(3.235.25.169) 您好!臺灣時間:2021/04/20 19:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂昭偉
論文名稱:硝酸銨鈰(Ⅳ)誘發硫醇、苯硒醇與α,β-不飽和酮類進行加成反應及共軛硝基烯經由氯化肟類化合物轉換為腈類化合物
論文名稱(外文):Ceric ammonium nitrate (CAN) as a green and highly efficient promter for the 1,4-addition of thiols and benzenseslenol to α,β-unsaturated ketones a facile and fliexible route to α-aryl-substituted nituriles from β-nitrostyrenes through hydroximoyl chlorid
指導教授:姚清發姚清發引用關係
學位類別:碩士
校院名稱:國立臺灣師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:109
中文關鍵詞:硝酸銨鈰(Ⅳ)硫醇αβ-不飽和酮類氯化肟類化合物腈類化合物苯硒醇
相關次數:
  • 被引用被引用:0
  • 點閱點閱:158
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
第一部份
使用催化量的硝酸銨鈰(Ⅳ),可以誘發硫醇和苯硒醇對α,β-不飽和酮類進行1,4-加成反應。硝酸銨鈰(Ⅳ)不但便宜、無毒、且是容易取得的化學藥劑,它可以在無溶劑條件下有效地誘發硫醇和α,β-不飽和酮類進行共軛加成反應。根據所提出的反應機構,硝酸銨鈰(Ⅳ)不但可做為自由基加成反應的促使劑,同時也是共軛加成反應過程中的催化劑。
第二部分
論文此部分是報導以三溴化磷作為脫水劑,可以將不同的氯化肟類化合物,在不需要鹼的條件下,轉換成相對應的腈類化合物。此法可以避免腈類化合物在鹼性條件下被破壞的情況,再藉由路易士酸將共軛硝基烯系列物,轉換為α位置多樣性的氯化肟類化合物,而這個方法可以應用於心臟病用藥 Verapamil 的合成,讓此方法更具有價值性及實用性。
目錄
第一部份
硝酸銨鈰(Ⅳ)誘發硫醇、苯硒醇與α,β-不飽和酮類進行加成反應
頁碼
中文摘要 1
英文摘要 2
前言 3
結果與討論 5
結論 15
實驗部分
儀器設備 16
藥品和試劑 17
實驗步驟 18
光譜資料 19
參考資料 28
光譜 31




目錄
第二部份
共軛硝基烯經由氯化肟類化合物轉換為腈類化合物
頁碼
中文摘要 81
英文摘要 82
前言 83
目標 86
結果與討論 87
結論 94
實驗部分
儀器設備 95
藥品和試劑 96
實驗步驟 97
光譜資料 98
參考資料 106
光譜 109
第一部份
1.(a) Fluharty, A. L. in The Chemistry of the Thiol Group; Patai, S., Ed.; Wiely: New York, 1974; Part 2, pp 589. (b) Fujita, E.; Nagao, Y. J. Bioorg. Chem. 1977, 6, 287.
2.(a) Julia, M.; Badet, B. Bull. Soc. Chim. Fr. 1975, 1363. (b) Trost, B. M.; Keeley, D. E. J. Org. Chem. 1975, 40, 2013. (b) Shono, T.; Matsumura, Y.; Kashimura, S.; Hatanaka, K. J. Am. Chem. Soc. 1979, 101, 4752. (c) Chang, Y.-H.; Pinnick, H. W. J. Org. Chem. 1978, 43, 373.(d) Shono, T.; Matsumura, Y.; Kashimura, S.; Hatanaka, K. J. Am. Chem. Soc. 1979, 101, 4752.
3.(a) Bergman, E. D.; Ginsberg, D.; Rappo, R. Org. React. 1959, 10, 179. (b) Oare, D. A.; Heathcock, C. A. In Topics in Stereochemistry; Eliel, E. L., Wilen, S. H., Eds.; Wiley: New York, 1989; Vol. 9, pp 277.
4.(a) Zhu, S.; Cohen, T. Tetrahedron 1997, 53, 17607. (b) Hiemstra, H.; Wiberg, H. J. Am. Chem. Soc. 1981, 103, 417. (c) Suzuki, K.; Ikekawa, A.; Mukaiyama, T. Bull. Soc. Chem. Jpn. 1982, 55, 3277. (d) Yamashita, H.; Mukaiyama, T. Chem. Lett. 1985, 363. (f) Emori, E.; Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 4043.
