1. Barends, F.B.J., Spierenburg, S.E.J., (1991), “Interaction between ocean waves and seabed”, Proceedings of the International Conference on Geotechnical Engineering for Coastal Development –Theory and Practice on Soft Ground (Geot-Coastal’91), Yokohama, Japan, 2, pp.1091-1108.
2. Bea R. G., S. G. Wright, P. Sircar and A. W. Niedoroda (1983), “Wave-induced Slides in South Pass Block 70, Mississippi Delta”, Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 1, pp. 619-644.
3. Bennett R. H. (1978), “Pore-water Pressure Measurements: Mississippi Delta Submarine Sediments”, Marine Geotechnology, Vol. 2, pp. 177-189.
4. Bennett R. H. and J. R. Faris (1979), “Ambient and Dynamic Pore Pressures in Fine-grained Submarine Sediments: Mississippi”, Applied Ocean Research, Vol. 1, No. 3, pp. 115-123.
5. Bjerrum L. (1973), “Geotechnical Problems in Foundations of Structures in the North Sea”, Géotechnique, Vol. 23, No. 3, pp. 319-358.
6. Biot M. A. (1941), “General Theory of Three-dimensional Consolidation”, Journal of Applied Physics, Vol. 12, pp. 155-164.
7. Boussinesq, J. (1871), “Théorie de L’intumescence Liquide, Appelée Onde Solitaire ou de Translation se Propageant Dans un Canal Rectangulaire”, Comptes Rendus Acad. Sci., Paris, Vol. 72, pp. 755-759.
8. Chillarige, A-R V.,N.R. Morgenstern, P.K. Robertson, and H.A Christian, (1997), “Seabed instability duo to flow liquefaction in the Fraser River delta”, Can. Geotech. Journal, Vol34, No. 4, pp.520-533.
9. Chappelear, J. E., (1961) “Direct numerical calculation of nonlinear Ocean waves”, Journal of Geophysical Research, Vol. 66,No. 2, pp. 501-508.
10. Cheng L., B. M. Sumer and J. Fredsøe (2001), “Solution of Pore Pressure Build up Due to Progressive Waves”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 25, pp. 885-907.
11. Dean R. G., (1970) “Relative validities of water wave theories”, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol.96, pp.105-119.
12. Demars K. R. and E. A. Vanover (1985), “Measurement of Wave-induced Pressure and Stresses in a Seabed”, Marine Geotechnology, Vol. 6, No. 1, pp.29-59.
13. Fenton, J. D., (1979) “A higher-order cnoidal wave theory”, Journal of Fluid Mechanics, Vol.94, pp.257-271.
14. Finn W. D. L., R. Siddharthan and G. R. Martin (1983),“Response of Seafloor to Ocean Waves”, Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 4, pp. 556-572
15. Foda, M.A. and Tzang, S.Y., (1994), “Resonant fluidization of silty soil by water waves”. Journal of Geophysical Research, Vol. 99(C10), pp. 20463-20475.
16. Gatmiri B. (1992), “Response of Cross-anisotropic Seabed to Ocean Waves”, Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 9, pp. 1295-1314.
17. Henkel, D.J., (1970),“The Role of Waves in Causing Submarine Landslides”, Geotechnique, Vol.20, No.1, pp.75-80.
18. Hsu J. R. C. and D. S. Jeng (1994), “Wave-induced Soil Response in an Unsaturated Anisotropic Seabed of Finite Thickness”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 18, No. 11, pp. 785- 807.
19. Huang L. H. and A. T. Chang (1990), “Trapping and Absorption of Sound Waves II: A Sphere Covered with a Porous Layer”, Wave Motion, Vol. 12, pp. 401-414.
20. Huang L. H. and C. H. Song (1993), “Dynamic Response of Poro-plastic Bed to Water Waves”, Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 9, pp. 1003-1020.
21. Ishihara K. (1993), “Liquefaction and Flow Failure During Earthquakes”, Géotechnique, Vol. 43, No. 3, pp. 351-415.
22. Ishihara K. (1993), “Liquefaction and Flow Failure During Earthquakes”, Géotechnique, Vol. 43, No. 3, pp. 351-415.
23. Ishihara K. and A. Yamazaki (1984), “Analysis of Wave-induced Liquefaction in Seabed Deposits of Sand”, Soils and Foundations, Vol. 24, No. 3, pp. 85- 100.
