跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/20 10:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:柯琪峰
研究生(外文):Chi-Fong Ko
論文名稱:斑馬魚及點帶石斑魚肌肉抑制素基因之研究
論文名稱(外文):The Studies on Myostatin Gene in Zebrafish (Danio rerio) and Orange Spotted Grouper (Epinephelus coioides)
指導教授:陸振岡
指導教授(外文):Jenn-Kan Lu
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:水產養殖學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:212
中文關鍵詞:肌肉抑制素轉化成長因子斑馬魚點帶石斑魚
外文關鍵詞:MyostatinTGF-βzebrafishorange spotted grouper
相關次數:
  • 被引用被引用:0
  • 點閱點閱:288
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
肌肉抑制素(myostatin, MSTN;GDF-8)被歸類為轉化成長因子中的乙員,它主要在骨骼肌組織表現,且在骨骼肌的生長發育上扮演著關鍵的負調控因子的角色。在老鼠的實驗中,證實MSTN基因失活的老鼠較正常老鼠的肌肉量增加。然而,MSTN對魚類肌肉生長發育的影響,目前仍然不清楚。本研究利用PCR選殖技術,從斑馬魚體內分離出MSTN-I基因3,764 bp,可轉譯出373個胺基酸,其中包含二個introns(760 bp與911 bp)以及三個exons(376 bp、368 bp和378 bp),斑馬魚MSTN-I與其他物種MSTN的相似性為25 ~ 86%。另外,也從點帶石斑魚體內分離出MSTN基因2,608 bp,可轉譯出376個胺基酸,其中包含二個introns(363 bp與811 bp)以及三個exons(379 bp、371 bp和381 bp),點帶石斑魚MSTN與其他物種MSTN的相似性為25 ~ 96%。利用real-time RT-PCR檢測MSTN基因不只是在骨骼肌表現,其他的組織亦有MSTN mRNA的表現。同時也發現,從胚胎發育時期到魚苗時期都有MSTN mRNA的表現。
魚類中樞神經系統接收到環境變動的訊息,會使生理系統產生衝擊效應,進而影響魚類的成長發育。本研究透過石斑魚生長狀況與其荷爾蒙(腦下垂體GH、肝臟IGF-I和IGF-II)以及肌肉生長相關基因(肌肉MSTN和tropomyosin)的表現,探討環境因子的改變對石斑魚生長發育的影響。結果發現,即使GH、IGF-I和IGF-II mRNA的表現可能不是完全作用在石斑魚的生長發育,且發現MSTN mRNA與石斑魚的生長發育卻有更為密切的關係。
本論文主要目的是探討魚類MSTN的生物功能。為了選擇效果最好的RNAi干擾效應專一性地抑制魚類MSTN gene的表現,採用顯微注射4種不同的RNAi分子包括antisense RNA、dsRNA、antisense morpholino以及siRNA到斑馬魚胚胎。實驗結果證實,siRNA的抑制效果最好,後續的實驗就選擇利用siRNA的干擾效應,來探討魚類MSTN gene knockdown後,對其肌肉生長發育之影響。利用全覆式原位雜交技術定位zMSTN-I mRNA在斑馬魚不同胚胎發育時期之表現位置遍佈全身各個細胞中。以顯微注射zMSTN-I siRNA到斑馬魚胚胎,結果發現siRNA具有抑制zMSTN-I gene表現的干擾效果,造成zMyoD gene的提前表現與表現量上升,進一步導致zMyf5、zMyogenin以及zTropomyosin gene提前表現且顯著增加表現量的現象。以顯微注射siRNA抑制zMSTN-I mRNA,觀察發現斑馬魚胚胎外觀出現腹部水腫、心包膜水腫以及頭部水腫等現象。利用體外合成之zMSTN-I siRNA等比例混合liposome以背部肌肉注射斑馬魚,結果顯示,斑馬魚其肌肉組織出現細胞數目增加與細胞體積變大之現象,同樣的結果也在石斑魚肌肉組織中發現。再者我們建立以U6 promotor產生hairpin siRNA抑制zMSTN-I mRNA的表現,並且利用SV40 promoter產生GFP 之雙基因載體pU6-zMSTN-I-EGFP,以便利篩選產生zMSTN-I siRNA的斑馬魚。然而,斑馬魚胚胎除了有水腫的現象之外,也出現心臟缺損、心跳頻率減緩以及無明顯血液流動等異常現象。
本論文證實(1)斑馬魚和石斑魚體內具有MSTN基因的存在;(2)不同環境因子的改變會對石斑魚荷爾蒙的狀態產生影響,進而調節魚類的生長發育;(3)雖然MSTN在魚類扮演負調控肌肉生長發育的角色,但是抑制MSTN基因的表現,卻導致斑馬魚胚胎發育缺損。因此MSTN可能在魚類胚胎發育期間扮演其他重要的角色。
Abstract
Myostatin (MSTN, GDF-8), a recently identified member of transforming growth factor (TGF-□) superfamily, is expressed predominantly in skeletal muscle and may be a key negative regulator of skeletal muscle development and growth. Furthermore, mice in which the myostatin gene was inactivated (non-functional via gene knockout) have considerably more skeletal muscle than wild type controls. However, the effect of MSTN gene product on the regulation of muscle development/growth in teleost is still poorly understood. In this dissertation research, we cloned the non-mammalian MSTN homolog from zebrafish (Danio rerio) and orange spotted grouper (Epinephelus coioides) by PCR cloning. The transcribed region of zebrafish MSTN-I gene consists of two introns [Intron I (760 bp) and Intron II (911 bp)] flanked by three exons [Exon I (376 bp), Exon II (368 bp) and Exon III (378 bp)]. The cDNA encodes a polypeptide of 373 amino acid residues that showed 25% to 86% homology with MSTNs of other species. The transcribed region of grouper MSTN gene consists of two introns [Intron I (363 bp) and Intron II (811 bp)] flanked by three exons [Exon I (379 bp), Exon II (371 bp) and Exon III (381 bp)]. The cDNA encodes a polypeptide of 376 amino acid residues that showed 25% to 96% homology with MSTNs of other species. Results of real-time RT-PCR analysis of the total RNA extracted from different tissues revealed that MSTN gene is not only expressed in the skeletal muscle, but also in other tissues. MSTN mRNA was also detected in different embryonic developmental and larval stages.
The fish central nervous system integrates all environmental signals and result in physiological changes and growth. In this dissertation research we have also investigated the growth performance, hormonal status (such as pituitary GH, hepatic IGF-I and IGF-II) and muscle-specific gene expression (such as MSTN and tropomyosin) of grouper in response to environmental changes. Results of the studies showed that although the levels of GH, IGF-I and IGF-II mRNAs may not entirely proportional to growth performance of grouper, a closer relationship was observed between the level of MSTN mRNA and growth performance of the animal.
Another main aim of this dissertation research is to study the biological function of fish MSTN. To determine the best effect of RNAi-mediated gene silencing technique on MSTN gene in zebrafish embryos, we injected 4 different RNAi molecules (such as antisense RNA, dsRNA, antisense morpholino and siRNA)into zebrafish embryos. We found that siRNA effectively suppressed the gene expression of MSTN gene at the early developmental stage of zebrafish embryos. Using whole-mount in situ hybridization to locate the expression position of zMSTN-I gene, we found that zMSTN-I gene expressed through out of zebrafish embryos at different developmental stages. By microinjecton, we found the effect of siRNA interference on zMSTN-I gene caused an increase expression of zMyoD gene and resulted in the increase and early expression of zMyf5, zMyogenin and zTropomyosin gene. The effect of siRNA interference on zMSTN-I gene caused yolk-sac edema, pericardial edema and intracranial edema. By injecting mixture of zMSTN-I siRNA and liposome into dorsal muscle in adult zebrafish, it caused hyperplasia and hypertrophy in muscle fibers. The same results were found in grouper muscle. We established a bi-cistronic construct, pU6-zMSTN-I-EGFP that produce hairpin siRNA by U6 promotor and generate GFP by SV40 promotor, to select transgenic zebrafish easily. However, it result in edema and heart defect in zebrafish embryos.
In this thesis, we demonstrated that (1) MSTN gene exists in zebrafish and grouper; (2) the growth performance and hormonal status of grouper will be influenced by varying environmental factors; (3) although MSTN play a negative regulatory role in muscle development, the inhibition of MSTN gene expression will also cause edema and heart defect in developing embryos. These results suggest that, in addition to regulating skeletal muscle growth, MSTN gene may also play important roles during early development in fish.
目錄
頁次
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
第一章 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
一、肌肉抑制素. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
二、高等脊椎動物肌肉抑制素. . . . . . . . . . . . . . . . . . . . . . . . . 7
三、魚類肌肉抑制素. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
四、肌肉抑制素的調控機制. . . . . . . . . . . . . . . . . . . . . . . . . . . 18
五、石斑魚之特性及養殖現況. . . . . . . . . . . . . . . . . . . . . . . . . 22
六、本論文之研究目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
第二章 一般材料與方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
一、實驗生物. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
二、核酸的抽取與分離. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
三、核酸濃度測定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
四、電泳分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
五、反轉錄與聚合酶連鎖反應. . . . . . . . . . . . . . . . . . . . . . . . . 35
六、載體的構築、選殖與定序分析. . . . . . . . . . . . . . . . . . . . . 37
第三章 分子選殖點帶石斑魚和斑馬魚肌肉抑制素基因並研究其特性. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
40
一、前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
二、材料與方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
1、實驗生物. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2、選殖魚類MSTN cDNA序列. . . . . . . . . . . . . . . . . . . . . . 44
3、序列比對及演化樹形圖分析. . . . . . . . . . . . . . . . . . . . . . 48
4、魚類肌肉抑制素基因在各組織及早期胚胎發育時期基因表現模式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
49
5、統計分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
三、結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
1、選殖並探討魚類肌肉抑制素基因之特性. . . . . . . . . . . . 52
2、比較魚類、鳥類與哺乳類之MSTNs胺基酸序列與系統演化關係. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
58
3、魚類MSTN gene在各組織及胚胎發育時期之表現. . . . 66
四、討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
第四章 不同環境緊迫因子(鹽度、溫度與密度)與餵食模式對點帶石斑魚其成長及肌肉生長相關基因之影響. . . .
78
一、前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
二、材料與方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
1、實驗用魚. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
2、實驗設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
3、實驗方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3-1、RNA之抽取. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3-2、反轉錄酶反應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3-3、即時定量聚合酶連鎖反應之標準曲線製備. . . . . . . . 85
3-4、石斑魚肌肉生長相關基因在不同溫度、鹽度、密度與餵食模式之表現模式. . . . . . . . . . . . . . . . . . . . .
85
3-5、統計分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
三、結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
1、溫度對點帶石斑魚成長及肌肉生長相關基因表現之影響 87
2、鹽度對點帶石斑魚成長及肌肉生長相關基因表現之影響 87
3、密度對點帶石斑魚成長及肌肉生長相關基因表現之影響 92
4、不同餵食模式對點帶石斑魚成長及肌肉生長相關基因表現之影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
97
四、討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
第五章 利用RNA干擾技術抑制魚類肌肉抑制素基因的表現 116
一、前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
二、材料與方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
1、核醣核酸干擾分子之製備. . . . . . . . . . . . . . . . . . . . . . . . . 120
2、斑馬魚飼養與受精胚胎之收集及培育. . . . . . . . . . . . . . . 122
3、顯微注射. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4、RNA全覆式原位雜交. . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
5、反轉錄酶反應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6、即時定量聚合酶連鎖反應之標準曲線製備. . . . . . . . . . . 127
7、統計分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8、組織切片. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
9、建立pU6-zMSTN-I-EGFP之雙基因載體. . . . . . . . . . . . 129
10、RNA轉漬分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
11、共軛焦雷射掃瞄式顯微鏡. . . . . . . . . . . . . . . . . . . . . . . . 131
三、結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
1、利用zebrafish embryos比較RNAi對zMSTN-I gene之干擾效應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
132
2、以RNA全覆式原位雜交技術偵測zebrafish MSTN-I gene在不同胚胎發育時期之表現情形. . . . . . . . . . . . . .
132
3、在zebrafish不同的胚胎發育時期zMSTN-I gene knockdown對其肌肉生成相關基因表現之影響. . . . . .
136
4、顯微注射siRNA產生zMSTN-I gene knockdown效應對zebrafish胚胎發育之影響,並觀察不同發育時期zebrafish產生水腫(edema)之比率與活存率. . . . . . .

