跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 05:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張振福
研究生(外文):Chen-Fu Chang
論文名稱:具奈米╱非晶結構的銅基合金塊材特性研究
論文名稱(外文):Characterization of Bulk Copper Alloys with Nano/Amorphous Structure
指導教授:李丕耀
指導教授(外文):Pee-Yew Lee
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:104
中文關鍵詞:奈米╱非晶銅基合金塊材
外文關鍵詞:Nano/AmorphousBulk Copper Alloys
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要

本研究選取具有高玻璃形成能力的Cu-Zr-Al合金系統為基礎,分別添加入Be、Sc和Ag取代部分的Cu和Al,利用銅模吸鑄法澆鑄出直徑3 mm的棒材,分析檢測後得知棒材是以非晶/奈米晶複合結構為主要的晶體構造,但Al-Sc及Cu-Be合金的添加可提高棒材的非晶質相比例;棒材內部的樹枝狀結構與剪切帶相互作用是造成應變硬化的主要機制,得到壓縮破斷應力最大為1700 MPa,而加入Ag會使得原本較有延性的棒材轉變成為完全脆性,呈現出脆性劈裂的破斷模式。另該銅基棒材在1N H2SO4和1N NaOH水溶液中,有很好的抗腐蝕性質,此乃因表面形成氧化鋁鈍化膜,能有效地阻擋試片表面遭受腐蝕,但在3.5 wt% NaCl水溶液中棒材的抗腐蝕能力較差,表面有出現嚴重腐蝕的現象,故根據極化試驗結果發現棒材中的非晶/奈米結晶相可有效地提升其抗蝕能力。
Abstract

In this study, copper-based alloy rods in Cu-Zr-Al ternary system with high glass-forming ability were prepared by the copper mold casting method. Be, Sc and Ag were added to replace parts of Cu and Al, respectively. The alloy rods were mainly amorphous/nanocrystalline structure with diameters up to 3 mm. The fraction of amorphous structure was increased by the addition of Cu-Be and Al-Sc alloys. According to the compression test, the maximum of the compressive fracture stress was 1700 MPa due to the strain-hardening by the interaction of dendrites and shear-bands. With the addition of Ag, The alloy rods transferred into a brittle cleavage fracture mode. The electrochemical behavior of the alloy rods was studied. The corrosion resistance of the alloy rods in 1N H2SO4 and 1N NaOH solutions was better than that in 3.5 wt% NaCl solution because of the formation of the passive film. However, for the alloy rods in 3.5 wt% NaCl solution, the corrosion resistance of their amorphous/nanocrystalline states was superoir to that of their fully crystalline states.
目錄
中文摘要.......................................................................................................I
英文摘要......................................................................................................II
目錄............................................................................................................III
圖目錄..........................................................................................................V
表目錄.....................................................................................................VIII

第一章 前言...............................................................................................1

第二章 文獻回顧.......................................................................................2
2.1 銅基塊狀金屬玻璃................................................................2
2.1.1 銅基塊狀金屬玻璃之概述.........................................2
2.1.2 添加元素對銅基塊狀金屬玻璃特性之影響.............4
(a) 鈹(Be)...................................................................4
(b) 銀(Ag)...................................................................5
(c) 鈧(Sc)....................................................................6
2.2 非晶及非晶/奈米結構塊狀合金之壓縮特性.......................7
2.3 塊狀金屬玻璃之壓縮破斷面觀察........................................8
(a) 完全非晶結構................................................................8
(b) 非晶/奈米結構...............................................................9

第三張 實驗步驟.....................................................................................27
3.1 合金配製..............................................................................27
3.2 合金試片製作......................................................................27
3.3 特性檢測..............................................................................27
3.3.1 X-ray繞射分析.........................................................28
3.3.2 DSC熱分析...............................................................28
3.3.3光學顯微鏡觀察........................................................28
3.3.4穿透性電子顯微鏡觀察(TEM).................................28
3.3.5微硬度試驗................................................................28
3.3.6壓縮試驗....................................................................28
3.3.7動態極化試驗............................................................29
3.3.8掃描式電子顯微鏡觀察(SEM).................................29

