跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/18 14:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鐘啟豪
研究生(外文):Chi-Hao Chung
論文名稱:新穎四唑銀化合物的水熱合成開發與性質探討暨SBA-15之阿斯匹靈藥物釋放
論文名稱(外文):Novel silver tetrazole compounds development of hydrothermal synthesis for biological application discussion & SBA-15 as a drug carrier for aspirin release
指導教授:林秀美林秀美引用關係
指導教授(外文):Hsiu-Mei Lin
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:113
中文關鍵詞:四唑水熱合成藥物釋放
外文關鍵詞:tetrazolehydrothermal synthesisdrug release
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
part I
四唑化合物的應用廣泛,能夠作為羧酸的取代物(bioisostere),因此藉由四唑取代CH3COOH 及 4-Pyridinecarboxylic acid(Isonicotinic acid)此兩種具藥效藥物的COOH官能基之構想,比較新合成四唑銀化合物與帶有羧酸官能基銀化合物,兩者之間生物藥性的差異。如此而利用四唑配位基原位合成法與金屬銀配位,找尋 4-pyridyl tetrazole的四唑前趨物,使用氰基(CN) 和疊氮(N3)進行[2+3]環化加成反應,透過原位配位基水熱合成法使分子自我組裝,合成嶄新的晶體Ag(4-pyridyl)tetrazole (Ag(4-ptz)) (AgC6H4N5) ,a = 7.3044(2) Å,b = 11.1025(2) Å,c = 8.5298(2) Å,α= 90°,β=97.6670(10)°,γ = 90°,Monoclinic晶系。在生物藥性方面,四唑銀化合物(Ag(4-ptz))抗菌實驗則大部分比Ag(Isonicotinic acid)獲得較佳抑制效果,另外對革蘭氏陽性及陰性菌之抗菌實驗並未獲得哪種菌抑制效果佳的結論,推論陽性菌有負電多與四唑排斥優勢,陰性菌有脂多醣親水基使四唑疏水性藥物不易進入細菌細胞膜的優勢,而銀與四唑共同協同抑菌結果也從實驗與文獻 (Ag(tetrazole) )中共同證實。
摘要
Part II
中孔洞材料由於在廣大應用範圍上具高潛力性為近年來研究熱點。SBA-15因為其廣大的表面積及大孔洞、高規率性、可調整奈米孔洞半徑,可變化的表面化學性質,高水熱穩定,且製備易較不費時加上矽材料的無毒性、穩定性高、生物相容性良好,已被認為是相當具有前景且能被當作藥物載體遞送藥物的材料。利用藥物阿斯匹靈於三種合成條件製備的SBA-15填藥並於模擬胃液(PH=1.2)及腸液(PH=6.8)之水溶液釋放,結果發現在高pH6.8中釋放較快且釋放順序為: [80-24(pH6.8)]> [100-24(pH6.8)] > [80-48(pH6.8)] >[100-24(pH1.2)] > [80-48(pH1.2)] > [80-24(pH1.2)] ,可觀察到釋放結果與填藥量以及孔洞大小兩者呈現正相關性。雖然Aspirin /SBA-15比Aspirin /MCM-41釋放快得多,使胃中Aspirin含量較多而不如MCM-41大幅減少副作用,但相較於腸溶錠需等到通過胃至腸內崩解後才釋放藥效,Aspirin /SBA-15已在胃中釋放並且酸性藥物Aspirin在酸性條件如胃酸中更加容易吸收,對急性病患而言比腸溶錠更能發揮迅速療效,如此奈米孔洞材料SBA-15對藥物釋放再增添一項新的應用。
Abstract

The application of tetrazole compounds is extensively and can be a bioisosterer to replace a carboxylic acid . To take the idea of replacement of COOH functional group of CH3COOH and 4-Pyridine carboxylic acid (Isonicotinic acid) that have drug efficacy by tetrazole, compare compounds of silver tetrazole with silver carboxylic acid to realize the biological medicine differences of both. Make use of in situ tetrazole synthesis method to ligand with metal silver, and find a precursor of 4-pyridyl tetrazole to proceed nitriles(CN) and azide(N3) of [2+3]additional cyclization through in situ ligand hydrothermal method to make molecular self-assembled, yeild a Ag(4-pyridyl)tetrazole(Ag(4-ptz))(AgC6H4N5), a=7.3044(2), b=11.1025(2), c=8.5298(2), α =90°, β =97.6670(10)°, γ =90 °, crystal system of Monoclinic. At the biological medicine effect , the anti-bacterial experiment of the silver tetrazole (Ag(4-ptz)) compound are greatly part better inhibition than the Ag(Isonicotinic acid). Additionally, we do not obtain conclusions that the gram positive or negative bacterial has better inhibition advantage than one of them.The gram positive bacterial has advantage of negative electricity to reject with tetrazole, the gram negative bacterials has the lipopolysaccharide hydrophilic group that make advantage of tetrazole drug not easily getting into bacterial cell membrane. Moreover, the result of synergistic bacterial inhibition of silver and tetrazole has also been confirmed from experiment and literature of(Ag(tetrazole) ).
Abstract

