|
1. Triwikantoro, D. Toma, M. Meuris, and U. Köster, J. Non- Cryst. Solids., 250-252 (1999) 719. 2. A. Inoue, K. Ohtera, K. Kita, and T. Masumoto, J. Appl. Phys., 27 (1988) L2248.. 3. A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM., 30 (1989) 965. 4. A. Yavari, A. Moulec, A. Inoue, J. W. Botta, G. Vaughan, and A. Kvick, Mater. Sci. Eng., A A304-306 (2001) 34. 5. J. Saida, M. Matsushita, C. Li, and A. Inoue, Mater. Sci. Eng., A A304-306 (2001) 338. 6. S. Pang, T. Zhang, K. Asami, and A. Inoue, Corros. Sci. 44 (2002) 1847. 7. A. Yavari, W. Botta, C. Rodrigues, A. Greer, J. Uriarte, G. Huenen, G. Vaughan, and A. Inoue, J. Non-Cryst. Solids., 304 (2002) 44. 8. A. Inoue, N. Nishiyama, and T. Matsuda, Mater. Trans. JIM., 37 (1996) 177. 9. N. Wu, L. Su, M. Yuan, J. Wu, and Z. Li, Mater. Sci. Eng., A 257 (1998) 357. 10. K. Kim, B. Ko, and S. Pak, Mater. Sci. Eng., A 366 (2004) 421. 11. A. Kawashima, H. Habazaki, and K. Hashimoto, Mater. Sci. Eng., A 304 (2001) 753. 11. A. Inoue, Acta Mater., 48 (2000) 279. 12. S. Chung, K. Hong, M. Ok, J. Yoon, G. Kim, Y. Ji, B. Seong, and K. Lee, Scripta Materialia., 53 (2005) 223. 14. H. Hsieh, W. Kai, T. G. Neih, and Y. Kawamura, Intermetallic 10 (2002) 1265. 15. J. Li, Z. Huang, and Y. Zhou, Intermetallic (2007) 1-7. 16. W. Klement, R. Willens, and P. Duwez, Nature., 187 (1960) 869-70. 17. T. Zhang, A. Inoue, and T. Masumoto, Mater. Trans. JIM., 32 (1991) 1005-10. 18. Z. Lu and C. T. Liu, Acta Mater., 50 (2002) 3501. 19. H. Hsieh, W. Kai, R. Huang, M. Pan, and T. G. Neih, Intermetallics., 12 (2004) 1089. 20. A. Dhawan, K. Raetzke, F. Faupel, and S. Sharma, Phys. Status Solidi A., 199 (2003) 431. 21. G.. Kidson, Electrochemical Technology., 4 (1966) 193. 22. R. Pawel, J. of Nucleus Material, 49 (1973) 281. 23. R. Pawel, J. Electrochem. Soc., 126 (1979) 1111. 24. R. Ruh and H. Garrett, J. Amer. Chem. Soc., 50 (1967) 257. 25. P. Kofstad, High Temperature Corrosion, (Elservier Applied Science, London & New York 1988). 26. J. Lightstone and J. Pemsler, Mater. Sci. Res., 4 (1969) 461. 27. H. Kissinger, Journal of Research of the National Bureau of Standards., 57 (1956) 217. 28. M. Avrami, J. Chem. Phys., 7(12) (1939) 1103. 29. M. Johnson and K. Mehl, Transactions of American Institute of Mining, Metallurgical and Petroleum Engineering., 135 (1939) 416. 30. J. Jang, Y. Chen, L. Chang, and G. Chen, Mater. Chem. Phys., 88 (2004) 227. 31. Z. Yan, S. He, J. Li, and Y. Zhou, J. Alloys Compd., 368 (2004) 175. 32. N. Birks and G. Meier, Introduction to High Temperature Oxidation of Metals, (Edward Arnold , Ltd., London, 1982). 33. I. Barin, Thermodynamical Data for Pure Substances, (VCH, Weinheim, Germany, 1995). 34. F. Boer, R. Boom, W. Mattens, A. Miedema, and A. Niessen, Cohesion in Metals Transition Metal Alloys, North-Holland, (1988) 376, 234. 35. P. Kofstad, Nonsoichiometry , Diffusion, and Electrical Conduc- tivity in Binary Metal Oxides, (Robert E. Krieger Publishing Company, Malabar, Florida 1983) 153. 36. X. Wang, H. Lee, and S. Yi, Mater. Lett., 60 (2006) 935. 37. L. Liu, and K. Chan, Intermetallics., 12 (2004) 1143. 38. Y. Wang, C. H. Shek, J. Qiang, C. H. Wong, Q. Wang, X. Zhang, and C. Dong, Mater. Trans., 45, 4 (2004) 1180. 39. J. Kaifeng, and JÖrg, Appl. Phys. Lett., 86 (2005) 241909. 40. 謝心心, “鐵基與銅基非晶合金之氧化行為與熱穩定研究”,國 立臺灣海洋大學材料工程研究所,博士論文, 2007. 41. 杜宗附, “銅鋯二元系合金之高溫氧化行為研究”,國立臺灣海 洋大學材料工程研究所,碩士論文, 2005.
|