140
5、以siRNA抑制幼魚MSTN基因表現,產生zMSTN-I gene knockdown效應,造成其肌肉細胞數目增加與細胞體積變大之現象. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

148
6、以顯微注射雙基因載體後,產生zMSTN-I gene knockdown效應對zebrafish胚胎發育之影響. . . . . . . .
148
7、利用心臟螢光zebrafish觀察顯微注射雙基因載體後,產生zMSTN-I gene knockdown效應對其心臟發育缺損之影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

157
四、討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
第六章 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209


表目錄
頁次
Table 3-1 Organisms, Genbank accession numbers, abbreviations, proteins, and references of MSTNs
42

Table 3-2 Sequences of degenerate and gene specific primers used in these experiments
47

Table 3-3 Amino acid sequence percent similarity (%) of different molluscan, teleost, avian and mammalian species

65

Table 4-1 Primers used for the real-time RT-PCR amplification 86

Table 5-1 Primers used for the real-time RT-PCR amplification 128

Table 5-2 Phenocopies of heart failure and edema in zebrafish embryos microinjected with zMSTN-I siRNA transgene

162


圖目錄
頁次
Fig. 1-1 Schematic draw of MSTN protein structure. 2

Fig. 1-2 Two breed of double muscle cattles. 4

Fig. 1-3 Schematic representation of the bovine myostatin gene 5

Fig. 1-4 A model of myogenesis. 20

Fig. 1-5 A model for the role of MSTN in muscle growth. 23

Fig. 1-6 A model for the role of myostatin during muscle growth and differentiation.
24

Fig. 1-7 The yields and values of cultured grouper from 1993 to 2003 in Taiwan.
26

Fig. 3-1 Schematic diagram showing the strategy of PCR cloning of teleost MSTN gene.
53

Fig. 3-2 Nucleotide sequence of zebrafish MSTN-1 gene with the deduced amino acid.
55

Fig. 3-3 Nucleotide sequence of grouper MSTN gene with the deduced amino acid.
57

Fig. 3-4 Exon-intron organization of MSTN genes. 59

Fig. 3-5 Multiple alignment of the predicted amino acid sequence of grouper MSTN with amino acid sequences of MSTN in mammalian and avian species.

61

Fig. 3-6 Multiple alignment of the predicted amino acid sequence of grouper (E. coioides) MSTN with other piscine MSTN amino acid sequences.

64

Fig. 3-7 Neighbor-joining phylogetic tree of MSTN amino acid sequences of molluscan, teleostean, avian, and mammalian species, based on Poisson-corrected protein distances.


67

Fig. 3-8 Levels of MSTN-1 mRNA in various tissues of adult zebrafish.
68

Fig. 3-9 Levels of MSTN mRNA in various tissues of adult grouper.
69

Fig. 3-10 Levels of MSTN-1 mRNA in zebrafish of different embryonic (A) and larval (B) stages.
72

Fig. 3-11 Levels of MSTN mRNA in grouper of different embryonic (A) and larval (B) stages.
74

Fig. 4-1 Effect of temperature on body weight and growth- related gene expressions of juvenile grouper.
91

Fig. 4-2 Effect of salinity on body weight and growth-related gene expressions of juvenile grouper.
96

Fig. 4-3 Effect of density on body weight and growth-related gene expressions of juvenile grouper.
101

Fig. 4-4 Effect of food deprivation on body weight and growth- related gene expressions of juvenile grouper.
106

Fig. 5-1 The sequences and positions of RNAi structure of zebrafish MSTN-I cDNA.
133

Fig. 5-2 Effect of different RNA interferences on zMSTN-I mRNA levels at 18 hpf stage.
134

Fig. 5-3 Dose-dependent effect of siRNA on zMSTN-I mRNA levels at 18 hpf stage.
135

Fig. 5-4 RNA whole-mount in situ hybridization of zMSTN-I mRNA expression during early zebrafish development.
137