Mesoporous material become a hot point of research because of its high potential on the large application in recent years. Because of its large surface area and large pore, high regular pattern and tunable Nanoporous radius, variable properties of surface chemistry, high hydrothermal stability, and easy preparation to synthesze, not time-consuming and the non-poisonous, high stability and the good biological compatibility of silicon material , they have already been regard as a material of the carrier to deliver medicine . Make use of aspirin loading on SBA-15 that synthesized by three kinds of condition and deliver it in imitate stomach liquid(PH=1.2) and intestines liquid(PH=6.8) of the aqueous solution to release, find as a result of releasing more and fast in pH 6.8 and the release sequence for:[80-24(pH 6.8)]>[100-24 (pH 6.8)]>[80-48(pH 6.8)]>[100-24(pH 1.2)]>[80-48(pH 1.2)]>[80-24(pH 1.2)], can observe a result that loading amount of drug and pore size both present positive relationship.Although the releasing of Aspirin/SBA-15 much faster than the Aspirin/MCM-41, leading to the more Aspirin content in stomach and not significantly reduce side effect as well as MCM-41.Compare with the intestines-dissolved tablet that need to wait for passing through stomach to collapse inside the intestines and have drug efficacy, the Aspirin/SBA-15 has already released in the stomach and acidic Aspirin in the acidity condition has been more absorbed from the stomach . Comparatively Aspirin/SBA-15 is good for impatient patient and such a nanoporous material of SBA-15 has a new additional application for drug release.
Part I
新穎四唑銀化合物的水熱合成開發與性質探討 目錄
中文摘要
英文摘要
目錄……………………………………………………………………..1
圖目錄…………………………………………………………………..3
表目錄…………………………………………………………………..5

第一章 緒論
1-1 前言………………………………………………………………10
1-2 四唑簡介…………………………………………………………11
1-3 四唑銀化合物之水熱合成開發文獻回顧………………………18

第二章 四唑銀化合物之研究方法
2-1 水熱合成法與原位水熱合成法…………………………………26
2-2 單晶X-光繞射實驗與晶體結構解析………………………........30
2-3 性質鑑定的儀器………………………………………………….33



第三章 水熱合成之四唑銀化合物
3-1 前言………………………………………………………………34
3-2 藥品與儀器………………………………………………………35
3-3 實驗方法與晶體解析結構描述…………………………………36

第四章 四唑銀化合物之生物活性試驗
4-1 前言……………………………………………………….............48
4-2 抗菌活性試驗…………………………………………………….53
4-3 細胞耐受度試驗………………………………………………….64
第五章 結果與討論………………………………………………........67