第四章 實驗結果.....................................................................................33
4.1 銅基合金棒材之特性檢測..................................................33
4.1.1(CuBe)62.8-xZr37.2(AlSc)x.............................................33
4.1.2 Cu42Zr42Al8Ag8..........................................................35
4.2 銅基合金棒材之動態極化試驗..........................................36
4.2.1 3.5wt% NaCl水溶液................................................37
4.2.2 1N H2SO4水溶液.......................................................37
4.2.3 1N NaOH水溶液......................................................38

第五章 討論.............................................................................................86
5.1添加元素對銅基合金棒材熱穩定性質與顯微結構之影響
...............................................................................................86
5.2添加元素對銅基合金棒材機械性質之影響.......................87
5.3銅基合金棒材抗蝕性質之討論...........................................89

第六章 結論...........................................................................................101

參考文獻...................................................................................................102














圖目錄
圖2.1 直徑2 mm的Cu60Zr30Ti10與Cu60Hf25Ti15塊狀金屬玻璃之壓縮
破壞曲線.........................................................................................11
圖2.2 Cu60Zr30Ti10(a,b)與Cu60Hf25Ti15(c,d)塊狀金屬玻璃之破斷面微結
構觀察.............................................................................................11
圖2.3 Cu60-xZr40Alx金屬玻璃薄帶不同Al含量之Tg、Tx、ΔTx值............12
圖2.4 Cu95-xZrxAl5金屬玻璃薄帶不同Al含量之Tg、Tx、ΔTx值..............12
圖2.5 銅基塊狀金屬玻璃之壓縮破壞曲線.............................................13 圖2.6 Cu47.5Zr47.5Al5塊狀金屬玻璃之破斷面微結構觀察......................13
圖2.7 (Cu0.6Zr0.3Ti0.1)100-xBex (x = 0 - 20 at%)金屬玻璃薄帶不同Be含量
之ΔTx值..........................................................................................14
圖2.8 (Cu0.6Zr0.3Ti0.1)90Be10塊狀金屬玻璃抗拉強度和維氏硬度值與E
之關係圖.........................................................................................14
圖2.9 Cu50Hf45Al5與Cu45Hf45Al5Ag5塊狀金屬玻璃在923 K下退火1
小時之X-ray繞射圖......................................................................14
圖2.10 Cu36Zr48 Ag 8 Al 8塊狀金屬玻璃棒材之外觀圖...........................15
圖2.11 Cu36Zr48 Ag 8 Al 8塊狀金屬玻璃棒材(直徑25 mm)與薄帶之DSC
曲線圖.............................................................................................15
圖2.12 (Zr55 Al10Cu30 Ni5)100-xScx(x = 0, 0.4, 0.6, 0.8)塊狀金屬玻璃之
DSC曲線圖..................................................................................16
圖2.13 鋯基塊狀金屬玻璃之壓縮碎片外觀照片...................................16
圖2.14 鋯基塊狀金屬玻璃之破斷面微結構觀察(a)低倍率破斷面SEM
圖,方框內為vein-like patter放大圖;(b)高倍率破斷面SEM
圖,方框i是river-like pattern及其放大圖,方框ii是間歇性
平滑區...........................................................................................17
圖2.15 鐵基金屬玻璃薄帶之破斷面微結構觀察(a)mist zone, (b)hackle
zone, (c)週期性波紋.....................................................................17
圖2.16 鎳基塊狀金屬玻璃之壓縮破斷特性(a)應力應變曲線圖與X-ray
繞射圖,(b)側面破斷面觀察,小圖為I區之俯視圖,(c)破斷面
SEM俯視圖,(d)圖(c)圓圈處之放大倍率圖..............................18
圖2.17 (a)、(b)、(c)分別對應圖2.16(d)之A、B、C三處的放大倍率圖,
(d)是圖(c)圓圈處之放大倍率圖..................................................19
圖2.18 不同鋯基塊狀金屬玻璃之壓縮破斷曲線...................................19
圖2.19 鋯基塊狀金屬玻璃複合物之破斷面剪切帶微結構觀察(a)0.1%
塑性變形量之添加Ta顆粒塊狀金屬玻璃複合物,(b)非晶/奈
