跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/12 13:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳妍蓉
研究生(外文):Yan-Rong Chen
論文名稱:鋯基非晶合金氧化與熱穩定行為研究
論文名稱(外文):Oxidation and Thermal Stability of Zr-based Bulk Metallic Glasses
指導教授:開物
指導教授(外文):Wu. Kai
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:58
中文關鍵詞:氧化熱穩定非晶
外文關鍵詞:Oxidationthermal stabilityamorphous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:203
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要探討鋯基非晶合金Zr53Ni23.5Al23.5(Zr3)與Zr58Cu22Al12Fe8(Zr4)在不同溫度下之氧化與熱穩定行為研究。研究結果顯示,二種鋯基非晶合金的氧化動力學皆遵守多段式拋物線律,其中,Zr3非晶在500℃以下與Zr4非晶在375℃以下時,氧化速率常數(kP)值隨溫度上升而加快;但Zr3非晶在高溫時(500℃以上),kP值卻隨溫度上升而降低,而500℃所生成的單斜晶之ZrO2(簡稱m-ZrO2)是致使Zr3非晶氧化速率降低的主要原因,整體而言,Zr3較Zr4非晶合金具有較佳之抗氧化能力。
二種鋯基非晶氧化後皆生成相似的氧化物,表面主要生成單斜晶與正方晶之ZrO2(簡稱t-與m-ZrO2)以及Al2O3,且基材皆由非晶轉變為結晶狀態。在氧化短時間下,Zr3非晶是先結晶再發生氧化,其結晶相主要為ZrNiAl、Zr2Al與Zr2Ni;而Zr4非晶是先形成t-ZrO2氧化相,再結晶化依序先生成Zr2Cu與Zr2Al,及形成ZrCu及Zr2Fe。此外,Zr3非晶在450-500℃不同氧分壓測試下,kP並不隨著氧分壓改變而改變,可知Zr3非晶合金氧化生成物主要呈現N-型半導體的特徵。
The oxidation behavior and thermal stability of Zr-based bulk metallic glasses (BMGs), containing Zr53Ni23.5Al23.5(Zr3)and Zr58Cu22Al12Fe8 (Zr4)(in at. %) were studied over the temperature range of interest. The oxidation kinetics followed the multi-stage parabolic rate law, and the oxidation rate constants (kP values) of (Zr3) BMG at T≦500oC and (Zr4) BMG at T≦375℃ increased with temperature, but those values for Zr3 BMG gradually decreased with increasing temperature. It was found that the formation of m-ZrO2 (at T>500℃) was responsible for the reduced oxidation rates, as compared to those of Zr4 BMG.
The scales formed on the BMGs were composed mostly of tetragonal-(t-ZrO2) and monoclinic-ZrO2 (m-ZrO2) and minor Al2O3. The amorphous substrates transformed to crystalline phases were strongly dependent on composition. The crystallization sequence of Zr3 BMG is different from that of Zr4 BMG;the former alloy underwent the first crystallization of ZrNiAl, Zr2Al and Zr2Ni, and, then, followed by the oxidation reaction. Conversely, the Zr4 BMG started to form t-ZrO2, and then, followed by the crystallization of Zr2Cu and Zr2Al, and grow the Zr2Cu and Zr2Fe at the later stage of exposure. In addition, the pressure dependence of Zr3 BMG is nil over the temperature range of 450-500℃, indicating the scales of a typical N-type semi-conducting behavior.
摘要 (中文)…………………………………………I

摘要 (英文)…………………………………………II

目錄 …………………………………………………III

表目錄 …………………………………………………V

圖目錄 …………………………………………………VI

符號
說明 …………………………………………………VII

一、 前言………………………………………………1

二、 文獻回顧…….……………………………………2
2-1 非晶合金研究之回顧………………………………2
2-2 鋯基非晶合金氧化行為研究之回顧………………2
2-3 純鋯氧化行為研究之顧……………………………4
2-4 鋯基非晶合金熱穩定行為研究顧…………………4

三、 實驗方法……………………………………………9
3-1 試片備製……………………………………………9
3-2 示插式熱分析儀實驗………………………………9
3-3 氧化實驗……………………………………………9
3-4 試片顯微分析………………………………………10
3-5 熱穩定分析…………………………………………10
3-5-1 Kissinger分析法……………………………10
3-5-2 Johnson-Mehl-Avrami分析法………………10

四、 結果……………………………………………………15
4-1 氧化溫度範圍與非晶基材之綜合分析………………15
4-2 氧化動力學……………………………………………15
4-3 顯微組織之觀察與組成分析…………………………16
4-3-1 Zr3合金……………………………………16
4-3-2 Zr4合金……………………………………17
4-4 短時間氧化反應……………………………………17
4-5 熱穩定行為分析……………………………………18

五、 討論…………………………………………………50
5-1 鋯基非晶合金之氧化行為…………………………50
5-2 鋯基非晶合金之熱穩定行為………………………52