參考文獻………………………………………………………………..69

圖目錄
圖1-2-1 傳統四唑之合成方法流程圖……………………………...….………...12
圖1-2-2 九種不同型態的四唑配位模式圖………………………………….......13
圖1-2-3.1 四唑與COOH官能基結構型式相近示意圖……………………….....14
圖1-2-3.2 四唑以prodrug機制做保護而增進生物可利用性示意圖………........16
圖 1-2-3.3 L-692,429之四唑藥物與COOH取代四唑兩者藥物結構圖…….........16
圖 1-3-1.1 化合物[Ag(Mtta)]n結構圖……………………………………...........20
圖 1-3-2.1 化合物[Ag2(μ4-tta)(μ3-tta)] 不同軸向結構圖…………………........22
圖 1-3-2.3 化合物[Ag3(μ4-tta)2](NO3) 不同軸向結構圖……………….………24
圖 2-1- 2 [(2,2’-biphen)Co]V3O8.5 結構圖…………………………...................28
圖 3-3- 1 Ag2(μ4-mtta)N3 之X-光粉末繞射圖………………………….......... 36
圖 3-3-2.1 Ag2(μ4-mtta)N3 化合物結構之沿b軸圖……………….....................39
圖 3-3-2.2 Ag2(μ4-mtta)N3 化合物結構之ortep圖…………………………......39
圖 3-3-2.3 Ag2(μ4-mtta)N3 化合物結構之沿a軸圖…………………………....40
圖 3-3-2.4 Ag2(μ4-mtta)N3 化合物結構之沿c軸圖…………………………....40
圖 3-3-3.1 Ag(4-ptz) 之X-光粉末繞射圖………………………………………42
圖 3-3-4.1 Ag(4-ptz) 化合物結構之ortep圖…………………………………...44
圖 3-4-4.2 Ag(4-ptz) 化合物結構之沿a軸圖………………………………......45
圖 3-4-4.3 Ag(4-ptz) 化合物結構之沿b軸圖………………………………….. …46
圖 3-4-4.4 Ag(4-ptz) 化合物結構之沿c軸圖………………………………….......46
圖4-1-4 Ag(Isonicotinic acid) 之X-光粉末繞射圖………………………………51
圖4-1. 1 Ag2(μ4-mtta)N3 、 Ag(4-ptz) 、Ag(Isonicotinic acid) 、CH3COOAg
四種化合物對 Escherichia coli 之生長曲線抑制比較圖……..............59
圖4-1. 2 四種化合物對 Escherichia coli 之生長菌落數計數圖………..............59
圖4-1 .3 四種化合物對 Staphylococcus aureus 之生長曲線抑制比較圖….......60
圖4-1. 4 四種化合物對 Staphylococcus aureus 之生長菌落數計數圖…….....60
圖4-1. 5 四種化合物對 Bacillus subtilis 之生長曲線抑制比較圖………….......61
圖4-1. 6 四種化合物對 Bacillus subtilis 之生長菌落數計數圖………...............61
圖4-1. 7 四種化合物對 Enterobacter aerogenes 之生長曲線抑制比較圖…....62
圖4-1. 8 四種化合物對 Enterobacter aerogenes 之生長菌落數計數圖……....62

表目錄

表 3-3-1.1 Ag2(μ4-mtta)N3之 元素分析數據............................................................35
表3-3-1.2 新四唑銀化合物Ag2(μ4-mtta)N3 之晶體資料………………………….36
表 3-3-2 Ag2(μ4-mtta)N3選擇性Ag-N鍵長與N-Ag-N鍵角…………………….37
表 3-3-3.1 Ag(4-ptz) 之元素分析數據.......................................................................41
表 3-3-3.2 新合成四唑銀化合物Ag(4-ptz )晶體資料................................................42
表 3-3-4 Ag(4-ptz)選擇性Ag-N鍵長與N-Ag-N鍵角……………………...............43
表 4-1.1 〔Ag(tetrazole)〕n 及tetrazole對細菌之最小抑制濃度表……………..47
表 4-1-1 革蘭氏陽性菌與陰性菌性質比較表……………………………………..48
表 4-1-4 Ag(Isonicotinic acid) 之元素分析數據………………..............................51
表 4-2-2.1 四唑銀文獻與實驗之抑菌MIC 整理比較表………...................
Part II SBA-15之阿斯匹靈藥物釋放 目錄
目錄…………………………………………………………………………………..2
圖目錄………………………………………………………………………………..4
表目錄……………………………………………………………………5

第一章 緒論
1-1 前言…………………………………………………………………………...6
1-2 SBA-15簡介……………………………………………………………......7
1-3 阿斯匹靈簡介………………………………………………………………12.
1-4 文獻研究回顧……………………………………………………..14

第二章 SBA-15合成與性質鑑定
2-1 前言…………………………………………………………………………….18
2-2 藥品與儀器……………………………………………………………………18
2-3 合成方法……………………………………………………………….………19
2-4 SBA-15 性質鑑定與討論…………………………………………………..20



第三章 SBA-15填藥方法與阿斯匹靈含量分析
3-1 前言……………………………………………………………..21
3-2 填藥方法…………………………………………………………………21
3-3 Aspirin含量分析………………………………………………..22.