米結構塊狀金屬玻璃複合物.......................................................20 圖2.20 (a)鋯基塊狀金屬玻璃複合物中心位置之微結構觀察,(b)鋯基塊
狀金屬玻璃複合物外圍位置之微結構觀察...............................20
圖2.21 (a)鋯基塊狀金屬玻璃複合物之破斷面微結構觀察,(b)試片中心
位置之破斷面微結構觀察,(c)試片外圍處之破斷面微結構觀察
.......................................................................................................21
圖2.22 鋯基塊狀金屬玻璃複合物與完全非晶質塊狀金屬玻璃之壓縮
破斷曲線.......................................................................................21 圖2.23不同鋯基塊狀金屬玻璃複合物之壓縮破斷曲線.........................22
圖3.1 實驗步驟之流程圖.........................................................................30
圖3.2 (a)吸鑄式鑄造機外觀 (b)水冷銅模坩堝.......................................31
圖4.1 (CuBe)62.8-xZr37.2(AlSc)x(X=2.5, 5, 7.5, 8.5, 10)合金棒材之外觀
圖.....................................................................................................39
圖4.2 (CuBe)62.8-xZr37.2(AlSc)x(X=2.5, 5, 7.5, 8.5, 10)合金棒材之顯微
組織圖.............................................................................................41
圖4.3 (CuBe)62.8-xZr37.2(AlSc)x(X=2.5, 5, 7.5, 8.5, 10)合金棒材之X-ray
繞射圖.............................................................................................43
圖4.4 (CuBe)62.8-xZr37.2(AlSc)x(X=2.5, 5, 7.5, 8.5,10)合金棒材之DSC曲
線圖.................................................................................................44
圖4.5 (CuBe)62.8-xZr37.2(AlSc)x(X=2.5, 5, 7.5)合金棒材之TEM明視野影
像與擇域繞射圖.............................................................................45
圖4.6 (CuBe)62.8-xZr37.2(AlSc)x(X=2.5, 5, 7.5, 8.5, 10)合金棒材不同Al-Sc
合金含量之硬度量測值.................................................................47
圖4.7 (CuBe)62.8-xZr37.2(AlSc)x合金棒材之壓縮破斷曲線
(a)X=2.5, (b)X=5, (c)X=7.5, (d)X=8.5, (e)=10..............................48
圖4.8 (CuBe)62.8-xZr37.2(AlSc)x(X=2.5, 5, 7.5, 8.5, 10)合金棒材之壓縮碎
片外觀照片.....................................................................................49
圖4.9 (CuBe)62.8-xZr37.2(AlSc)x(X=2.5, 5, 7.5, 8.5, 10)合金棒材之破斷面
微結構觀察.....................................................................................51
圖4.10 Cu42Zr42Al8Ag8合金棒材之外觀圖..............................................53
圖4.11 Cu42Zr42Al8Ag8合金棒材之顯微組織圖......................................54
圖4.12 Cu42Zr42Al8Ag8合金棒材之X-ray繞射圖(a) Cu4-1, (b) Cu4-2,
(c) Cu4-3, (d) Cu4-4.....................................................................56
圖4.13 Cu42Zr42Al8Ag8合金棒材之DSC曲線圖(a) Cu4-1, (b) Cu4-2,
(c) Cu4-3, (d) Cu4-4.....................................................................57
圖4.14 Cu42Zr42Al8Ag8 (Cu4-1)合金棒材之TEM明視野影像與擇域繞
射圖...............................................................................................58
圖4.15 Cu42Zr42Al8Ag8合金棒材之硬度量測值(a) Cu4-1, (b) Cu4-2,
(c) Cu4-3, (d) Cu4-4.....................................................................59
圖4.16 Cu42Zr42Al8Ag8合金棒材之壓縮破斷曲線(a) Cu4-1, (b) Cu4-2,
(c) Cu4-3, (d) Cu4-4.....................................................................60
圖4.17 Cu42Zr42Al8Ag8合金棒材之壓縮碎片外觀照片..........................61
圖4.18 Cu42Zr42Al8Ag8合金棒材之破斷面微結構觀察..........................62
圖4.19 Cu3-4與Cu4-2之前尾端及鑄錠在3.5 wt% NaCl水溶液之極化
曲線圖...........................................................................................64
圖4.20 Cu3-4與Cu4-2之前尾端及鑄錠在1N H2SO4水溶液之極化曲
線圖...............................................................................................65
圖4.21 Cu3-4與Cu4-2之前尾端及鑄錠在1N NaOH水溶液之極化曲