六、 結論…………………………………………………55

七、 參考文獻……………………………………………56
1. Triwikantoro, D. Toma, M. Meuris, and U. Köster, J. Non- Cryst. Solids., 250-252 (1999) 719.
2. A. Inoue, K. Ohtera, K. Kita, and T. Masumoto, J. Appl.
Phys., 27 (1988) L2248..
3. A. Inoue, T. Zhang, and T. Masumoto, Mater. Trans. JIM.,
30 (1989) 965.
4. A. Yavari, A. Moulec, A. Inoue, J. W. Botta, G. Vaughan,
and A. Kvick, Mater. Sci. Eng., A A304-306 (2001) 34.
5. J. Saida, M. Matsushita, C. Li, and A. Inoue, Mater.
Sci. Eng., A A304-306 (2001) 338.
6. S. Pang, T. Zhang, K. Asami, and A. Inoue, Corros. Sci.
44 (2002) 1847.
7. A. Yavari, W. Botta, C. Rodrigues, A. Greer, J. Uriarte,
G. Huenen, G. Vaughan, and A. Inoue, J. Non-Cryst.
Solids., 304 (2002) 44.
8. A. Inoue, N. Nishiyama, and T. Matsuda, Mater. Trans.
JIM., 37 (1996) 177.
9. N. Wu, L. Su, M. Yuan, J. Wu, and Z. Li, Mater. Sci.
Eng., A 257 (1998) 357.
10. K. Kim, B. Ko, and S. Pak, Mater. Sci. Eng., A 366
(2004) 421.
11. A. Kawashima, H. Habazaki, and K. Hashimoto, Mater.
Sci. Eng., A 304 (2001) 753.
11. A. Inoue, Acta Mater., 48 (2000) 279.
12. S. Chung, K. Hong, M. Ok, J. Yoon, G. Kim, Y. Ji, B.
Seong, and K. Lee, Scripta Materialia., 53 (2005) 223.
14. H. Hsieh, W. Kai, T. G. Neih, and Y. Kawamura,
Intermetallic 10 (2002) 1265.
15. J. Li, Z. Huang, and Y. Zhou, Intermetallic (2007) 1-7.
16. W. Klement, R. Willens, and P. Duwez, Nature., 187
(1960) 869-70.
17. T. Zhang, A. Inoue, and T. Masumoto, Mater. Trans.
JIM., 32 (1991) 1005-10.
18. Z. Lu and C. T. Liu, Acta Mater., 50 (2002) 3501.
19. H. Hsieh, W. Kai, R. Huang, M. Pan, and T. G. Neih,
Intermetallics., 12 (2004) 1089.
20. A. Dhawan, K. Raetzke, F. Faupel, and S. Sharma, Phys.
Status Solidi A., 199 (2003) 431.
21. G.. Kidson, Electrochemical Technology., 4 (1966) 193.
22. R. Pawel, J. of Nucleus Material, 49 (1973) 281.
23. R. Pawel, J. Electrochem. Soc., 126 (1979) 1111.
24. R. Ruh and H. Garrett, J. Amer. Chem. Soc., 50 (1967)
257.
25. P. Kofstad, High Temperature Corrosion, (Elservier
Applied Science, London & New York 1988).
26. J. Lightstone and J. Pemsler, Mater. Sci. Res., 4
(1969) 461.
27. H. Kissinger, Journal of Research of the National
Bureau of Standards., 57 (1956) 217.
28. M. Avrami, J. Chem. Phys., 7(12) (1939) 1103.
29. M. Johnson and K. Mehl, Transactions of American
Institute of Mining, Metallurgical and Petroleum
Engineering., 135 (1939) 416.
30. J. Jang, Y. Chen, L. Chang, and G. Chen, Mater. Chem.
Phys., 88 (2004) 227.
31. Z. Yan, S. He, J. Li, and Y. Zhou, J. Alloys Compd.,
368 (2004) 175.
32. N. Birks and G. Meier, Introduction to High Temperature
Oxidation of Metals, (Edward Arnold , Ltd., London,
1982).
33. I. Barin, Thermodynamical Data for Pure Substances,
(VCH, Weinheim, Germany, 1995).
34. F. Boer, R. Boom, W. Mattens, A. Miedema, and A.
Niessen, Cohesion in Metals Transition Metal Alloys,
North-Holland, (1988) 376, 234.
35. P. Kofstad, Nonsoichiometry , Diffusion, and Electrical
Conduc- tivity in Binary Metal Oxides, (Robert E.
Krieger Publishing Company, Malabar, Florida 1983) 153.
36. X. Wang, H. Lee, and S. Yi, Mater. Lett., 60 (2006) 935.
37. L. Liu, and K. Chan, Intermetallics., 12 (2004) 1143.
38. Y. Wang, C. H. Shek, J. Qiang, C. H. Wong, Q. Wang, X.
Zhang, and C. Dong, Mater. Trans., 45, 4 (2004) 1180.
39. J. Kaifeng, and JÖrg, Appl. Phys. Lett., 86 (2005)
241909.
40. 謝心心, “鐵基與銅基非晶合金之氧化行為與熱穩定研究”,國
立臺灣海洋大學材料工程研究所,博士論文, 2007.
41. 杜宗附, “銅鋯二元系合金之高溫氧化行為研究”,國立臺灣海
洋大學材料工程研究所,碩士論文, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top