24. Jeng D. S. and Y. S. Lin (1996), “Finite Element Modeling for Water Waves-soil Interaction”, Soil Dynamics and Earthquake Engineering, Vol. 15, No. 5, pp. 283-300.
25. Jeng D. S. and Y. S. Lin (1997), “Non-linear Waves-induced Response of Porous Seabed: A Finite Element Analysis”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 21, No. 1, pp. 15-42.
26. Jeng D. S. (1997), “Soil Response in Cross-anisotropic Seabed Due to Standing Waves”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 1, pp. 9-19.
27. Jeng D. S. (1997), “Wave-induced Seabed Instability in front of a Breakwater”, Ocean Engineering, Vol. 24, No. 10, pp. 887-917.
28. Jeng D. S., L. Cheng and Y. S. Lin (1998), “Numerical Study of Wave-seabed Interaction in Gibson Soil”, Computational Techniques and Applications: CTAC97 (edited by Noye, Teubner and Gill), World Scientific Publishing Co., pp. 321-328.
29. Jeng D. S. and Y. S. Lin (1998), “Wave-induced Pore Pressure in a Cross- anisotropic Seabed with Variable Soil Characteristics”, The 8th International Offshore and Polar Engineering Conference (ISOPE98), Vol. 1, pp. 598-604.
30. Jeng D. S. (2001), “Mechanism of the Wave-induced Seabed Instability in the Vicinity of a Breakwater: a Review”, Ocean Engineering, Vol. 28, No, 5, pp. 537-570.
31. Jeng, D. S., and Seymour, B.R., (1997), “Wave-induced pore pressure and effective stresses in a porous seabed with variable permeability”, International Journal of Offshore Mechanics and Arctic Engineering, Transaction, ASME, Vol. 119, No. 4, pp.327-334.
32. Jeng D. S. (2003), “Wave-induced Sea Floor Dynamics”, Applied Mechanics Review, Vol. 56, No. 4, pp. 407-429.
33. Kianto T. and H. Mase (1999), “Boundary-layer Theory for Anisotropic Seabed Response to Sea Waves”, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 125, No. 4, pp. 187-194.
34. Kitano T. and H. Mase (2001), “Wave-induced Porewater Pressure in a Seabed with Inhomogeneous Permeability”, Ocean Engineering, Vol. 28, pp. 279-296.
35. Korteweg D. J. and G. de Vries (1895), “On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves”, Philosophical Magazine, Series 5, Vol. 39, pp. 422-443.
36. Lee H.J., and Edwards, B.D., (1986) ,“A Simplified Drained analysis for Wave-induced Liquefaction in Ocean Floor Sands”, Soils and Foundations, Vol.26, No.1, pp.57-68.
37. Lee T. L., C. P. Tsai and D. S. Jeng (2002), “Ocean Waves Propagating over a Coulomb-damped Poroelastic Seabed of Finite Thickness: An Analytical Solution”, Computers and Geotechnics, Vol. 29, No. 2, pp. 119-149.
38. Lé Méhauté B. (1976), “An Introduction to Hydrodynamic and Water Waves”, Springer-Verlag, Dusseldorf.
39. Lin Main and Li Jia-chun, (2001), “Effects of surface waves and marine soil parameters on seabed stability”, Applied Mathematics and Mechanics, Vol. 22, No.8, pp.904-916.
40. Lin Y. S. and D. S. Jeng (1996), “Response of Poro-elastic Seabed in front of a Breakwater: A Finite Element Analysis”, Coastal Engineering in Japan, Vol. 39, No. 2, pp. 165-183.
41. Lin Y. S. and D. S. Jeng (1997), “The Effects of Variable Permeability on the Wave-induced Seabed Response”, Ocean Engineering, Vol. 24, No. 7, pp. 623- 643.
42. Lin Y. S. and D. S. Jeng (2000), “Effects of Variable Shear Modulus on Wave-induced Seabed Response”, Journal of the Chinese Institute of Engineers, Vol. 24, No, 1, pp. 109-115.