第四章 SBA-15 之釋放測試
4-1 前言………………………………………………………………………...24
4-2 釋放方法. …………………………………………………………………25
4-2 Aspirin釋放量及釋放曲線分析………………………………...25

第五章 結果與討論…………………………………………………………...28.
參考文獻…………………………………………………………………………..34



圖目錄
圖 1-2 增加溫度使SBA-15柱狀通道微孔消失示意圖…………….8
圖2-4.1 阿斯匹靈合成之流程圖……………………………………..12
圖2-4.1 SBA-15之X- 光粉末繞射圖……………………………….20
圖2-4.2 SBA-15(100°C 24hr)之電子顯微鏡圖………………………20
圖4-3.5 阿斯匹靈於水中配置濃度檢量線圖………………………...28
圖4-3.2 阿斯匹靈於 SBA-15[80°C for 24hr] 中填藥而在模擬胃液(pH=1.2)及模擬腸液(pH=6.8)中釋放圖……………………28
圖4-3.3 阿斯匹靈於 SBA-15[80°C for48hr] 中填藥而在模擬胃液(pH=1.2)及模擬腸液(pH=6.8)中釋放圖……………………29
圖4-3.4 阿斯匹靈於 SBA-15[100°C for24hr] 中填藥而在模擬胃液(pH=1.2)及模擬腸液(pH=6.8)中釋放圖……………………29
圖4-3.5 阿斯匹靈於SBA-15[80°C for24hr] [80°C for48hr] [100°C for24hr]三種合成條件中填藥而於模擬胃液(pH=1.2)及模擬腸液(pH=6.8)釋放百分比綜合圖………………………………30
圖4-3.6 阿斯匹靈於SBA-15[80°C for24hr] [80°C for48hr] [100°C for24hr]三種合成條件中填藥而在模擬胃液(pH=1.2)及模擬腸液(pH=6.8)中釋放百分比其中將0~8 小時局部圖放大圖…………………………………………………………….30

表目錄

表1-2.1 中孔徑分子篩SBA-15 與 MCM-41的比較表………………9
表 1-2.2 不同種類所合成之SBA系列物理化學性質表……………....11
表 1-3 阿斯匹靈四種劑型優缺點…………………………………….13
表 1-4 SBA-15及 MCM-41藥物釋放之部分整理………...…..........17
表 3-3 由元素分析儀以及紫外光光譜儀之填藥含量分析…………..23
表 4-3 各釋放情形於12及36小時釋放快慢順序排列…….……….26
參考文獻
Ankersen, M., B. Peschke, et al. (1997). "Investigation of bioisosters of the growth hormone secretagogue L-692,429." Bioorganic & Medicinal Chemistry Letters 7(10): 1293-1298.
Burgos-Lepley, C. E., L. R. Thompson, et al. (2006). "Carboxylate bioisosteres of gabapentin." Bioorganic & Medicinal Chemistry Letters 16(9): 2333-2336.
Butler, R. N. (1996) In Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W., Scriven, E. F. V., Eds.; Pergamon: Oxford, 4, 621
Basha, A., R. Henry, et al. (1994). "Addition of Organometallic Reagents to N-Glycosyl Nitrones - Enantioselective Syntheses of (+)-(R)-Zileuton and (-)-(S)-Zileuton." Journal of Organic Chemistry 59(20): 6103-6106.
Carlucci, L., G. Ciani, et al. (1999). "Interpenetrated and noninterpenetrated three-dimensional networks in the polymeric species Ag(tta) and 2 Ag(tta) center dot AgNO3 (tta = tetrazolate): The first examples of the mu(4)-eta(1):eta(1):eta(1):eta(1) bonding mode for tetrazolate." Angewandte Chemie-International Edition 38(23): 3488-3492.
Costantino, G., K. Maltoni, et al. (2001). "Synthesis and biological evaluation of 2-(3 '-(1H-tetrazol-5-yl) bicyclo[1.1.1]pent-1-yl)glycine (S-TBPG), a novel mGlu1 receptor antagonist." Bioorganic & Medicinal Chemistry 9(2): 221-227.
Curran, D. P., S. Hadida, et al. (1999). "tris(2-perfluorohexylethyl) tin azide: A new reagent for preparation of 5-substituted tetrazoles from nitriles with purification by fluorous organic liquid-liquid extraction." Tetrahedron 55(29): 8997-9006.
Davi, H., C. Tronquet, et al. (2000). "Disposition of irbesartan, an angiotensin II AT1-receptor antagonist, in mice, rats, rabbits, and macaques." Drug Metabolism and Disposition 28(1): 79-88.
Demko, Z. P. and K. B. Sharpless (2001). "An intramolecular [2+3] cycloaddition route to fused 5-heterosubstituted tetrazoles." Organic Letters 3(25): 4091-4094.
Demko, Z. P. and K. B. Sharpless (2001). "Preparation of 5-substituted 1H-tetrazoles from nitriles in water." Journal of Organic Chemistry 66(24): 7945-7950.
Demko, Z. P. and K. B. Sharpless (2002). "A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: Synthesis of 5-acyltetrazoles from azides and acyl cyanides." Angewandte Chemie-International Edition 41(12): 2113-2116.
Demko, Z. P. and K. B. Sharpless (2002). "A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: Synthesis of 5-sulfonyl tetrazoles from azides and sulfonyl cyanides." Angewandte Chemie-International Edition 41(12): 2110-2113.
Demko, Z. P. and K. B. Sharpless (2002). "An expedient route to the tetrazole analogues of alpha-amino acids." Organic Letters 4(15): 2525-2527.
Duncia, J. V., M. E. Pierce, et al. (1991). "3 Synthetic Routes to a Sterically Hindered Tetrazole - a New One-Step Mild Conversion of an Amide into a Tetrazole." Journal of Organic Chemistry 56(7): 2395-2400.
Finnegan, W. C. R. A. Henry, R. Lorquist (1958) "An Improved Synthesis of 5-Substituted Tetrazoles" Journal of the American Chemical Society, 80(15), 3908.
Holland, G. F.; Pereira, J. N. 1967, J. Med. Chem. 10,149.

