile Radio Power Amplifiers,” in IEEE MTT-S Int. Microwave Symp. Tech. Dig., 1996., pp. 831–834
[50]T. Yoshimasu, M. Akagi, N. Tanba, and S. Hara, “An HBT MMIC Power Amplifier with an Integrated Diode Linearizer for Low-Voltage Portable Phone Applications,” IEEE J. Solid-State Circuits, Vol. 33, pp. 1290–1296, Sept. 1998.
[51]T. Yoshimasu, M. Akagi, N. Tanba, and S. Hara, “A low distortion and high efficiency HBT MMIC power amplifier with a novel linearization technique for /4 DQPSK modulation,” in IEEE GaAs IC Symp. Tech. Dig., 1997, pp. 45–48
[52]M. Bao, Y. Li, and A. Cathelin, “A 23 GHz active mixer with integrated diode linearizer in SiGe BiCMOS technology,” in Proc. European Microwave Conf., 2003, pp. 391–394
[53]J. M. Wu, J. K. Jau, T. S. Horng, and C. C. Tu, "Highly linear upconverter MMIC designs with complete package and test board effects for CDMA applications," IEEE Radio-Frequency Integrated Circuit Symp., 2003., pp. 405–408
[54]J. M. Wu and T. S. Horng, "Package and PCB effects on the linearity of W-CDMA upconverter MMICs," European Microwave Conf., 2004., pp. 245–248
[55]F. Y. Han, J. M. Wu, and T. S. Horng, "A rigorous study of package and PCB effects on W-CDMA upconverter RFICs," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 10, pp. 3793-3804, Oct. 2006.
[56]A. S. Sedra, K. C. Smith, Microelectronic Circuits, 5th Edition, Oxford University, 2004.
[57]Simon M. Sze, Physics of Semiconductor Devices, 3rd Edition, John Wily & Sons Inc., Nov. 2006.
[58]Simon M. Sze,Semiconductor Devices Physics and Technology, John Wily and Sons, 1997.
[59]Stephen A. Maas, Nonlinear Microwave and RF Circuits, 2nd Edition, Artech House, 1997.
[60]“Agilent ATF-55143 low noise enhancement mode pseudomorphic HEMT in a surface mount plastic package,” Data Sheet, Agilent Technologies, 2004.
[61]H. Darabi and Asad. A. Abidi, “Noise in RF-CMOS mixers a simple physical model,” IEEE Transaction of Solid-State Circuits, Vol. 35, No. 1, pp. 15–25, Jun. 2000.
[62]A. Baca and C. Ashby, Fabrication of GaAs Devices, IEE publications, 2005.
[63]W. A. Bruce, S. Alieza, Design and Control of RF Power Amplifiers, Kluwer Academic, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top