5.(a) Kobyashi, S.; Ogawa, C.; Kawamura, M.; Sugiura, M. Synlett. 2001, 983. (b) Bandini, M.; Cozzi, P. G.; Giacomini, M.; Melchiorre, P.; Selva, S.; Umani-Ronchi, A. J. Org. Chem. 2002, 67, 3700. (c) Srivastava, N.; Banik, B. K. J. Org. Chem. 2003, 68, 2109. (d) Alam, M. M.; Varala, R.; Adapa, S. R. Tetrahedron Lett. 2003, 44, 5115. (e) Ranu, B. C.; Dey, S. S.; Samanta, S. ARKIVOC, Issue: iii 2005, 44. (f) Garg, S. K.; Kumar, R.; Chakraborti, A. K. Tetrahedron Lett. 2005, 46, 1721. (g) Garg, S. K.; Kumar, R.; Chakraborti, A. K. Synlett. 2005, 1370.
6.Novak, L.; Kolontis, P.; Szantay, C.; Aszodi, D.; Kajtar, M. Tetrahedron 1982, 38, 153.
7.Our recent study found that only 35% or 20% of addition product was observed when the reaction of chalcone or trans-4-phenyl-3-butene-2-one with thiophenol was conducted under the same conditions as literature reported for 24 hours after the crude mixture was analyzed by NMR or GC, respectively. Khatik,G. L.; Kumar, R.; Chakraborti, A. K. Org. Lett. 2006, 8, 2433.
8.(a) Harris, J. F.; Stacey, F. W. Organic Reactions; Roger Adams, 1963; vol.13, chap.4. (b) Kharasch, M. S.; Fuchs, C. F. J. Org. Chem. 1948, 13, 97. (c) Griesbaum, K. Angew. Chem. Int. Ed. Engl. 1970, 9, 27. (d) Kharasch, M. S.; Nudenberg, W.; Mantell, G. J. J. Org. Chem. 1954, 16, 524. (e) Oswald, A. A. J. Org. Chem. 1961, 26, 842. (f) Bredereck, Wagner, Kottenhahn, Chem. Ber. 1960, 98, 2415. (g) Harman. Chemical abstracts 1950, 44, 8942. (h) Oswald, A. A.; Noel, F. J. Org. Chem. 1961, 26, 3948.
9.Heiba, E. I.; Dessau, R. M. J. Am. Chem. Soc. 1971, 93, 524.
10.Nair, V.; Balagopal, L.; Rajan, R.; Mathew, J. Acc. Chem. Res. 2004, 37, 21.
11.(a) Ho, T. L. Synthesis 1972, 561. (b) Ho, T. L. Synthesis 1973, 347. (c) Molander, G. A. Chem. ReV. 1992, 92, 29. (d) Nair, V.; Augustine, A. Organic Lett. 2003, 5, 543.
12.The typical enantioselectivity of 3da was determined by chiral stationary phase HPLC analysis (DAICEL CHIRALCEL OD-H, i-PrOH-hexane/2:98, flow rate: 0.5 mL/min, retention time: 16.7 min, 18.4 min).
13.(a) Jung, M. E.; Gervoy, J. J. Am. Chem. Soc. 1991, 113, 224. (b) Jung, M. E.; Trifunovich, I. D.; Lensen, N. Tetrahedron Lett. 1992, 33, 6719.
14.The cyclization of ester radicals derived from allyl acrylate and allyl acetate is known to be very slow compared to the dramatic effect of gem-dimethyl substitution on the rate of 5-exo-cyclization. The rate constant of gem-dialkyl cyclization is in the range of 106 s-1. Relatively, the rate constant for the reduction of alkyl radicals by thiophenol of 1.3 × 108 M-1 s-1 has also been reported: (a) Russell, G. A.; Li, C.; Chen, P. J. Am. Chem. Soc. 1996, 118, 9831. (b) Curran, D. P.; Tamine, J. J. Org. Chem. 1991, 56, 2746. (c) Franz, J. A.; Bushaw, B. A.; Alnajjar, M. S. J. Am. Chem. Soc. 1989, 111, 268. (d) Free Radical in Organic Chemistry; Fossey, J.; Lefort, D.; Sorba, J., Ed.; Wiely: New York, 1995; pp 80 & pp 99.