43. Madsen O. S. (1978), “Wave-induced Pore Pressure and Effective Stresses in a Porous Bed”, Géotechnique, Vol. 28, No. 4, pp. 337-393.
44. Maeno Y. H. and T. Hasegawa (1985), “Evaluation of Wave-induced Pore Pressure in Sand Layer by Wave Steepness”, Coastal Engineering in Japan, Vol. 28, pp. 31-44.
45. Maeno Y. H. and T. Hasegawa (1987), “In-situ Measurements of Wave-induced Pore Pressure for Predicting Properties of Seabed Deposits”, Coastal Engineering in Japan, Vol. 30, No. 1, pp. 99-115.
46. Madga W. (1990), “On One-dimensional Model of Pore Pressure Generation in a Highly Saturated Sandbed Due to Cyclic Loading Acting on a Sand Surface I: Theoretical Description and Numerical Approach”, Internal Report No. 5, SFB-205, TP A13, Kusteningenieurwesen , University Hanover, pp. 1-42.
47. Mei C. C. and M. A. Foda (1981), “Wave-induced Response in a Fluid-filled Poro-elastic Solid with a Free Surface – a Boundary Layer Theory”, Geophysical Journal of the Royal Astronomical Society, Vol. 66, pp. 597-631.
48. Mitchell J. K., K. K. Tsui and D. A. Sangrey (1972), “Failure of Submarine Slopes under Wave Action”, Proceedings 13th International Conference on Coastal Engineering, ASCE, Vol. 2, pp. 1515-1539.
49. Muir Wood A. M. (1969), “Coastal Hydraulics”, Mac Millon, London, England.
50. Nataraja M. S., and H. S. Gill (1983), “Ocean Wave-induced Liquefaction Analysis”, Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 4, pp.573-590.
51. Nishimura, H., M. Isobe and K, Horikawa, (1978), “Higher order solutions for the Stokes and the cnoidal wave”, J. Fac. Eng., University. Tokyo, B-34, No.2, pp.267-293.
52. Okusa S. and A. Uchida (1980), “Pore-water Pressure Change in Submarine Sediments Due to Waves”, Marine Geotechnology, Vol. 4, No. 2, pp. 145-161.
53. Okusa S. (1985), “Wave-induced Stress in Unsaturated Submarine Sediments”, Géotechnique, Vol. 35, No. 4, pp. 517-532.
54. Okusa S. (1985), “Measurements of Wave-induced Pore Pressure in Submarine Sediments under Various Marine Conditions”, Marine Geotechnology, Vol. 6, No. 2, pp. 119-144.
55. Okusa S., T. Nakamura and M. Fukue (1983), “Measurements of Wave-induced Pore Pressure and Coefficients of Permeability of Submarine Sediments During Reversing Flow”, Seabed Mechanics (edit by Denness B.), Graham and Trotman Ltd., London, pp. 113-122.
56. Phillips R. and H. Sekiguchi (1992), “Generation of Water Wave Trains in Drum Centrifuge”, Proceedings of International Symposium on Technology in Ocean Engineering (Techno-Ocean’92), Yokohama, Vol. 1, pp. 29- 34.
57. Rahman, M.S., 1991,“Wave-induced Instability of Seabed:Mechanism and Condition”, Marine Geotechnology, Vol.10, pp.277-299.
58. Rahman, M.S., 1997, “Instability and Movement of Oceanfloor Sediments: A Review”, International Journal of Offshore and Polar Engineering, Vol.7, No.3, pp.220-225.
59. Rahman M. S., K. El-Zahaby and J. Booker (1994), “A Semi-analytical Method for the Wave-induced Seabed Response”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 18, pp. 213-236.
60. Rahman M. S. and W. Y. Jaber (1986), “A Simplified Drained Analysis for Wave-induced Liquefaction in Ocean Floor Sands”, Soils and Foundations, Vol. 26, No. 1, pp. 57-68.