線圖...............................................................................................66
圖4.22 Cu3-4前端於不同水溶液之試片表面形態.................................67
圖4.23 Cu3-4尾端於不同水溶液之試片表面形態.................................68
圖4.24 Cu3-4鑄錠於不同水溶液之試片表面形態.................................69
圖4.25 Cu4-2前端於不同水溶液之試片表面形態.................................70 圖4.26 Cu4-2尾端於不同水溶液之試片表面形態.................................71
圖4.27 Cu4-2鑄錠於不同水溶液之試片表面形態.................................72圖5.1 銅基合金棒材之硬度量測值.........................................................91
圖5.2 銅基合金棒材壓縮試驗之最大破斷應力.....................................92
圖5.3 (a)鋯基塊狀金屬玻璃[33](b)Cu4-1前端之壓縮破斷面觀察.......93
圖5.4 (a)、(b)鎳基塊狀金屬玻璃[45](c)Cu4-2前端(d)Cu4-2尾端之壓
縮破斷面觀察.................................................................................94 圖5.5 銅基合金棒材與鑄錠在不同水溶液中之腐蝕速率.....................95
圖5.6 (a) Cu55Zr40Al5塊狀金屬玻璃[57] (b) Cu3-4前端 (c) Cu3-4尾端
(d) Cu3-4鑄錠 (e) Cu4-2前端 (f) Cu4-2尾端 (g) Cu4-2鑄錠在
NaCl水溶液中之腐蝕後表面型態................................................96
表目錄
表2.1 Cu95-xZrxAl5 (x = 40, 42.5, 45 at%)塊狀金屬玻璃之熱穩定性質與
機械性質.........................................................................................23
表2.2 Cu-(Zr, Hf)-Al塊狀金屬玻璃之熱穩定性質及臨界試片厚度.....23 表2.3 Cu-(Zr, Hf)-Al塊狀金屬玻璃之機械性質.....................................24
表2.4 Cu50Hf45Al5和Cu45Hf45Al5M5 (M=Ag, Au, Pt or Pd)塊狀金屬玻
璃之熱穩定性質與機械性質.........................................................24
表2.5 (Zr55 Al10Cu30 Ni5)100-xScx(x = 0, 0.4, 0.6, 0.8)塊狀金屬玻璃之機械
性質.................................................................................................25
表2.6 不同塊狀玻璃合金之壓縮破斷角度(θC).......................................25
表2.7 不同鋯基塊狀金屬玻璃複合物之樹枝狀結構尺寸.....................26
表3.1 銅基合金棒材的成分比例及試片代號.........................................32
表4.1 (CuBe)62.8-xZr37.2(AlSc)x(X=2.5, 5, 7.5, 8.5, 10)合金棒材之Tg、Tx、
ΔTx和ΔH值....................................................................................73
表4.2 (CuBe)62.8-xZr37.2(AlSc)x (X=2.5, 5, 7.5, 8.5, 10)合金棒材之硬度值
.........................................................................................................74
表4.3 (CuBe)62.8-xZr37.2(AlSc)x (X=2.5, 5, 7.5, 8.5, 10)合金棒材之最大壓
縮應力(σmax)、楊氏係數(E)、彈性應變(εe)、塑性應變(εp)值.........75
表4.4 Cu42Zr42Al8Ag8合金棒材之Tg、Tx、ΔTx和ΔH值...........................76
表4.5 Cu42Zr42Al8Ag8合金棒材之硬度值................................................77
表4.6 Cu42Zr42Al8Ag8合金棒材之最大壓縮應力(σmax)、楊氏係數(E)、
彈性應變(εe)、塑性應變(εp)值........................................................78
表4.7 銅基合金棒材與鑄錠於3.5 wt% NaCl溶液中之腐蝕電流密度、
腐蝕電位與腐蝕速率.....................................................................79
表4.8 銅基合金棒材與鑄錠於1N H2SO4溶液中之腐蝕電流密度、腐蝕
電位與腐蝕速率.............................................................................80
表4.9 銅基合金棒材與鑄錠於1N NaOH溶液中之腐蝕電流密度、腐蝕
電位與腐蝕速率.............................................................................81
表4.10 銅基合金棒材前尾端與鑄錠在各環境下利用EDS所量測各元
素的原子百分比(at%).................................................................82
表4.11銅基合金棒材在各環境下利用XPS所量測各元素的原子百分比
(at%).............................................................................................85
表5.1 銅/鋯基塊狀金屬玻璃之Tg、Tx和ΔTx值[5-7,20,23,24,50,51]...97
表5.2 銅基合金棒材之ΔTx值..................................................................98
表5.3 銅/鋯基塊狀金屬玻璃之硬度量測值(Hv) [5,6,50,53]...............99
表5.4 銅/鋯基塊狀金屬玻璃之機械性質[7,20,23,51]........................100
參考文獻