Fig. 5-5 RNA whole-mount in situ hybridization of zMSTN-I mRNA expression at 18 hpf in the control embryo and embryos treated with different dose of zMSTN-IsiRNA

138

Fig. 5-6 Effect of zMSTN-I siRNA on gene expression. 139

Fig. 5-7 Effect of zMSTN-I siRNA on zMSTN-I gene expression.
141

Fig. 5-8 Effect of zMSTN-I siRNA on zMyoD gene expression. 142

Fig. 5-9 Effect of zMSTN-I siRNA on zMyf5 gene expression. 143

Fig. 5-10 Effect of zMSTN-I siRNA on zMyogenin gene expression.
144

Fig. 5-11 Effect of zMSTN-I siRNA on zTropomyosin gene expression.
145

Fig. 5-12 Zebrafish embryos develop edema after zMSTN-I siRNA injection.
147

Fig. 5-13 Effect of zMSTN-I siRNA on zebrafish edema. 150

Fig. 5-14 Histological analysis of zMSTN-I siRNA injection on muscle fibers.
151

Fig. 5-15 Effect of injecting zMSTN-I siRNA into adult zebrafish muscle on size and number of muscle fibers.
153

Fig. 5-16 Histological analysis of gMSTN siRNA injection on muscle fibers.
154

Fig. 5-17 Effect of injecting gMSTN siRNA into adult grouper muscle on size and number of muscle fibers.
156

Fig. 5-18 Vectors information. 159

Fig. 5-19 Activity of pU6-zMSTN-I-EGFP construct in zebrafish embryos.
161

Fig. 5-20 pICMLE zebrafish embryos develop edema and heart failure after pU6-zMSTN-I-EGFP injection.
164

Fig. 5-21 The morphology of zMSTN-I siRNA hearts. 165

Fig. 5-22 Effect of zMSTN-I siRNA on zMSTN-I gene expression.
166

Fig. 5-23 Effect of zMSTN-I siRNA on zNkx 2.5 gene expression.
167

Fig. 5-24 Effect of zMSTN-I siRNA on zTbx 5 gene expression. 168

Fig. 5-25 Effect of zMSTN-I siRNA on zdHAND gene expression.
169

Fig. 5-26 Effect of zMSTN-I siRNA on zaMHC gene expression.
170

Fig. 5-27 Effect of zMSTN-I siRNA on zvMHC gene expression. 171
參考文獻

呂明毅,1998。石斑魚的繁養殖。漁業技術推廣,頁30。

沈世傑,1984。台灣魚類檢索。南天書局,頁533。

黃貴民,1999。實用石斑魚養殖。水產出版社。

曾文陽,1989。石斑魚養殖學。前程出版社,頁15-17、19、22、49。

林明男、丁雲源、曾寶順、林國彥、林建東,1993。利用溶氧控制水車研究計畫成果報告。臺灣水產試驗所臺南分所。

漁業年報,2001。中華民國台閩地區漁業統計年報。行政院農業委員會漁業署。

漁業年報,2002。中華民國台閩地區漁業統計年報。行政院農業委員會漁業署。

漁業年報,2003。中華民國台閩地區漁業統計年報。行政院農業委員會漁業署。

漁業年報,2004。中華民國台閩地區漁業統計年報。行政院農業委員會漁業署。

Accosta, J., Carpio, Y., Borroto, I., Gonzalez, O., and Estrada, M.P., 2005. Myostatin gene silenced by RNAi show a zebrafish giant phenotype, J Biotechnol 119: 324-331.

Ali, M., Nicieza, A., and Wootton, R.J., 2003. Compensatory growth in fishes: a response to growth depressions. Fish Fish 4: 147-190.

Amali, A.A., Lin, C.J., Chen, Y.H., Wang, W.L., Gong, H.Y., Lee, C.Y., Ko, Y.L., Lu, J.K., Her, G.M., Chen, T.T., and Wu, J.L., 2004. Up-regulation of muscle-specific transcription factors during embryonic somitogenesis of zebrafish (Danio rerio) by knock-down of myostatin-1. Dev Dyn 229: 847-856.

Ayson, F.G., Kaneko, T.K., Tagawa, M., Hasegawa, S., Grau, E.G., Nishioka, R.S. King, D.S., Bern, H.A. and Hirano, T., 1993. Effects of acclimation to hypertonic environment on plasma and pituitary levels of two prolactins and growth hormone in two species of tilapia, Oreochromis mossambicus and Oreochromis niloticus. Gen Comp Endocrinol 89: 138-148.

Bass, J., Oldham, J., Sharma, M., and Kambadur, R., 1999. Growth factors controlling muscle development. Domest Anim Endocrinol 17: 191-197.

Ben-Atia, I., Fine, M., Tandler, A., Funkenstein, B., Cavari, B., and Getler, A., 1999. Preparation of recombinant gilthead seabream (Sparus aurata) growth hormone and its use for stimulation of larval growth by oral administration. Gen Comp Endocrinol 113: 155-164.

Benezra, R., Davis, R. L., Lockshon, D., Turner, D. L., and Weintraub, H., 1990. The protein Id: a negative regulator of helix-loop-helix DNA-binding proteins. Cell 61: 49-59.

Berdougo, E., Coleman, H., Lee, D.H., Stainier, D.Y., Yelon, D., 2003. Mutation of weak atrium/atrial myosin heavy chain disrupts atrial function and influences ventricular morphogenesis in zebrafish. Development 130: 6121-6129.

Bernstein, S.I., O’Donnell, P.T., and Cripps, R.M., 1993. Molecular genetic analysis of muscle development, structure and function in Drosophila. Int Rev Cytol 143: 63-152.

Bernstein, E., Caudy, A., Hammond, S., and Hannon, G., 2001. Role for a bidentate ribonuclease in the inition step of RNA interference. Nature 409: 363-366.

Berry, C., Thomas, M., Langley, B., Sharma, M., and Kambadur, R., 2002. Single cysteine to tyrosine transition inactivates the growth inhibitory function of Piedmontese myostatin. Am J Physiol: Cell Physiol 283: 135-141.

Biga, P.R., Roberts, S.B., Iliev, D.B., McCauley, L.A., Moon, J.S., Collodi, P., and Goetz, F.W., 2005. The isolation, characterization, and expression of a novel GDF11 gene and a second myostatin form in zebrafish, Danio rerio. Comp Biochem Physiol B Biochem Mol Biol 141: 218-230.

Bjornsson, B.Th., Johansson, V., Benedet, S., Einarsdottir, I.E., Hildahl, J., Agustsson, T., and Jonsson, E., 2004. Growth hormone endocrinology of salmonids: regulatory mechanisms and mode of action. Fish Physiol Biochem In: Plisetskaya, E.M. (Ed.), Special Issue: Fish Growth and Metabolism. Environmental, Nutritional and Hormonal regulation 27: 227-242.

Boeuf, G., and Payan, P., 2001. How should salinity influence fish growth? Comp Biochem Physiol 130: 411-423.

Bolton, J.P., Collie, N.L., Kawauchi, H., and Hirano, T., 1987. Osmoregulatory actions of growth hormone in rainbow trout (Salmo gairdneri). J Endocrinol 112: 63-68.

Boujard, T., Burel, C., Medale, F., Haylor, G., and Moisan, A., 2000. Effect of past nutritional history and fasting on feed intake and growth in rainbow trout Oncorhynchus mykiss. Aquat Liv Res 13: 129-137.

Brantl, S., 2002. Antisense-RNA regulation and RNA interference. Biochim Biophys Acta 1575: 15-25.

Brunelli, J.P., Robison, B.D., and Thorgaard, G.H., 2001. Ancient and recent duplications of the rainbow trout Wilms' tumor gene. Genome 44: 455-462.

Casas, E., Keele, J.W., Fahrenkrug, S.C., Smith, T.P., Cundiff, L.V., and Stone, R.T., 1999. Quantitative analysis of birth, weaning, and yearling weights and calving difficulty in Piedmontese crossbreds segregating an inactive myostatin allele. J Anim Sci 77: 1686-1692.

Chauvigne, F., Gabillard, J.C., Weil, C., and Rescan, P.Y., 2003. Effect of refeeding on IGFI, IGFII, IGF receptors, FGF2, FGF6, and myostatin mRNA expression in rainbow trout myotomal muscle. Gen Comp Endocrinol 132: 209-215.