61. Raman-Nair W. and G. C. W. Sabin (1991), “Wave-induced Failure of Poro- Plastic Seabed Slopes: A Boundary Element Study”, Proceedings, Institution of Civil Engineers, Part 2, Vol. 91, pp. 771-794.
62. Sassa S. (2000), “Fundamental Studies of Wave-induced Liquefaction of Sand Beds”, PhD Thesis, Kyoto University, Japan.
63. Sassa S. and H. Sekiguchi (1999), “Wave-induced Liquefaction of Beds of Sand in a Centrifuge”, Géotechnique, Vol. 49, No. 5, pp. 621-638.
64. Sassa S. and H. Sekiguchi (2001), “Analysis of Wave-induced Liquefaction of Sand Beds”, Géotechnique, Vol. 51, No. 2, pp. 115-126.
65. Sassa S., H. Sekiguchi and J. Miyamamot (2001), “Analysis of Progressive Liquefaction as Moving-boundary Problem”, Géotechnique, Vol. 51, No. 10, pp. 847-857.
66. Seed H. (1979), “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. 2, pp. 201-255.
67. Sekiguchi H. and R. Phillips (1991), “Generation of Water Waves in a Drum Centrifuge”, Proceedings of the International Conference Centrifuge, pp. 343- 350.
68. Seymour B. R., D. S. Jeng and J. R. C. Hsu (1996), “Transient Soil Response in a Porous Seabed with Variable Permeability”, Ocean Engineering, Vol. 23, No. 1, pp. 27-46.
69. Sharma, S.S., and Fahey, M., 2003(a), “Evaluation of Cyclic Shear Strength of Two Cemented Calcareous Soils”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 7, pp.608-618.
70. Sleath J. F. A. (1970), “Wave-induced Pressure in Beds of Sand”, Journal of Hydraulics Division, ASCE, Vol. 96 No. 2, pp. 367-378.
71. Song C. H. and L. H. Huang (2000), “Laminar Poroelastic Media Flow”, Journal of Engineering Mechanics, ASCE, Vol. 126, No. 4, pp. 358-366.
72. Stokes G. G. (1847), “On The Theory of Oscillatory Waves”, Transaction Cambridge Philosophical Society, Vol. 8, pp. 441-455.
73. Sumer B. M. and N. S. Cheng (1999), “A Random-walk Model for Pore Pressure Accumulation in Marine Soils”, The 9th International Offshore and Polar Engineering Conference (ISOPE99), Brest, France, Vol. 1, pp. 521-528.
74. Sumer B. M. and J. Fredsøe (2002), “The Mechanics of Scour in the Marine Environment”, World Scientific.
75. Thomas S. D. (1989), “A Finite Element Model for the Analysis of Wave Induced Stresses, Displacements and Pore Pressure in an Unsaturated Seabed I: Theory”, Computer and Geotechnics, Vol. 8, No. 1, pp. 1-38.
76. Thomas S. D. (1995), “A Finite Element Model for the Analysis of Wave Induced Stresses, Displacements and Pore Pressure in an Unsaturated Seabed II: Model Verification”, Computer and Geotechnics, Vol. 17, No. 1, pp.107-132.
77. Tsai, C. P. (1995), “Wave-induced Liquefaction Potential in a Porous Seabed in Front of a Breakwater”, Ocean Engineering, Vol. 22, No.1, pp. 1-18.
78. Tsotsos, S., Georgiadis, M., and Damaskindou, A., (1989), “Numerical Analysis of Liquefaction Potential of Partially Drained Seafloor”, Coastal Engineering, Vol. 13, No.2, pp.117-128.
79. Tsui Y. T. and S. C. Helfrich (1983), “Wave-induced Pore Pressure in Submerged Sand Layer”, Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 4, pp. 603-618.
80. Tzang S.Y., (1998) “Unfluidized Soil Response of A Silty Seabed to Monochromatic Waves”, Coastal Engineering, Vol.35, pp.283-301.
81. Umehara Y., K. Zen and H. Yoshizawa (1991), “Design Concept of Treated Ground by Premixing Method”, Proceedings of the International Conference on Geotechnical Engineering for Coastal Development – Theory and Practice on Soft Ground (Geot-Coastal 91), Yokohama, Japan, Vol. 1, pp. 519-524.