1. H.A. Bruck, T. Chrisman, A.J. Rosakis and W.L. Johnson, Scr. Met. Mater., 30(1994)429.
2. H.A. Bruck, A.J. Rosakis and W.L. Johnson, J. Mater. Res., 11(1996)503.
3. J. Eckert, J. Das, K.B. Kim, F. Baier, M.B. Tang, W.H. Wang and Z.F. Zhang, Intermetallics, 14(2006)876-881.
4. A. Inoue, Proc. Japan Acad. Ser. B, 2(1997)19-24.
5. A. Peker and W.L. Johnson, Appl. Phys. Lett., 63(1993)2342-2344.
6. W. Zhang and A. Inoue, Mater. Trans., 44(2003)2346-2349.
7. F. Jiang, Z.J. Wang, Z.B. Zhang and J. Sun, Scr. Mater., 53(2005) 487-491.
8. A. Inoue, T. Zhang and T. Masumoto, Mater. Trans., JIM, 30(1989)965.
9. A. Inoue, A. Kato, T. Zhang, S.G. Kim and T. Masumoto, Mater. Trans., 32(1991)609.
10. A. Inoue, T. Zhang and T. Masumoto, Mater. Trans., 31(1990)177.
11. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba and T. Masumoto, Mater. Trans., 19(1994)131.
12. A. Inoue and G.S. Gook, Mater. Trans., 36(1995)1180.
13. X.M. Wang and A. Inoue, Mater. Trans., 41(2000)539.
14. T. Itoi and A. Inoue, Mater. Trans., 41(1991)1256.
15. X.H. Lin and W.L. Johnson, J. Appl. Phys.,78(1995)6514.
16. T. Zhang and A. Inoue, Mater. Trans., 40(1999)301.
17. C. Li, J. Saida, M. Kiminami and A. Inoue, J. Non-Cryst. Solids, 261(2000) 108.
18. A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater., 49(2001) 2645-2652.
19. A. Inoue and W. Zhang, Mater. Trans., 43(2002)2921-2925.
20. W. Zhang and A. Inoue, Mater. Trans., 45(2004)1210-1213.
21. J. Eckert, J. Das, K.B. Kim and F. Baier, Intermetallics, 14(2006)876-881.
22. Z.F. Zhang, G. He, H. Zhang and J. Eckert, Scr. Mater., 54(2005)945.
23. A. Inoue, T. Zhang, K. Kurosaka and W. Zhang, Mater. Trans., 42(2001) 1800-1804.
24. Q.S. Zhang, W. Zhang and A. Inoue, Mater. Trans., 48(2007)629-631.
25. B.S. Murty, D.H. Ping, K. Hono and A. Inoue, Acta Mater., 48(2000)3985.
26. C.A. Pampillo, J. Mater. Sci., 10(1975)1194.
27. J.J. Gilman, J. Appl. Phys., 46(1975)1625.
28. G. He at al., Mater. Trans., 42(2001)356-364.
29. P. Lowhaphandu, L.A. Ludrosky, S.L. Montgomery and J.J. Lewandowski, Intermetallics, 8(2000)487-492.
30. P.E. Donovan, Acta Metall., 37(1989)445-456.
31. W.J. Wright, R. Saha and W.D. Nix, Mater. Trans., 42(2001)642-649.