Himo, F., Z. P. Demko, et al. (2002). "Mechanisms of tetrazole formation by addition of azide to nitriles." Journal of the American Chemical Society 124(41): 12210-12216.
Himo, F., Z. P. Demko, et al. (2003). "Why is tetrazole formation by addition of azide to organic nitriles catalyzed by zinc(II) salts?" Journal of the American Chemical Society 125(33): 9983-9987.
Herr, R. J. (2002). "5-substituted-1H-tetrazoles as carboxylic acid isosteres: Medicinal chemistry and synthetic methods." Bioorganic & Medicinal Chemistry 10(11): 3379-3393.
Jackman, A. L., R. Kimbell, et al. (1997). "Cellular pharmacology and in vivo activity of a new anticancer agent, ZD9331: A water-soluble, nonpolyglutamatable, quinazoline-based inhibitor of thymidylate synthase." Clinical Cancer Research 3(6): 911-921.
Kees, K. L. R. S. Cheeseman, D.H. Prozialeak(1989)
“Perfluoro-N-[4-(1H-tetrazol-5-ylmethyl)phenyl]alkanamides”. A new class of oral antidiabetic agents Journal of Medicinal Chemistry, 32(1) 11.



Kaczmarek, J. (1979). "Ergonomics in the Design of Industrial-Equipment." Ergonomics 22(6): 681-686.
Lunn, W. H. D. D. Schoepp, D. O. Calliagro (1992)
DL-Tetrazol-5-ylglycine, a highly potent NMDA agonist: its synthesis and NMDA receptor efficacy Journal of Medicinal Chemistry, 35 (24)4608.
Muraglia, E., O. D. Kinzel, et al. (2006). "Tetrazole thioacetanilides: Potent non-nucleoside inhibitors of WT HIV reverse transcriptase and its K103N mutant." Bioorganic & Medicinal Chemistry Letters 16(10): 2748-2752.
Nachman, R. J., G. M. Coast, et al. (2004). "Stereochemistry of insect kinin tetrazole analogues and their diuretic activity in crickets." Acta Biochimica Polonica 51(1): 121-127.
Noda, K., Y. Saad, et al. (1995). "Tetrazole and Carboxylate Groups of Angiotensin Receptor Antagonists Bind to the Same Subsite by Different Mechanisms." Journal of Biological Chemistry 270(5): 2284-2289.
Nomiya, K., R. Noguchi, et al. (2000). "Synthesis and crystal structure of coinage metal(I) complexes with tetrazole (Htetz) and triphenylphosphine ligands, and their antimicrobial activities. A helical polymer of silver(I) complex [Ag(tetz)(PPh3)2](n) and a monomeric gold(I) complex [Au(tetz)(PPh3)]." Inorganica Chimica Acta 298(1): 24-32.
Ostrovskii, V. A. and A. O. Koren (2000). "Alkylation and related electrophilic reactions at endocyclic nitrogen atoms in the chemistry of tetrazoles." Heterocycles 53(6): 1421-1448.