15.(a) Levander, O. A. Selenium. In Trace Elements in Human and Animal Nutrition; Mertz, W. Ed.; Academic Press: Orlando, 1986, vol. 2, p 209. (b) Levander, O. A. A. Rev. Nutr. 1987, 7, 227. (c) Neve, J. Biological Functions of Selenium. In Selenium in Medicine and Biology; Neve, J., Favier, A., Eds.; W. de Gruyter: Berlin, 1988; pp 97. (d) Selenium in Biology and Human Health; Burk, R. F., Ed.; Springer-Verlag: New York, 1994. (e) Ganther, H. E. Carcinogenesis 1999, 20, 1657. (f) Mugesh, G.; du Mont, W.-W.; Sies, H. Chem. Rev. 2001, 101, 2125.
16.(a) Flohé, L.; Günzler, E. A.; Schock, H. H. FEBS Lett. 1973, 32, 132. (b) Rotruck, J. T.; Pope, A. L.; Ganther, H. E.; Swanson, A. B.; Hafeman, D. G.; Hoekstra, W. G. Science 1973, 179, 588.
17.(a) Perkins, M. J.; Smith, B. V.; Turner, E. S. J. Chem. Soc. Chem. Commun. 1980, 20, 977. (b) Akiyama, R.; Kobayashi, S. J. Am. Chem. Soc. 2003, 125, 3412.
18.Clarembeau, M.; Cravador, A.; Dumont, W.; Hevesi, L; Krief, A. Tetrahedron. 1985, 41, 4793.
19.Firouzabadi, H.; Iranpoor, N.; Jafari, A. A. Synlett. 2005, 299.
20.Silva, F. M. D.; Gomes, A. K.; Jones, J. Can. J. Chem. 1999, 77, 624.
21.Flowers, W. T.; Freitas, A. M.; Holt, G.; Purkiss, S. C. J. Chem. Soc. Perkin Trans. 1 1981, 1119.
22.(a) Wabnitz, T. C.; Spencer, J. B. Org. Lett. 2003, 5, 2141. (b) Ranu, B. C.; Mandal, T. Synlett. 2004, 1239.
23.Sabirov, S. S.; Gnevasheva, L. M.; Ismailov, M. I.; Isobaev, M. D. J .Org. Chem. USSR. 1984, 20, 1239.
24.Narasaka,K.; Arai, N.; Okauchi, T. Bull. Chem. Soc. Jpn. 1993, 66, 2995.
25.(a) Dieden, R.; Hevesi, L. Synthesis. 1988, 8, 616. (b) Sakakibara, M.; Katsumata, K.; Watanabe, Y.; Toru, T.; Ueno, Y. Synthesis. 1992, 4, 377.
26.(a) Miyoshi, N.; Ishii, H.; Kondo, K.; Murai, S.; Sonoda, N. Synthesis. 1979, 4, 300. (b) Middleton, D. S.; and Simpkins, N. S.; Begley, M. J.; Terrett, N. K. Tetrahedron. 1990, 46, 545.
27.Miyashita, M.; Yoshikoshi, A. Synthesis. 1980, 8, 664.
第二部份
1. (a) Friedrich, K.; Wallenfels, K. The Chemistry of the Cyano Group; Wiley-Interscience: New York, 1970. (b) Kukushin, V. Y.; Pombeiro, A. L. Inorg. Chim. Acta 2005, 358, 1. (b) Heller, B.; Sundermann, B.; Buschmann, H.; Drexler, H.-J.; You, J.; Holzgrade, U.; Heller, E.; Oehme, G. J. Org. Chem. 2002, 67, 4414. (c) Leader, H.; Smejkal, R. M.; Payne, C. S.; Padilla, F. N.; Doctor, B. P.; Gordon, R. K.; Chiang, P. K.; J. Med. Chem. 1989, 32, 1522. (d) Trivedi, B. K.; Holmes, A.; Stober, T. L.; Blankey, C. J.; Roark, W. H.; Picard, J. A.; Shaw, M. K.; Essenburg, A. D.; Stanfield, R. L.; Krauser, B. R.; J. Med. Chem. 1993, 36, 3300. (e) Convery, M. A.; Davis, A. P.; Dunne, C. J.; MacKinnon, J. W.; Tetraheron Lett. 1995, 36, 4279. (f) Tiecco, M.; Testaferri, L.; Tingoli, M.; Bartoni, D. Tetrahedron 1990, 46, 7139. (g) Pascal, C.; Dubois, J.; Guénard, D.; Tchertanov, L.; Thoret, S.; Guéritte, F. Tetrahedron 1998, 54, 14737. (h) Bush, E. J.; Jones, D. W.; J. Chem. Soc., Perkin Trans. 1 1997, 3531.