32. Z.F. Zhang, G. He, J. Eckert and L. Schultz, Phys. Rev. Lett., 91 (2003) 045505-1.
33. M. Kusy, U. Kuhn, A. Concustell, A. Gebert, J. Das, J. Eckert, L. Schultz and M.D. Baro, Intermetallics, 14(2006)982-986.
34. R.D. Conner, H. Choi-Yim and W.L. Johnson, J. Mater. Res., 14(1999) 3292.
35. Z.F. Zhang, F.F. Wu, W. Gao, J. Tan, Z.G. Wang, M. Stoica, J. Das, J. Eckert, B.L. Shen and A. Inoue, Appl. Phys. Lett., 89(2006)251917.
36. B. Lawn, Fracture of Brittle Solids, 2th ed., Cambridge University Press, Cambridge. (1993)
37. E. Sharon and J. Fineberg, Nature(London), 397(1999)333.
38. R.D. Deegan, P.J. Petersan, M. Marder and H.L. Swinney, Phys. Rev. Lett., 88(2002)014304.
39. A. Yuse and M. Sano, Nature(London), 362(1993)329.
40. W.G. Kanuss and K. Ravi-Chandar, Int. J. Fract., 27(1985)127.
41. E.K. Beauchamp, J. Am. Ceram. Soc., 78(1995)689.
42. Y.K. Xu, H. Ma, J. Xu and E. Ma, Acta Mater., 53(2005)1857.
43. M. Stoica, J. Eckert, S. Roth, Z.F. Zhang, L. Schultz and W.H. Wang, Intermetallics, 13(2005)764.
44. Z.F. Zhang, H. Zhang, B.L. Shen, A. Inoue and J. Eckert, Philos. Mag. Lett., 86(2006)643.
45. J. Shen, W.Z. Liang and J.F. Sun, Appl. Phys. Lett., 89(2006)121908.
46. G. Wang, Y.T. Wang, Y.H. Liu, M.X. Pan, D.Q. Zhao and W.H. Wang, Appl. Phys. Lett., 89(2006)121909.
47. C. Fan, L. Kecskes, T. Jiao, H. Choo, A. Inoue and P. Liaw, Mater. Trans., 47(2007)817-821.
48. Y.F. Sun, S.K. Guan, B.C. Wei, Y.R. Wang and C.H. Shek, Mater. Sci. Eng. A, 406(2005)57-62.
49. U. Kuhn, J. Eckert, N. Mattern and L. Schultz, Mater. Sci. Eng. A, 375-277 (2004)322-326.
50. Q. Wang, Y.M. Wang, J.B. Qiang, X.F. Zhang, C.H. Shek and C. Dong, Intermetallics, 12(2004)1229-1232
51. W. Zhang, C.L. Qin, X.G. Zhang and A. Inoue, Mater. Sci. Eng. A, 449-451(2007)631-635
52. W. Zhang and A. Inoue, Mater. Trans., 44(2003)2220-2223.
53. W. Zhang and A. Inoue, J. Mater. Res., 21(2006)234-241
54. K.Hashimoto, K. Osada, T. Masumoto and S. Shimodaira, Corros. Sci., 16(1976)71-76
55. 鐘松廷, “雙相金屬玻璃塊材之製備與特性研究碩士論文”, 國立台灣海洋大學(2006).
56. S.J. Pang, T. Zhang, H. Kimura, K. Asami and A.Inoue, Mater. Trans., 41(2000)1490-1494
57. C. Qin, W. Zhang, H, Kimura, K. Asami and A. Inoue, Mater. Trans., 45(2004)1958-1961.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top