Chen, J.N., Fishman, M.C., 1996. Zebrafish tinman homolog demarcates the heart field and initiates myocardial differentiation. Development 122: 3809-3816.

Chen, T.T., Shamblott, M., Lin, C.M., Tang, Y.L., Chan, K.M., Yang, B.Y., and Marsh, A., 1994. In: Fish Physiology, vol. XIII. Academic Press, New York p: 179-209.

Cogoni, C., and Macino, G., 1999a. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399: 166-169.

Cogoni, C., and Macino, G., 1999b. Posttranscriptional gene silencing in Neurospora by a RecQ DNA helicase. Science 286: 2342-2344.

Copeland, K.C., and Nair, K.S., 1994. Acute growth hormone effects on amino acid and lipid metabolism. J Clin Endocrinol Metabol 78: 1040-1047.

Corbett, M.A., Robinson, C.S., Dunglison, G.F., Yang, N., Joya, J.E., Stewart, A.W., Schnell, C., Gunning, P.W., North, K.N., and Hardeman, E.C., 2001. A mutation in alpha-tropomyosin (slow) affects muscle strength, maturation and hypertrophy in a mouse model for nemaline myopathy. Hum Mol Genet 15: 317-328.

Davis, R.L., Cheng, P.F., Lassar, A.B., and Weintraub, H., 1990. The myoD DNA binding domain contains a recognition code for muscle-specific gene activation. Cell 60: 733-746.

Deane, E.E., Kelly, S.P., Lo, C.K.M., and Woo, N.Y.S., 1999. Effect of growth hormone, prolactin and cortisol on hepatic HSP70 expression in a marine teleost Sparus sarba. J Endocrinol 161: 413-421.

Deane, E.E., Kelly, S.P., Luk, J.C., and Woo, N.Y., 2002. Chronic salinity adaptation modulates hepatic heat shock protein and insulin-like growth factor I expression in black sea bream. Mar Biotechnol 4: 193-205.

Deane, E.E., and Woo, N.Y.S., 2004. Differential gene expression associated with euryhalinity in sea bream (Sparus sarba). Am J Physiol 287: 1054-1063.
Deane, E.E., and Woo, N.Y.S., 2005a. Upregulation of the somatotropic axis is correlated with increased G6PDH expression in black sea bream adapted to isoosmotic salinity. Ann NY Acad Sci 1040: 293-296.

Deane, E.E., and Woo, N.Y.S., 2005b. Expression studies on glucose -6-phosphate dehydrogenase in sea bream: effects of growth hormone, somatostatin, salinity and temperature. J Exp Zool 303: 676-688.

Dickman, S., 1997. Gene mutation provides more meat on the hoof. Science 277: 1922-1923.

Dodd, A., Chambers, S.P., and Love, D.R., 2004 Short interfering RNA-mediated gene targeting in the zebrafish. FEBS Lett 561: 89-93.

Duan, C., and Hirano, T., 1992. Effects of insulin-like growth factor-I and insulin on the in vitro uptake of sulphate by eel branchial cartilage: evidence for the presence of independent hepatic and pancreatic sulphation factors. J Endocrinol 133: 211-219.

Duan, C., and Plisetskaya, E.M., 1993. Nutritional regulation of insulin-like growth factor-I mRNA expression in salmon tissues. J Endocrinol 139: 243-252.

Duan, C., Plisetskaya, E.M., and DickhoV, W.W., 1995. Expression of insulinlike growth factor I in normally and abnormally developing coho salmon Oncorynchus kisutch. Endocrinology 136: 446-452.

Duguay, S.J., Park, L.K., Samadpour, M., and Dickhoff, W.W., 1992. Nucleotide sequence and tissue distribution of three insulin-like growth factor I prohormones in salmon. Mol Endocrinol 6: 1202-1210.

Duguay, S.J., Lai-Zhang, J., Steiner, D.F., Funkenstein, B., Chan, S.J., 1996. Developmental and tissue-regulated expression of IGF-I and IGF-II mRNAs in Sparus aurata. J Mol Endocrinol 16: 123-132.

Dulic, V., Stein, G.H., Far, D.F., and Reed, S.I., 1998. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol Cell Biol 18: 546-557.

Duval, H., Rousseau, K., Elies, G., Le Bail, P.Y., Dufour, S., Boef, G., and Boujard, D., 2002. Cloning, characterization, and comparative activity of turbot IGF-I and IGF-II. Gen Comp Endocrinol 126: 269-278.

Elbashir, S.M., Lendeckel, W., and Tuschel, T., 2001. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 15: 188-200.

Fahrenkrug, S.C., Casas, E., Keele, J.W., and Smith, T.P., 1999. Technical note: direct genotyping of the double-muscling locus (mh) in Piedmontese and Belgian Blue cattle by fluorescent PCR. J Anim Sci 77: 2028-2030.

Ferrell, R.E., Conte, V., Lawrence, E.C., Roth, S.M., Hagberg, J.M., and Hurley, B.F., 1999. Frequent sequence variation in the human myostatin (GDF8) gene as a marker for analysis of muscle-related phenotypes. Genomics 62: 203-207.

Fire, A., Xu, S., Montgomery, M., Kostas, S., Driver, S., and Mello, C., 1998. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811.

Fishman, M.C., Chien, K.R., 1997. Fashioning the vertebrate heart: earliest embryonic decisions. Development 124: 2099-2117.

Florini, J.R., Ewton, D.Z., and Coolican, S.A., 1996. Growth hormone and the insulinlike growth factor system in myogenesis. Endocrine Reviews 17: 481-517.

Fukada, H., Ozaki, Y., Pierce, P.L., Adachi, S., Yamauchi, K., Hara, A., Swanson, P., and DickhoV, W.W., 2004. Salmon growth hormone receptor: molecular cloning, ligand specificity, and response to fasting. Gen Comp Endocrinol 139: 61-71.

Gabillard, J.C., Weil, C., Rescan, P.Y., Navarro, I., Gutiérrez, J., and Le Bail, P.Y., 2003. Effects of environmental temperature on IGF1, IGF2, and IGF type I receptor expression in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 133: 233-242.

Garikipati, D.K., Gahr, S.A., and Rodgers, B.D., 2006. Identification, characterization, and quantitative expression analysis of rainbow trout myostatin-1a and myostatin-1b genes. J Endocrinol 190: 879-888.

Garikipati, D.K., Gahr, S.A., Roalson, E.H., and Rodgers, B.D., 2007. Characterization of rainbow trout myostatin-2 genes (rtMSTN-2a and -2b): genomic organization, differential expression and psuedogenization. Endocrinology 148: 2106-2115.

Gilbert, S.F., 2000. Developmental Biology, 6th edition. Sinauer Associates, Inc., Sunderland, Massachcusetts, USA. pp. 333-334, 471-477.

Gonzalez-Cadavid, N.F., Taylor, W.E., Yarasheski, K., Sinha-Hikim, I., Ma, K., Ezzat, S., Shen, R., Lalani, R., Asa, S., Mamita, M., Nair, G., Arver, S., and Bhasin, S., 1998. Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting. Proc Natl Acad Sci USA 95: 14938-14943.

Gregory, D.J., Waldbieser, G.C., and Bosworth, B.G., 2004. Cloning and characterization of myogenic regulatory genes in three Ictalurid species. Anim Genet 35: 425-430.

Grobet, L., Martin, L.J., Poncelet, D., Pirottin, D., Brouwers, B., Riquet, J., Schoeberlein, A., Dunner, S., Menissier, F., Massabanda, J., Fries, R., Hanset, R., and Georges, M., 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17: 71-74.

Gu, Z., Zhang, Y., Shi, P., Zhang, Y.P., Zhu, D., and Li, H., 2004. Comparison of avian myostatin genes. Anim Genet 35: 470-472.

Hammond, S.M., Bernstein, E., Beach, D., and Hannon, G.J., 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293-296.

Hao, J., Wang, B., Jones, S. C., Jassal, D. S. and Dixon, I. M. C., 2000. Interaction between angiotensin II and Smad proteins in fibroblasts in failing heart and in vivo. Am J Physiol Heart Circ Physiol 279: 3020–3030.

