(44.192.112.123) 您好!臺灣時間:2021/03/07 17:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾文謙
研究生(外文):Wen-Chien Tseng
論文名稱:現地波浪與海床孔隙水壓監測之研究
論文名稱(外文):The Study of Monitoring Wave Behavior On-site and Pore Water Pressure
指導教授:簡連貴簡連貴引用關係
指導教授(外文):Lien-Kwei Chien
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:225
中文關鍵詞:現場監測孔隙水壓海床土壤波浪作用
外文關鍵詞:Field monitoringpore water pressureseabed soilwave loading
相關次數:
  • 被引用被引用:15
  • 點閱點閱:288
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本研究以海洋大地工程觀點,利用現地實際監測得到之波高與孔隙水壓資料,探討近岸海床土壤受到現地紛紜波反覆作用下所激發之孔隙水壓特性及波浪統計結果分析,與實驗室模擬現地作用力之試驗作比較,能深入了解兩者之間之相關性。
在實驗室試驗方面,無論是模型縮尺、紛紜波模擬、原狀土重模或靜、動態外力的施加,都易受到實驗室空間與時間條件之限制;而進行現場監測,取得現場監測資料無論對理論、數值模擬或實驗室試驗等研究,都有較高之參考價值。由此可知,深入瞭解現地波浪作用下激發之海床土壤孔隙水壓,是近岸大地工程值得研究且突破性的重要課題。
本研究之孔隙水壓系統配合溯升觀測樁主體監測系統,埋設於平行海岸線距觀測樁3m之側邊位置。為能較為完整記錄垂直剖面上之孔隙水壓變化,監測深度分別為海床表面下 、 、 、 之位置,共二處。針對黃金海岸所監測得之海域風浪,依照統計學上的中心極限理論,其疊加而成的最終波形之水面變位,成一良好常態機率分布,顯示水位信號可用線性波或頻譜來進行解析。
本研究採用現場海床砂樣進行試驗,試體利用過水霣落法製作而成,分別進行實驗室靜態、動態及透水試驗,期能模擬現地海床土壤沉積情形及瞭解孔隙水壓激發特性。
綜合上述有關波浪引致海床內部孔隙水壓試驗監測結果、Yamamoto波浪理論計算與室內動力三軸試驗結果得知,利用無限厚度海床且孔隙水為完全飽和下所推導之理論公式,進行波浪行經碎波帶後之海床內部動態孔隙水壓預估時,有低估的情況,但利用現場監測值得出之無因次化孔隙水壓仍會與理論推導出之衰減曲線趨勢一致,將隨著無因次化深度遞增而衰減。本研究建立之分析模式及成果可應用於後續相關海岸變遷、海床穩定或海岸結構物穩定之研究中,提供參考依據。
This research, from the marine geotechnical engineering viewpoint, the monitoring of the pore water pressure of seabed and wave height in-situ were collected and discussed to the pore water pressure characteristic and wave statistics analysis in seabed soil under irregular wave action. And also comparison with the laboratory simulation test to understand the relationship properties.
In general, in laboratory tests, no matter model-scale-down test, irregular wave simulation, the disturbed soil or external force are applied, will be considering the limitation of the laboratory space and time conditions. The monitoring in-site to get the monitor data no matter to theory, numerical simulation, laboratory test, there have a higher reference value for engineering practice. Therefore, it deeply understands pore water pressure in the seabed soil excited under wave loading. It could be an important topic, challenge and valuable study of nearshore geotechnical engineering
This study, the waves of sea area by monitoring from Golden Coast in Tai-Nan was collected. The wave form of the change water level by superposition shows a normal distribution. It could be indicated that the water level signal can be analyzed with the linear wave or the frequency spectrum.
Concerning above the monitoring of wave induced the pore water pressure within the seabed, the results of calculation of Yamamoto wave theory and the cyclic triaxial tests in laboratory could indicate that by using of the wave theory formulae derived under limitless depth seabed and pore water completely saturation, to evaluate the seabed of dynamic pore water pressure after the wave through the break zone.