2. For investigations on verapamil and analogs including the stereospecific synthesis, chemotherapies, modifications and structural information to see: (a) Prisant, L. M. Heart Dis. 2001, 3, 55. (b) Bernna, E.; Fuganti, C.; Grasselli, P.; Serra, S. Eur. J. Org. Chem. 2001, 1349. (c) Bannister, R. M.; Brookes, M. H.; Evans, G. R.; Katz, R. B.; Tyrrell, N. D. Org. Pro. Res. Dev. 2000, 4, 467. (d) Theodore, L. J.; Nelson, W. L. J. Org. Chem. 1987, 52, 1309. (e) Karwatsky, J.; Lincoln, M. C.; Georges, E. Biochemistry 2003, 42, 12163. (f) Schultz, C.; Vaskinn, S.; Kildalsen, H.; Sager, G. Biochemistry 1998, 37, 1161. (g) Teodori, E.; Dei, S.; Arlette, G.-S.; Gualtieri, F.; Manetti, D.; Martelli, C.; Romanelli, M. N.; Scapechi, S.; Sudwan, P.; Salerno, M. J. Med. Chem. 2005, 48, 7426. (h) Im, D. S.; Cheong, C. S.; Lee, S. H.; Park, H.; Youn, B. H. Tetrahedron: Asymmetry 1999, 10, 3759. (i) Suzuki, Y.; Yamamoto, N.; Iimura, Y.; Kawano, T.; Nagato, S.; Ito, K.; Komatsu, M.; Norimine, Y.; Kimura, M.; Teramoto, T.; Kaneda, Y.; Hamano, T.; Niidome, T.; Yonaga, M. Bioorg. Med. Chem. Lett. 2003, 13, 919. (j) Mitani, K.; Sakurai, S.; Suzuki, T.; Morikawa, K.; Koshinaka, E.; Kato, H.; Ito, Y.; Fujita, T. Chem. Pharm. Bull. 1988, 36, 4103. (k) Teodori, E.; Dei, S.; Quidu, P.; Budriesi, R.; Chiarini, A.; Arlette, G.-S.; Gualtieri, F.; Manetti, D.; Romanelli, N. M.; Scapecchi, S. J. Med. Chem. 1999, 42, 1687.
3. (a) Jeffery, P. Pulm. Pharmacol. Ther. 2005, 18, 9. (b) Badham, N. F.; Mendelson, W. L.; Allen, A.; Diederich, A. M.; Eggleston, D. S.; Filan, J. J.; Freyer, A. J.; Killmer, L. B.; Kowalski, Jr. C. J.; Liu, L.; Novack, V. J.; Vogt, F. G.; Webb, K. S.; Yang, J. J. Org. Chem. 2002, 67, 5440. (c) Christensen, S. B.; Guider, A.; Forster, C. J.; Gleason, J. G.; Bender, P. E.; Karpinski, J. M.; DeWolf, Jr. W. E.; Barnette, M. S.; Underwood, D. C.; Griswold, D. E.; Cieslinski, L. B.; Burmarn, M.; Bochnowicz, S.; Osborn, R. R.; Manning, C. D.; Grous, M.; Hillegas, L. M.; Bartus, J. O.; Ryan, M. D.; Eggleston, D. S.; Haltiwanger, R. S.; Torphy, T. J. J. Med. Chem. 1998, 41, 821.
4. Soli, E. D.; Manoso, A. S.; Patterson, M. C.; Deshong, P.; Favor, D. A.; Hirschmann, R.; Smith, A. B. J. Org. Chem. 1999, 64, 3171.
5. Kurz, M. E.; Lapin, S. C.; Mariam, A.; Hagen, T. J.; Qian, X. Q. J. Org. Chem. 1984, 49, 2728.
6. Narsaiah, A. V.; Nagaiah, K. Adv. Synth. Catal. 2004, 346, 1271.
7. (a) You, J.; Verkade, J. G. Angew. Chem., Int. Ed. 2003, 42, 5051. (b) You, J.; Verkade, J. G. J. Org. Chem. 2003, 68, 8003.