Harris, J., and Bird, D.J., 2000. Modulation of the fish immune system by hormones. Vet Immunol Immunopathol 77: 163-176.

Hasty, P., Bradley, A., Morris, J.H., Edmondson, D.G., Venuti, J.M., Olson, E., and Klein, W.H., 1993. Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature 364: 501-506.

Hayashi, S., Aso, H.,Watanabe, K., Nara, H., Rose, M.T., Ohwada, S., and Yamaguchi, T., 2004. Sequence of IGF-I, IGF-II, and HGF expression in regenerating skeletal muscle. Histochem Cell Biol 122: 427-434.

Heasman, J., 2002. Morpholino oligos: making sense of antisense? Dev. Biol 243: 209–214.

Heemstra, P.C., and Randall, J.E., 1993. FAO Species Catalogue, vol.16. Groupers of the world, FAO Fisheries Synopsis No.125, volume 16, Food Agriculture Organization of the United State Nations, Rome, pp.1-10, 184-186.

Helterline, D.L., Garikipati, D., Stenkamp, D.L., Rodgers, B.D., 2007. Embryonic and tissue-specific regulation of myostatin-1 and -2 gene expression in zebrafish. Gen Comp Endocrinol 151: 90-97.

Hiebert, S.W., Chellappan, S.P., Horowitz, J.M., and Nevins, J.R., 1992. The interaction of RE and E2F coincides with an inhibition of the transcriptional activity of E2F. Genes and Dev 6: 177-185.

Hjalt, T.A., and Wagner, E.G., 1995. Bulged-out nucleotides in an antisense RNA are required for rapid target RNA binding in vitro and inhibition in vivo. Nucleic Acids Res 23: 580-587.

Hollingsworth, R.E., JR., Hensey, C.E., and Lee, W.H., 1993. Retinoblastoma protein and the cell cycle. Curr Opin Genet Dev 3: 55-62.
Huang, M.C., Ochiai, Y., and Watabe, S., 2004. Structural and thermodynamic characterization of tropomyosin from fast skeletal muscle of bluefin tuna. Fish Sci 70: 667- 674.

Hu, P.P., Datto, M.B., and Wang, X.G., 1998. Molecular mechanisms of transforming growth factor-beta signaling. Endocr Rev 19: 349–363

Ikeda, D., Toramoto, T., Ochiai, Y., Suetake, H., Suzuki, Y., Minoshima, S., Shimizu, N., and Watabe, S., 2003. Identification of novel tropomyosin 1 genes of pufferfish (Fugu rubripes) on genomic sequences and tissue distribution of their transcripts. Mol Biol Rep 30: 83-90.

Jackman, D., Waddleton, D.M., Younghusband, B., and Heeley, D.H., 1996. Further characterization of fast, slow and cardiac muscle tropomyosins from salmonid fish. Eur J Biochem 242: 363- 371.

Jen, Y., Weintraub, H., and Benezra, R., 1992. Overexpression of Id protein inhibits the muscle differentiation program: In vivo association of Id and E2A proteins. Genes Dev 6: 1466-1479.

Ji, S., Losinski, R.L., Cornelius, S.G., Frank, G.R., Willis, G.M., Gerrard, D.E., Depreux, F.F., and Spurlock, M.E., 1998. Myostatin expression in porcine tissues: tissue specificity and developmental and postnatal regulation. Am J Physiol 275: 1265-1273.

Johnston, I.A., 2006. Environment and plasticity of myogenesis in teleost fish. J Exp Biol 209: 2249-2264.

Jones, N., 1990. Transcriptional regulation by dimerization: Two sides to an incestuous relationship. Cell 61: 9-11.

Joulia, D., Bernardi, H.V., Garandel, F., Rabenoelina, B., Vernus, G., and Cabello, G., 2003. Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286: 263-275.

Kambadur, R., Sharma, M., Smith, T.P., and Bass, J.J., 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7: 910-916.

Karim, L., Coppieters, W., Grobet, L., Valentini, A., and Georges, M., 2000. Convenient genotyping of six myostatin mutations causing double-muscling in cattle using a multiplex oligonucleotide ligation assay. Anim Genet 31: 396-399.

Kassar-Duchaussoy, L., Gayraud-Morel, B., Gomès, D., Rocancourt, D., Buckingham, M., Shinin, V., and Tajbakhsh, S., 2004. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature 431: 466-471.

Kelly, S.P., Chow, I.N.K. and Woo, N.Y.S., 1999. Effects of prolactin and growth hormone on strategies of hypoosmotic adaptation in a marine teleost, Sparus sarba. Gen Comp Endocrinol 113: 9-22.

Kennerdell, J.R., and Carthew, R.W., 1998. Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95: 1017-1026.

Kerr, T., Roalson, E.H., and Rodgers, B.D., 2005. Phylogenetic analysis of the myostatin gene sub-family and the differential expression of a novel member in zebrafish. Evol Dev 7: 390-400.

Kocabas, A.M., Kucuktas, H., Dunham, R.A., and Liu, Z., 2002. Molecular characterization and differential expression of the myostatin gene in channel catfish (Ictalurus punctatus). Biochim Biophys Acta 1575: 99-107.

Kocamis, H., Kirkpatrick-Keller, D.C., Richter, J., and Killefer, J., 1999. The ontogeny of myostatin, follistatin and activin-B mRNA expression during chicken embryonic development. Growth Dev Aging 63: 143-150.

Lam, E.W., and La Thangue, N.B., 1994. DP and E2F proteins: coordinating transcription with cell cycle progression. Curr Opin Cell Biol 6: 859-866.

Langley, B., Thomas, M., Bishop, A., Sharma, M., Gilmour, S., and Kambadur, R., 2002. Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277: 49831-49840.

Larsen, D.A., Beckman, B.R., and Dickhoff, W.W., 2001. The effect of low temperature and fasting during the winter on metabolic stores and endocrine physiology (insulin, insulin-like growth factor-I and thyroxine) of coho salmon, Oncorhynchus kisutch. Gen Comp Endocrinol 123: 308-323.

Lassar, A.B., Buskin, J.N., Lockshon, D., Davis, R.L., Apone, S., Hauschka, S.D., and Weintraub, H. 1989. MyoD is a sequence-specific DNA binding protein requiring a region of myc homology to bind to the muscle creatine kinase enhancer. Cell 58: 823-831.

La Thangue, N.B., 1996. E2F and the molecular mechanisms of early cell-cycle control. Biochem Soc Trans 24: 54-59.

Law, M.S., Cheng, K.W., Fung, T.K., Chan, Y.H., Yu, K.L., and Chan, K.M., 1996. Isolation and characterization of two distinct growth hormone cDNAs from the goldfish, Carassius auratus. Arch Biochem Biophys 330: 19-23.

Le Bail, P.Y., Gentil, V., Noel, O., Gomez, J.M., Carre, F., Le Goff, P., and Weil, C., 1998. Structure, function, and regulation of insulin-like growth factors in fish. Ann N Y Acad Sci 839: 157-161.

Le Gac, F., Blaise, O., Fostier, A., Le Bail, P.Y., Loir, M., Mourot, B., and Weil, C., 1993. Growth hormone (GH) and reproduction: a review. Fish Physiol Biochem 11: 219-232.

Lebrin, F., Goumans, M.J., Jonker, L., Carvalho, R.L., Valdimarsdottir, G., Thorikay, M., et al., 2004. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 23: 4018–4028.

Lee, S.C., 1990. A revision of the serranid fish (Family Serranidae) of Taiwan. J Taiwan p: 431-472.

Lee, S.J., and McPherron, A.C., 2001. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98: 9306-9311.

Liang, Y.H., Cheng, C.H., and Chan, K.M., 1996. Insulin-like growth factor IEa2 is the predominantly expressed form of IGF in common carp (Cyprinus carpio). Mol Mar Biol Biotechnol 5: 145-152.

Lim, H., and Zhu, Y.Z., 2006. Role of transforming growth factor-beta in the progression of heart failure. Cell Mol Life Sci 63: 2584-2596.

Liu, W.Y., Wang, Y., Sun, Y.H., Wang, Y., Wang, Y.P., Chen, S.P., Zhu, Z.Y., 2005 Efficient RNA interference in zebrafish embryos using siRNA synthesized with SP6 RNA polymerase. Dev Growth Differ 47:323-31.