Obermeier, M. T., S. H. Chong, et al. (1996). "Prodrugs of BMS-183920: Metabolism nd permeability considerations." Journal of Pharmaceutical Sciences 85(8): 828-833
Robert. M. H and K. R. Wilson (1957) "Apparent Acidic Dissociation of Some 5-Aryltetrazoles" Journal of organic chemistry., 22(10), 1142.





Upadhayaya, R. S., S. Jain, et al. (2004). "Synthesis of novel substituted tetrazoles having antifungal activity." European Journal of Medicinal Chemistry 39(7): 579-592.
Wittenberger, S. J. and B. G. Donner (1993). "Dialkyltin Oxide-Mediated Addition of Trimethylsilyl Azide to Nitriles - a Novel Preparation of 5-Substituted Tetrazoles." Journal of Organic Chemistry 58(15): 4139-4141.
Wu, T., R. Zhou, et al. (2006). "Effect of substituted groups of ligand on construction of topological networks: In situ generated silver(I) tetrazolate coordination polymers." Inorganic Chemistry Communications 9(3): 341-345.

Wang, L. Z., Z. R. Qu, et al. (2003). "Isolation and crystallographic characterization of a solid precipitate/intermediate in the preparation of 5-substituted 1H-tetrazoles from nitrile in water." Inorganic Chemistry 42(13): 3969-3971
Wang, X. S., Y. Z. Tang, et al. (2005). "Syntheses, crystal structures, and luminescent properties of three novel zinc coordination polymers with tetrazolyl ligands." Inorganic Chemistry 44(15): 5278-5285.
Xiong, R. G., X. Xue, et al. (2002). " Angewandte Chemie-International Edition 41(20): 3800-3803.
Xiong R.G. X. Xue, H. Zhao, X. Z. You, B.F. Abrahams and Z.L. Xue, Angew. Chem. Int. Ed., 2002, 41, 3800.
Xue, X., B. F. Abrahams, et al. (2002). "An unexpected zinc coordination polymer formed during the preparation of 5-substituted 1H-tetrazoles from a nitrile in water." Australian Journal of Chemistry 55(8): 495-497.
Yang, Y. Y., Z. Q. Huang, et al. (2004). "catena-Poly[silver(I)-mu-isonicotinato-kappa O-2 : N]." Acta Crystallographica Section E-Structure Reports Online 60: M1158-M1159.



Zhang, X. M. (2005). "Hydro(solvo)thermal in situ ligand syntheses." Coordination Chemistry Reviews 249(11-12): 1201-1219.

Zhang, X. M., Y. F. Zhao, et al. (2006). "Syntheses and structures of metal tetrazole coordination polymers." Dalton Transactions(26): 3170-3178.

許樹恩 吳泰伯 (1993) X光繞射原理與材料分析
海洋大學食品科學系碩士論文 ,2005年,林雨新撰
參考文獻
Brouwers, J. R. B. J. (1996). "Advanced and controlled drug delivery systems in clinical disease management." Pharmacy World & Science 18(5): 153-162.
Breimer, D. D. (1998). "Future challenges for drug delivery research." Advanced Drug Delivery Reviews 33(3): 265-268.
Bae, S. J., S. W. Kim, et al. (2000). "New chiral heterogeneous catalysts based on mesoporous silica: asymmetric diethylzinc addition to benzaldehyde." Chemical Communications(1): 31-32.
Cavallaro, G., P. Pierro, et al. (2004). "Drug delivery devices based on mesoporous silicate." Drug Delivery 11(1): 41-46.
Charnay, C., S. Begu, et al. (2004). "Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property." European Journal of Pharmaceutics and Biopharmaceutics 57(3): 533-540.
Doadrio, A. L., E. M. B. Sousa, et al. (2004). "Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery." Journal of Controlled Release 97(1): 125-132.
Doadrio, J. C., E. M. B. Sousa, et al. (2006). "Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern." Journal of Materials Chemistry 16(5): 462-466.
Galarneau, A., H. Cambon, et al. (2001). "True microporosity and surface area of mesoporous SBA-15 silicas as a function of synthesis temperature." Langmuir 17(26): 8328-8335.
Han, Y. J., J. M. Kim, et al. (2000). "Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15." Chemistry of Materials 12(8): 2068-2069.
Han, Y. J., G. D. Stucky, et al. (1999). "Mesoporous silicate sequestration and release of proteins." Journal of the American Chemical Society 121(42): 9897-9898.
Huang, M. H., A. Choudrey, et al. (2000). "Ag nanowire formation within mesoporous silica." Chemical Communications(12): 1063-1064.
Katiyar, A., L. Ji, et al. (2005). "Protein adsorption on the mesoporous molecular sieve silicate SBA-15: effects of pH and pore size." Journal of Chromatography A 1069(1): 119-126.