It found that the dynamic pore pressure induced by wave loading is underestimated tendency. But the decay curve of compared with the monitoring data and theory calculation have same tendency. It is decreased as depth dimensionless of increasing.
目 錄 頁次
摘 要 I
Abstract II
目 錄 III
圖 目 錄 VI
表 目 錄 X
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 4
1.3 研究目的 7
1.4 研究方法 9
1.5 論文內容 12
第二章 文獻回顧 14
2.1 不規則波之統計方法與水面變位機率分布 14
2.1.1 指示波法(individual wave anylysis) 15
2.1.2 波譜分析法(spectral anylysis) 16
2.1.3 水面變位的機率分布 17
2.2 波浪引致海床表面應力相關理論 19
2.2.1 微小振幅波理論 19
2.2.2 有限振幅波理論 21
2.2.3 橢圓波理論 22
2.3 波浪引致海床土壤孔隙水壓變化之相關研究 27
2.3.1 理論研究成果回顧 27
2.3.2 實驗室試驗研究成果回顧 36
2.3.3 實際現場監測研究成果回顧 38
2.4 波浪引致海床土壤破壞之相關研究 41
2.4.1 土壤動態強度評估定義 42
2.4.2 海床土壤剪力破壞研究成果回顧 43
2.4.2 海床土壤液化破壞研究成果回顧 46
2.5 綜合論述 50
第三章 研究區域與試驗規劃 51
3.1 研究區域背景與基本資料 52
3.1.1 研究區域選定 53
3.1.2 研究區域海床土壤特性資料 54
3.2 研究區域水文及地文資料 57
3.2.1 水文資料-波浪、潮位、氣象 57
3.2.2 地文資料-堤前水深、海堤資料 60
3.2.3 研究區域與相關基本條件選定結果 65
3.2.4 台南海岸歷史災害調查 65
3.3 動力三軸試驗規劃 68
3.3.1 三軸試驗試體準備方式 68
3.3.2 三軸試驗項目規劃 72
第四章 孔隙水壓監測系統與動力三軸系統 75
4.1 現場孔隙水壓計選定 75
4.2 現場孔隙水壓與波浪訊號擷取系統 78
4.2.1 波浪訊號擷取系統 78
4.2.2 現場孔隙水壓計資料擷取系統 80
4.3 三動態動力三軸試驗系統(TCTS)介紹 82
4.3.1 三動態動力三軸試驗系統(TCTS)改良規劃 82
4.3.2 動力三軸試驗系統硬體設備說明 84
4.3.2 動力三軸試驗系統控制軟體說明 91
4.3.3 試驗儀器校正 102
第五章 波浪引致海床土壤孔隙水壓分析 103
5.1 海床孔隙水壓監測資料處理與分析 103
5.1.1 水位變化與孔隙水壓計對應關係 103
5.1.2 理論模式選定 116
5.1.3 波浪引致海床孔隙水壓波別分析 116
5.1.4 海床孔隙水壓之波別解析結果 124
5.1.4 海床孔隙水壓之波譜分析結果 128
5.2 室內試驗結果分析 133
5.2.1 靜態三軸壓縮不排水試驗結果 133
5.2.2 動態三軸軸向試驗結果 137
5.2.3 三軸透水試驗結果 140
第六章 監測資料、理論模式及室內試驗之結果比較 143
6.1 現地監測資料分析與理論模式結果之比較 143
6.2 現地監測資料分析與動力三軸試驗結果之比較 154
6.3 綜合論述 156