82. Vaid Y. P. and J. C. Chern (1985), “Cyclic and Monotonic Undrained Response of Saturated Sands”, Advances in the art of Testing Soils under Cyclic Condition, ASCE, pp. 120-147.
83. Varley E. and B. R. Seymour (1988), “A Method for Obtaining Exact Solutions to Partial Differential Equations with Variable Coefficients”, Studies in Applied Mathematics, Vol. 78, pp. 183-225.
84. Wright S. G. and R. S. Dunham (1972), “Bottom Stability under Wave Induced Loading”, Proceedings 4th Annual Offshore Technology Conference, Houston, pp. 853-862.
85. Yamamoto T. (1977), “Wave Induced Instability Seabeds”, Proceedings ASCE Special Conference, Coastal Sediments 77, Charleston, SC., pp. 898-913.
86. Yamamoto T., H. L. Koning, H. Sellmeijer and E. V. Hijum (1978), “On the Response of a Poro-elastic Bed to Water Waves”, Journal of Fluid Mechanics, Vol. 87, pp. 193-206.
87. Yuhi M. and H. Ishida (1997), “Theoretical Analysis of the Response of a Cross-anisotropic Seabed to Ocean Surface Waves”, Proceeding of Japanese Society of Civil Engineering, JSCE, Vol. 572, pp. 49-61.
88. Yuhi M. and H. Ishida (2002), “Simplified Solutions for Wave-induced Response of Anisotropic Seabed”, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 128. No. 1, pp. 46-50.
89. Zen K, and Yamazaki, (1990a), “Mechanism of wave-induced liquefaction anddensification in seabed foundations”, Soils and Foundations, Vol. 30, pp.90-104.
90. Zen, K., Yamazaki, H. and Sato, Y., (1990b), “Oscillatory pore pressure and liquefaction in seabed induced by ocean waves”, Soils and Foundations, Vol. 30, No, 4, pp. 147- 161.
91. Zen K. and H. Yamazaki (1991), “Field Observation and Analysis of Wave- induced Liquefaction in Seabed”, Soils and Foundations, Vol. 31, No, 4, pp. 161- 179.
92. Zen K. and H. Yamazaki (1995), “Slope Instability Due to Wave-induced Liquefaction in the Seabed”, River, Coastal and Shoreline Protection: Erosion Control Using Riprap and Armourstone, John Wiley & Sons Ltd, pp. 381-393.
93. Zen K., D. S. Jeng, J. R. C. Hsu and H. Ohyana (1998), “Wave-induced Seabed Instability: Difference between Liquefaction and Shear Failure”, Soils and Foundations, Vol. 38, No. 2, pp. 37-47.
94. 郭一羽(2001),「海岸工程學」,文山書局。
95. 陳景文與楊朝景(1996),「高雄附近沿海砂質海床之液化潛能評估」,中國土木水利工程學刊,第8卷,第1期,第1-12頁。
96. 張志新(2004),「波浪作用下海床砂土液化機制與評估模式之研究」,博士論文,國立台灣海洋大學河海工程學系,基隆,台灣。97. 張燿顯(2002),「波浪作用對海床砂土動態特性與液化行為之研究」,碩士論文,國立台灣海洋大學河海工程學系,基隆,台灣。98. 張上君(2006),「波浪引致基礎附近土壤動態行為對直立式防波堤穩定影響之研究」,博士論文,國立台灣海洋大學河海工程學系,基隆,台灣。99. 簡連貴、張上君、張耀顯(2003),「波浪引致海床液化簡易評估方式介紹」,技師月刊(Professional Engineer Journal),技術論文,第27期,第52~59頁。
100. 許泰文(2003),「近岸水動力學」,中國土木水利工程學會。
101. 簡連貴、張志新,(2004),「波浪引致海床液化潛能評估模式之探討」,海洋工程學刊(Journal of Coastal and Ocean Engineering),第3卷,第2期,第75-96頁。102. 簡連貴,張志新(2005),「波動引致海床砂土液化機制探討-動力三軸試驗」,中國土木水利工程學刊,第十七卷,第二期,第257-268頁。