Liu, A. M., K. Hidajat, et al. (2000). "A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions." Chemical Communications(13): 1145-1146.
Luan, Z. H., M. Hartmann, et al. (1999). "Alumination and ion exchange of mesoporous SBA-15 molecular sieves." Chemistry of Materials 11(6): 1621-1627.
Luan, Z. H., E. M. Maes, et al. (1999). "Incorporation of titanium into mesoporous silica molecular sieve SBA-15." Chemistry of Materials 11(12): 3680-3686.
Munoz, B., A. Ramila, et al. (2003). "MCM-41 organic modification as drug delivery rate regulator." Chemistry of Materials 15(2): 500-503.
Margolese, D., J. A. Melero, et al. (2000). "Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups." Chemistry of Materials 12(8): 2448-2459.
Morey, M. S., S. O'Brien, et al. (2000). "Hydrothermal and postsynthesis surface modification of cubic, MCM-48, and ultralarge pore SBA-15 mesoporous silica with titanium." Chemistry of Materials 12(4): 898-911.
Qu, F. Y., G. S. Zhu, et al. (2006). "Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica." Microporous and Mesoporous Materials 92(1-3): 1-9.
Qu, F. Y., G. S. Zhu, et al. (2006). "Drug self-templated synthesis of ibuprofen/mesoporous silica for sustained release." European Journal of Inorganic Chemistry(19): 3943-3947.
Ryoo, R., C. H. Ko, et al. (2000). "Block-copolymer-templated ordered mesoporous silica: Array of uniform mesopores or mesopore-micropore network?" Journal of Physical Chemistry B 104(48): 11465-11471.
Ramila, A., B. Munoz, et al. (2003). "Mesoporous MCM-41 as drug host system." Journal of Sol-Gel Science and Technology 26(1-3): 1199-1202.
Sousa, A. and E. M. B. Sousa (2006). "Influence of synthesis temperature on the structural characteristics of mesoporous silica." Journal of Non-Crystalline Solids 352(32-35): 3451-3456
Salis, A., D. Meloni, et al. (2005). "Physical and chemical adsorption of Mucor javanicus lipase on SBA-15 mesoporous silica. Synthesis, structural characterization, and activity performance." Langmuir 21(12): 5511-5516.



Vallet-Regi, M., J. C. Doadrio, et al. (2004). "Hexagonal ordered mesoporous material as a matrix for the controlled release of amoxicillin." Solid State Ionics 172(1-4): 435-439.
Wang, L. Z., Y. F. Shao, et al. (2006). "Study on the fluorescence properties of fluorescein dye incorporated into SBA-15." Optical Materials 28(10): 1232-1234.
Yang, P. D., G. Wirnsberger, et al. (2000). "Mirrorless lasing from mesostructured waveguides patterned by soft lithography." Science 287(5452): 465-467.
Yue, Y. H., A. Gedeon, et al. (1999). "Direct synthesis of AlSBA mesoporous molecular sieves: characterization and catalytic activities." Chemical Communications(19): 1967-1968
Yang, Q., S. H. Wang, et al. (2005). "pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery." Chemistry of Materials 17(24): 5999-6003.
Zhao, D. Y., J. L. Feng, et al. (1998). "Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores." Science 279(5350): 548-552.
Zhao, D. Y., Q. S. Huo, et al. (1998). "Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures." Journal of the American Chemical Society 120(24): 6024-6036.
Zeng, W., X. F. Qian, et al. (2005). "Organic modified mesoporous MCM-41 through solvothermal process as drug delivery system." Materials Research Bulletin 40(5): 766-772.
Zeng, W., X. F. Qian, et al. (2006). "The drug delivery system of MCM-41 materials via co-condensation synthesis." Materials Chemistry and Physics 97(2-3): 437-441.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top