8. (a) Nitro Compounds: Recent Advances in Synthesis and Chemistry: Organic Nitro Chemistry Series; Feuer, H.; Nielsen, A. T., Eds.; VCH: Weinheim, 1990. (b) The Nitro Group in Organic Synthesis; Ono, N., Ed.; Wiley-VCH: New York, 2001.
9. Czekelius, C.; Carreira, E. M. Angew. Chem., Int. Ed. 2005, 44, 612, and references cited therein.
10. Mendler, B.; Kazmaier, U. Org. Lett. 2005, 7, 1715.
11. Tu, Z.; Jang, Y.; Lin, C.; Liu, J.-T.; Hsu, J.; Sastry, M. N. V.; Yao, C.-F. Tetrahedron 2005, 61, 10541.
12. (a) Yao, C.-F.; Chen, W.-C.; Lin, Y.-M. Tetrahedron Lett. 1996, 37, 6339. (b) Kao, K.-H.; Yang, C.-S.; Liu, J.-T; Lin, W.-W.; Fang, H.-Y.; Yao, C.-F.; Chen. C. Tetrahedron 1998, 54, 13997. (c) Liu, J.-Y.; Yan, M.-C.; Lin, W.-W.; Wang, L.-Y.; Yao, C.-F. J. Chem. Soc., Perkin Trans. 1. 1999, 1215. (d) Liu, J.-T; Lin, W.-W.; Jang, J.-J.; Liu, J.-Y.; Yan, M.-C.; Hung, C.; Kao, K.-H.; Wang, Y.; Yao, C.-F. Tetrahedron 1999, 55, 7115. (e) Yan, M.-C.; Liu, J.-Y.; Lin, W.-W.; Kao, K.-H.; Liu, J.-T; Jang, J.-J.; Yao, C.-F. Tetrahedron 1999, 55, 12493. (f) Lin, W.-W.; Jang, Y.-J.; Wang, Y.; Liu, J.-T.; Hu, S.-R.; Wang, L.-Y.; Yao, C.-F. J. Org. Chem. 2001, 66, 1984. (g) Yan, M.-C.; Tu, Z.; Lin, C.; Yao, C.-F. Tetrahedron Lett. 2002, 43, 7991. (h) Yan, M.-C.; Tu, Z.; Lin, C.; Ko, S.; Hsu, J.; Yao, C.-F. J. Org. Chem. 2004, 69, 1565. (i) Lin, C.; Hsu, J.; Sastry, M. N. V.; Fang, H.; Tu, Z.; Liu, J.-T.; Yao, C.-F. Tetrahedron 2005, 61, 11751.
13. (a) Grundmann, C.; Richter, R.; J. Org. Chem. 1967, 32, 2308. (b) Just, G.; Dahl, K.; Tetrahedron 1976, 24, 5251. (c) Dondoni, A. J. Org. Chem. 1972, 37, 3196. (d) Curran, D. P.; Scanga, S. A.; Fenk, C. J.; J. Org. Chem. 1984, 49, 3473. (e) Cecchi, L.; Sarlo, F. D.; Faggi, C.; Machetti, F. Eur. J. Org. Chem. 2006, 3016.
14. For selected references to see: (a) Kaminski, Z. J.; Kolesinska, B.; Kolesinska, J.; Sabatino, G.; Chelli, M.; Rovero, P., Blaszczyk, M.; Glowka, M. L.; Papini, A. M. J. Am. Chem. Soc. 2005, 127,16912. (b) Furuya, Y.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 11240. (c) Gao, S.; Tu, Z.; Kuo, C.-W.; Liu, J.-T.; Chu, C.-M.; Yao, C.-F. Org. Biomol. Chem. 2006, DOI: 10.1039/B606717D.
15. Uno, H.; Fujiki, S.; Suzuki, H. Bull. Chem. Soc. Jpn. 1986, 59, 1267.
16. Using AlCl3 gave a poor yield of desired diarylacetohydroximoyl chloride due to its insolubility in CH2Cl2. However, metal chlorides other than AlCl3, TiCl4 and ZrCl4 gave no desired product.
17. Using TiCl4 as Lewis acid benzene gave exclusively α-chloroaceto hydroximoylchloride, whereas substituted benzenes such as toluene, xylenes and mesitylene gave less than10 % of the desired diarylacetohydroximoyl chlorides.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