Lohmann, J.U., Endl, I., and Bosch, T.C., 1999. Silencing of developmental genes in Hydra. Dev Biol 214: 211-214.

Maccatrozzo, L., Bargelloni, L., Radaelli, G., Mascarello, F., and Patarnello, T., 2001a. Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): sequence, genomic structure, and expression pattern. Mar Biotechnol 3: 224-230.

Maccatrozzo, L., Bargelloni, L., Cardazzo, B., Rizzo, G., and Patarnello, T., 2001b. A novel second myostatin gene is present in teleost fish. FEBS Lett 509: 36-40.

Mancera, J.M., Perez-Figares, J.M., and Fernandez-Llebrez, P., 1995. Effect of decreased environmental salinity on growth hormone cells in the euryhaline gilthead sea bream (Sparus aurata L.). J Fish Biol 46: 494-500.

Mancera, J.M., and McCormick, S.D., 1998a. Osmoregulatory actions of the GH/IGF axis in non-salmonid teleosts. Comp Biochem Physiol and Biochem Mol Biol 121: 43-48.

Mancera, J.M., and McCormick, S.D., 1998b. Evidence for growth hormone/insulinlike growth factor I axis regulation of seawater acclimation in the euryhaline teleost Fundulus heteroclitus. Gen Comp Endocrinol 111: 103-112.

Mancera, J.M., and McCormick, S.D., 1999. Influence of cortisol, growth hormone, insulin-like growth factor I and 3,3,5-triiodo -L-thyronine on hypoosmoregulatory ability in the euryhaline teleost Fundulus heteroclitus. Fish Physiol Biochem 21: 25-33.

Mancera, J.M., Carrion R.L., and Rio, M.P.M., 2002. Osmoregulatory action of PRL, GH, and cortisol in the gilthead seabream (Sparus aurata L.) Gen Comp Endocrinol 129: 95-103.

Matthews, S.J., Kinhult, A.K., Hoeben, P., Sara, V.R., and Anderson, T.A., 1997. Nutritional regulation of insulin-like growth factor-I mRNA expression in barramundi, Lates calcarifer. J Mol Endocrinol 18: 273-276.

McCormick, S.D., Sakamoto, T., Hasegawa, S., and Hirano, T., 1991. Osmoregulatory actions of insulin-like growth factor-1 in rainbow trout (Oncorhynchus mykiss). J Endocrinol 130: 87-92.

McCormick, S.D., Kelly, K.M., Young, G., Nishioka, R.S., and Bern, H.A., 1992. Stimulation of coho salmon growth by insulin-like growth factor I. Gen Comp Endocrinol 86: 398-406.

McCormick, S.D., 1996. Effect of growth hormone and insulin-like growth factor I on salinity tolerance and gill Na+,K+-ATPase in Atlantic salmon (Salmo salar): interaction with cortisol. Gen Comp Endocrinol 101: 3-11.

McCormick, S.D., Moriyama, S., and Bjornsson, B.T., 2000. Low temperature limits photoperiod control of smelting in atlantic salmon through endocrine mechanisms. Am J Physiol 278: 1352-1361.

McPherron, A.C., Lawler, A.M., Lee, S.J., 1997. Regulation of skeletal muscle mass in mice by a new TGF-□ superfamily member. Nature 387: 83-90.

McPherron, A.C., and Lee, S.J., 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci USA 94: 12457-12461.

Montero, D., Marrero, M., Izquierdo, M., Robaina, L., Vergara, J. M., and Tort, L., 1999a. Effect of vitamin E and C dietary supplementation on some immune parameters of gilthead seabream (Sparus aurata) juveniles subjected to crowding stress. Aquaculture 171: 296-278.

Montero, D., Izquierdo, M., Tort, L., Robaina, L., and Vergara, J.M., 1999b. High stocking density produces crowding stress altering some physiological and biochemical parameters in gilthead seabream, Sparus aurata, juveniles. Fish Physiol Biochem 20: 53-60.

Montserrat, N., Gabillard, J.C., Capilla, E., Navarro, M.I., and Gutierrez, J., 2007. Role of insulin, insulin-like growth factors, and muscle regulatory factors in the compensatory growth of the trout (Oncorhynchus mykiss). Gen Comp Endocrinol 150: 462-472.

Moorman, A.F., Christoffels, V.M., 2003. Cardiac chamber formation: development, genes, and evolution. Physiol. Rev. 83, 1223-1267.

Moriyama, S., Swanson, P., Nishi, M., Takahashi, A., Kawauchi, H., Dickho, V.W.W., and Plisetskaya, E.M., 1994. Development of homologous radioimmunoassay for coho salmon insulin-like growth factor-I. Gen. Comp Endocrinol 96: 149-161.

Moriyama, S., Ayson, F.G., and Kawauchi, H., 2000. Growth regulation by insulin-like growth factor I in fish. Biosci Biotechnol Biochem 64: 1553-1562.

Nabeshima, Y., Hanaoka, K., Hayasaka, M., Esumi, E., Li, S., Nonaka, I., and Nabeshima, Y., 1993. Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature 364: 532-535.

Nelson, J.S., 1984. Fish of the world John Wiley and Sons Inc. New York p: 523.

Ngo, H., Tschudi, C., Gull, K., and Ullu, E., 1998. Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci USA 95: 14687-14692.

Nigg, E.A., 1995. Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays 17: 471-480.

Niu, P.D., Perez-Sanchez, J., and Le Bail, P.Y., 1993. Development of a protein binding assay for teleost insulin-like growth factor (IGF)-like: relationship between growth hormone (GH) and IGF-like in the blood of rainbow trout (Onchorhynchus mykiss). Fish Physiol Biochem 11: 381-391.

Oates, A.C., Bruce, A.E., and Ho, R.K., 2000 Too much interference: injection of double-stranded RNA has nonspecific effects in the zebrafish embryo. Dev Biol 224: 20-28.

Ochiai, Y., Ahmed, K., Ahsan, M.N., Funabara, D., Nakaya, M., and Watabe, S., 2001. cDNA cloning and deduced amino acid sequence of tropomyosin from fast skeletal muscle of white croaker Pennahia argentata. Fish Sci 67: 556- 558.

Ochiai, Y., Huang, M.C., Fukushima, H., and Watabe, S., 2003. cDNA cloning and thermodynamic properties of tropomyosin from walleye pollack Theragra chalcogramma. Fish Sci 69: 1031- 1039.

Oelgeschlager, M., Larrain, J., Geissert, D., and De Robertis, E.M., 2000. The evolutionarily conserved BMP-binding protein Twisted gastrulation promotes BMP signalling. Nature 405: 757-763.

Ohara, O., Dorit, R.L., and Gilbert, W., 1989. One-sided polymerase chain reaction: the amplification of cDNA. Proc Natl Acad Sci USA 86: 5673-5677.

Ostbye, T.K., Galloway, T.F., Nielsen, C., Gabestad, I., Bardal, T., and Andersen, O., 2001. The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues. Eur J Biochem 268: 5249-5257.

Pasquinelli, A.E., Reinhart, B.J., Slack, F., Martindale, M.Q., Kuroda, M.I., Maller, B., Hayward, D.C., Ball, E.E., Degnan, B., Muller, P., Spring, J., Srinivasan, A., Fishman, M., Finnerty, J., Corbo, J., Levine, M., Leahy, P., Davidson, E., and Ruvkun, G., 2000. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408: 86-89.

Patapoutian, A., Yoon, J.K., Miner, J.H., Wang, S., Stark, K., and Wold, B., 1995. Disruption of the mouse MRF4 gene identifies multiple waves of myogenesis in the myotome. Development 121: 3347-3358.

Pedroso, F.L., de Jesus-Ayson, E.G., Cortado, H.H., Hyodo, S., and Ayson, F.G., 2005. Changes in mRNA expression of grouper (Epinephelus coioides) growth hormone and insulin-like growth factor I in response to nutritional status. Gen Comp Endocrinol 145: 237-246.

Pelis, R.M., and McCormick, S.D., 2001. Effects of growth hormone and cortisol on Na+-K+-2Cl(-) cotransporter localization and abundance in the gills of Atlantic salmon. Gen Comp Endocrinol 124: 134-143.

Perez-Sanchez, J., 2000. The involvement of growth hormone in growth regulation, energy homeostasis and immune function in the gilthead sea bream (Sparus aurata): a short review. Fish Physiol Biochem 22: 135-144.

Perez-Sanchez, J., Calduch-Giner, J.A., Mingarro, M., Vega-Rubin de Celis, S., Gomez-Requeni, P., Saera-Vila, A., Astola, A., and Valdivia, M.M., 2002. Overview of fish growth hormone family. New insights in genomic organization and heterogeneity of growth hormone receptors. Fish Physiol Biochem 27: 243-258.

Pickering, A.D., and Pottinger, T.G. 1989. Stress responses and disease resistance in salmonid fish: Effects of chronic elevation of plasma cortisol. Fish Physiol Biochem 7: 253-258.

Pierce, A.L., Beckman, B.R., Shearer, K.D., Larsen, D.A., and Dickhoff, W.W., 2001. Effects of ration on somatotropic hormones and growth in coho salmon. Comp Biochem Physiol B Biochem Mol Biol 128: 255-264.

Pierce, A.L., Shimizu, M., Beckman, B.R., Baker, D.M., and DickhoV, W.W., 2005. Time course of the GH/IGF axis response to fasting and increased ration in Chinook salmon (Oncorhynchus tshawytscha). Gen Comp Endocrinol 140: 192-202.

Pirottin, D., Poncelet, D., Grobet, L., Royo, L.J., Brouwers, B., Masabanda, J., Takeda, H., Fries, R., Sugimoto, Y., Womack, J.E., Dunner, S., and Georges, M., 1999. High-resolution, human-bovine comparative mapping based on a closed YAC contig spanning the bovine mh locus. Mamm Genome 10: 289-293.

Radaelli, G., Rowlerson, A., Mascarello, F., Patruno, M., and Funkenstein, B., 2003. Myostatin precursor is present in several tissues in teleost fish: a comparative immunolocalization study. Cell Tissue Res 311: 239–250

Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C., Rougvie, A.E., Horvitz, H.R., and Ruvkun, G., 2000. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901-906.

Rescan, P.Y., Jutel, I., and Ralliere, C., 2001. Two myostatin genes are differentially expressed in myotomal muscles of the trout (Oncorhynchus mykiss). J Exp Biol 204: 3523-3529.

Riley, L.G., Richman III, N.H., Hirano, T., Grau, G., 2002. Activation of the growth hormone/insulin-like growth factor axis by treatment with 17a methyltestosterone and seawater rearing in the tilapia, Oreochromis mossambicus. Gen Comp Endocrinol 127: 285-292.

Rios, R., Carneiro, I., Arce, V.M., and Devesa, J., 2002. Myostatin is an inhibitor of myogenic differentiation. Am J Physiol: Cell Physiol 282: 993-999.

Roberts, S.B., and Goetz, F.W., 2001. Differential skeletal muscle expression of myostatin across teleost species, and the isolation of multiple myostatin isoforms. FEBS Lett 491: 212-216.

Roberts, S.B., and Goetz, F.W., 2003. Myostatin protein and RNA transcript levels in adult and developing brook trout. Mol Cell Endocrinol 210: 9-20.

Rodgers, B.D., Weber, G.M., Sullivan, C.V., and Levine, M.A., 2001. Isolation and characterization of myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops. Endocrinology 142: 1412-1418.

Rodgers, B.D., and Webe,r G.M., 2001. Sequence conservation among fish myostatin morphologues and the characterization of two additional cDNA clones from Morone saxatilis and Morone americana. Comp Biochem Physiol B Biochem Mol Biol 129: 597-603.

Rotllant, J., and Tort, L., 1997a. Cortisol and glucose responses after acute stress by net handling in the sparid red porgy previously subjected to crowding stress. J Fish Biol 51: 21-28.

Rotllant, J., Pavlidis, M., Kentouri, M., Abad, M.E., and Tort, L., 1997b. Non-specific responses in the red porgy Pagrus pagrus after crowding stress. Aquaculture 156: 279-290.

Rotllant, J., Balm, P.H.M., Ruane, N.M., Perez-Sanchez, J., Wendelaar- Bonga, S.E. and Tort, L., 2000. Pituitary Proopiomelanocortin- Derived Peptides and Hypothalamus–Pituitary–Interrenal Axis Activity in Gilthead Sea Bream (Sparus aurata) during Prolonged Crowding Stress: Differential Regulation of Adrenocorticotropin Hormone and a-Melanocyte-Stimulating Hormone Release by Corticotropin-Releasing Hormone and Thyrotropin-Releasing Hormone General and Comparative Endocrinology 119: 152–163.

Rudnicki, M.A., Braun, T., Hinuma, S., and Jaenisch, R., 1992. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell 71: 383-390.

Rudnicki, M.A., Schnegelsberg, P.N., Stead, R.H., Braun, T., Arnold, H.H., Jaenisch, R., 1993. MyoD or Myf-5 is required for the formation of skeletal muscle. Cell 75: 1351-1359.

Sakamoto, T., and Hirano, T., 1993. Expression of insulin-like growth factor I gene in osmoregulatory organs during seawater adaptation of the salmonid fish: possible mode of osmoregulatory action of growth hormone. Proc Natl Acad Sci USA 90: 1912-1916.

Sakamoto, T., McCormick, S.D., and Hirano, T., 1993. Osmoregulatory actions of growth hormone and its mode of action in salmonids: a review. Fish Physiol Biochem 11: 155-164.

Sakamoto, T., Shepherd, B.S., Madsen, S.S., Nishioka, R.S., Siharath, K., Richman N.H., Bern, H.A., and Grau, E.G., 1997. Osmoregulatory actions of growth hormone and prolactin in an advanced teleost. GenComp Endocrinol 106: 95-101.

Sakamoto, T., Amano, M., Hyodo, S., Moriyama, S., Takahashi, A., Kawauchi, H., and Ando, M., 2005. Expression of prolactin-releasing peptide and prolactin in the euryhaline mudskippers (Periophthalmus modestus): prolactin-releasing peptide as a primary regulator of prolactin. J Mol Endocrinol 34: 825-834.

Sakamoto, T., and McCormick, S.D., 2006. Prolactin and growth hormone in fish osmoregulation. Gen Comp Endocrinol 147: 24-30.

Sanchez-Alvarado, A., and Newmark, P.A., 1999. Double-stranded RNA specifically disrupts gene expression during planarian regeneration. Proc Natl Acad Sci USA 96: 5049-5054.

Schmidt-Nielsen, K., 1997. Animal physiology: adapation and environment, 5th edition. The press syndicate of the University of Cambridge, New York, USA. pp. 96-97.

Schuelke, M., Wagner, K.R., Stolz, L.E., Hübner, C., Riebel, T., Kömen, W., Braun, T., Tobin, J.F., and Lee, S.J., 2004. Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350: 2682-2688.

Schwartz, R.J., Olson, E.N., 1999. Building the heart piece by piece: modularity of cis-elements regulating Nkx2-5 transcription. Development 126, 4187-4192.

Seale, A.P., Riley, L.G., Leedom, T.A., Kajimura, S., Dores, R.M., Hirano, T. and Grau, E.G. 2002. Effects of environmental osmolality on release of prolactin, growth hormone and ACTH from the tilapia pituitary. Gen Comp Endocrinol 128: 91-101.

Seidelin, M., Madsen, S.S., Byrialsen, A., and Kristiansen, K., 1999. Effects of insulin-like growth factor-I and cortisol on Na+,K+-ATPase expression in osmoregulatory tissues of brown trout (Salmo trutta). Gen Comp Endocrinol 113: 331-342.

Shamblott, M.J., and Chen, T.T., 1992. Identification of a second insulin-like growth factor in a fish species. Proc Natl Acad Sci USA 89: 8913-8917.

Sharma, M., Kambadur, R., Matthews, K.G., Somers, W.G., Devlin, G.P., Conaglen, J.V., Fowke, P.J., and Bass, J.J., 1999. Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. J Cell Physiol 180: 1-9.

Sharp, P.A., 2001. RNA interference. Genes Dev 15: 485-490

Shepherd, B.S., Drennon, K., Johnson, J., Nichols, J.W., Playle, R.C., Singer, T.D., Vijayan, and M.M., 2005. Salinity acclimation affects the somatotropic axis in rainbow trout. Am J Physiol: Regul Integr Comp Physiol 288: 1385-1395.

Sijen, T., Fleenor, J., Simmer, F., Thijssen, K.L., Parrish, S., Timmons, L., Plasterk, R.H.A., and Fire, A., 2001. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107: 465-476.

Small, B.C., and Peterson, B.C., 2005. Establishment of a time-resolved fluoroimmunoassay for measuring plasma insulin-like growth factor I (IGFI) in fish: effect of fasting on plasma concentrations and tissue mRNA expression of IGF-I and growth hormone (GH) in channel catfish (Ictalurus punctatus). Domest Anim Endocrinol 2: 202-215.

Small, E.M., Krieg, P.A., 2003. Transgenic analysis of the atrialnatriuretic factor (ANF) promoter: Nkx2-5 and GATA-4 binding sites are required for atrial specific expression of ANF. Dev. Biol. 261, 116-131.

Smith, D.C.W., 1956. The role of the endocrine organs in the salinity tolerance of trout. Mem Soc Endocrinol 5: 83-101.

Smith, T.P., Lopez-Corrales, N.L., Kappes, S.M., and Sonstegard, T.S., 1997. Myostatin maps to the interval containing the bovine mh locus. Mamm Genome 8: 742-744.

Sonstegard, T.S., Kappes, S.M., Keele, J.W., and Smith, T.P., 1998a. Refinement of bovine chromosome 2 linkage map near the mh locus reveals rearrangements between the bovine and human genomes. Anim Genet 29: 341-347.

Sonstegard, T.S., Rohrer, G.A., and Smith, T.P., 1998b. Myostatin maps to porcine chromosome 15 by linkage and physical analyses. Anim Genet 29: 19-22.

Spieler, R.E., 1993. Feeding entrained circadian rhythms in fishes. In: Ali, M.A. (Ed.), Rhythms in Fishes. Plenum press, New york p: 137-148.

Stainier, D.Y., 2001. Zebrafish genetics and vertebrate heart formation. Nat. Rev. Genet. 2: 39-48.

Sutton, M. G. S. J. and Sharpe, N., 2000. Left ventricular remodeling after myocardial infarction. Pathophysiology and therapy. Circulation 101: 2981–2988.

Tajbakhsh, S., Rocancourt, D., and Buckingham, M., 1996. Muscle progenitor cells failing to respond to positional cues adopt non-myogenic fates in myf-5 null mice. Nature 384: 266-270.

Tatsuya, S., and Hirano, T., 1993. Expression of insulin-like growth factor I gene in osmoregulatory organs during seawater adaptation of the salmonid Wsh: possible mode of osmoregulatory action of growth hormone. Proc Natl Acad Sci USA 90: 1912-1916.

Terova, G., Bernardini, G., Binelli, G., Gornati, R., and Saroglia, M., 2005. cDNA encoding sequences for myostatin and FGF6 in sea bass (Dicentrarchus labrax, L.) and the effect of fasting and refeeding on their abundance levels. Domest Anim Endocrinol 30: 304-319.

Thomas, M., Langley, B., Berry, C., Sharma, M., Kirk, S., Bass, J., and Kambadur, R., 2000. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275: 40235-40243.
Tomanek, R.J., Runyan, R.B., 2001. Formation of the heart and its regulation. Maple-Vail book manufacturing group, York, PA, USA. pp. 45-47, 83-88, 97-103, 184-187.

Tomizawa, J., Itoh, T., Selzer, G., and Som ,T., 1981. Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc Natl Acad Sci USA 78: 1421-1425.

Uchida, K., Kajimura, S., Reliy, L.G., Hirano, T., Aida, K., and Grau, E.G., 2003. Effects of fasting on growth hormone/insulin-like growth factor I axis in the tilapia, Oreochromis mossambicus. Comp Biochem Physiol 134: 429-439.

Veldhuis, J.D., Roemmich, J.N., Richmond, E.J., Rogol, A.D., Lovejoy, J.C., Sheffield-Moore, M. ,Mauras, N., and Bowers, C.Y., 2005. Endocrine control of body composition in infancy, childhood, and puberty. Endocr Rev 26: 114-146.

Venugopal, T., Anathy, V., Pandian, T.J., Gong, G.Z., and Mathavan, S., 2002. Molecular cloning of growth hormone-encoding cDNA of an Indian major carp, Labeo rohita, and its expression in Escherichia coli and zebrafish. Gen Comp Endocrinol 125: 236-247.

Venuti, J.M., Morris, J.H., Vivian, J.L., Olson, E.N., and Klein, W.H., 1995. Myogenesis is required for late but not early aspects of myogenesis during muscle development. J Cell Biol 128: 563-576.

Vianello, S., Brazzoduro, L., Dalla, Valle, L., Belvedere, P., and Colombo, L., 2003. Myostatin expression during development and chronic stress in zebrafish (Danio rerio). J Endocrinol 176: 47-59.

Wargelius, A., Ellingsen, S., Fjose, A., 1999. Double-stranded RNA induces specific developmental defects in zebrafish embryos. Biochem Biophys Res Commun 263: 156-161.

Weber, T.E., and Bosworth, B.G., 2005. Effects of 28 day exposure to cold temperature or feed restriction on growth, body composition, and expression of genes related to muscle growth and metabolism in channel catfish. Aquaculture 246: 483-492.
Weintraub, S.J., Prater, C.A., and Dean, D.C., 1992. Retinoblastoma protein switches the E2F site from a positive to negative element. Nature 358: 259-261.

Westhusin, M., 1997. From mighty mice to mighty cows. Nat Genet 17: 4-5.

Whittemore, L.A., Song, K., Li, X., Aghajanian, J., Davies, M.S., Girgenrath, J.J., Hill, M., Jalenak, P., Kelley, A., Knight, R., Maylor, D., O'Hara, A., Pearson, A., Quazi, S. Ryerson, X.Y., Tan, K.N., Tomkinson, G.M., Veldman, A., Widom, J.F., Wright, S., Wudyka, L., Zhao, N.M., and Wolfman, N.M., 2003. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 300: 965-971.

Wianny, F., and Zernicka-Goetz, M., 2000. Specific interference with gene function by double-stranded RNA in early mouse development. Nat Cell Biol 2: 70-75.

Williams, B.A., and Ordahl, C.P., 1994. Pax-3expression in segmental mesoderm marks early stages in myogenic cell specification. Development 120: 785-796.

Xu, C., Wu, G., Zohar, Y., and Du, S.J., 2003. Analysis of myostatin gene structure, expression and function in zebrafish. J Exp Biol 206: 4067-4079.

Xue, L., Qian, K., Qian, H., Li, L., Yang, Q., and Li, M., 2006. Molecular cloning and characterization of the myostatin gene in croceine croaker, Pseudosciaena crocea. Mol Biol Rep 33: 129-135.

Yang, J., Ratovitski, T., Brady, J.P., Solomon, M.B., Wells, K.D., and Wall, R.J., 2001. Expression of myostatin pro domain results in muscular transgenic mice. Mol Reprod Dev 60: 351-361.

Ye, H.Q., Chen, S.L., Sha, Z.X., and Liu, Y., 2007. Molecular cloning and expression analysis of the myostatin gene in sea perch (Lateolabrax japonicus). Mar Biotechnol 9: 262-272.

Zaffran, S., Frasch, M., 2002. Early signals in cardiac development. Circ. Res. 91, 457-469.
Zhao, Z., Cao, Y., Li, M., and Meng, A., 2001 Double-stranded RNA injection produces nonspecific defects in zebrafish. Dev Biol 229: 215-23.

Zhu, Z., and Miller, J.B., 1997. MRF4 can substitute for myogenin during early stages of myogenesis. Dev Dyn 209: 233-241.

Zhu, X., Hadhazy, M., Wehling, M., Tidball, J.G., and McNally, E.M., 2000. Dominant negative myostatin produces hypertrophy without hyperplasia in muscle. FEBS Lett 474: 71-75.

Zhu, X., Wu, L., Cui, Y., Yang, Y., and Wootton, R.J., 2003. Compensatory growth in three spined stickleback in relation to feed-deprivation protocols. J Fish Biol 62: 195-205.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top