第七章 結論與建議 157
7.1 結論 157
7.2 建議 159



附錄一、Hsu & Jeng(1994)之波浪引致海床內部應力解析解 係數計算公式
附錄二、第六河川局境內台南海岸地區海堤列表
附錄三、孔隙水壓系統各Sensor試驗成績書
附錄四、孔隙水壓監測系統設備規劃與安裝步驟
附錄五、動力三軸試驗系統(TCTS)儀器校正步驟



圖 目 錄 頁次
圖1 . 1 台灣地理位置、海岸類型與海流變化(摘自國立海洋生物博物館) 3
圖1 . 2 台灣周圍海域海底地形圖(摘自國家海洋科學研究中心) 3
圖1 . 3 地震與波浪引致海床土壤液化機制圖(Zen et al.,1990(a)) 6
圖1 . 4 波浪引致海床內反覆孔隙水壓示意圖(Zen et al., 1990(a)) 6
圖1 . 5 台灣砂質海床受颱風波浪作用下之破壞案例 7
圖1 . 6 波浪引致海床土壤破壞之主要機制示意圖 8
圖1 . 7 研究架構流程圖 11
圖2 . 1 風浪水位訊號(零位橫切法之定義) 15
圖2 . 2 風浪水位變化之直方圖及與常態分布之比較 18
圖2 . 3 波動方程式之邊界條件(Dean與Dalrymple,1984) 20
圖2 . 4 以 及 區分波浪理論之適用範圍(Muir Wood,1969) 26
圖2 . 5 以 及 區分波浪理論之適用範圍 26
圖2 . 6 前進波引致海床內部動態應力座標定義圖 33
圖2 . 7 壓縮實驗儀示意圖(Zen與Yamazaki,1990) 37
圖2 . 8 波浪引致海床土壤破壞之主要機制示意圖 41
圖2 . 9 無因次剪應力隨著無因次土層深度的變化(Ishihara & Yamazaki,1984) 47
圖2 . 10 正規化反覆剪應力比之比值隨著無因次土層深度的變化 (Ishihara &Yamazaki,1984) 47
圖2 . 11 在一個波長位置中,波浪引起的液化與剪力破壞比較圖(Lin & Li,2001) 49
圖3 . 1 研究區域—台南海岸地區 52
圖3 . 2 本研究區域示意圖 53
圖3 . 3 台南市土壤分圖(30-60cm)(資料來源:台南市綜合發展計畫) 54
圖3 . 4 台南市土壤分圖(60-90cm) (資料來源:台南市綜合發展計畫) 55
圖3 . 5 台南市土壤分圖(90-150cm) (資料來源:台南市綜合發展計畫) 55
圖3 . 6 研究區域粒徑分布圖 56
圖3 . 7 台南高雄海域潮位觀測站位置 59
圖3 . 8 台南海岸曾文溪以南衛星照(資料來源:Google earth) 61
圖3 . 9 台南海岸曾文溪以北衛星照(資料來源:Google earth) 61
圖3 . 10 台南高雄海域近岸水深圖 62
圖3 . 11 台南縣海堤地理位置(資料來源Google earth) 64
圖3 . 12 台南市海堤地理位置(資料來源Google earth) 64
圖3 . 13 歷年侵台颱風路徑圖 66
圖3 . 14 分裂模組立完成後之情形 69
圖3 . 15 霣落管組立與砂樣霣落過程 70
圖3 . 16 霣落管移除後霣落完成之試體情形 70
圖3 . 17 多餘砂樣刮除後之試體 70
圖3 . 18 上頂蓋安裝完成與分裂膜移除後之試體情形 71
圖3 . 19 試體準備完畢後之情形 71
圖4 . 1 孔隙水壓計之型號、編號、出場公司及製造地 76
圖4 . 2 八組孔隙水壓計及訊號線 76
圖4 . 3 不鏽鋼孔隙水壓計及規格貼紙 77
圖4 . 4 孔隙水壓計安裝於不鏽鋼支架完成圖 77
圖4 . 5 黃金海岸水位溯升觀測佈置圖 78
圖4 . 6 孔隙水壓計打設佈置示意圖 81
圖4 . 7 孔隙水壓計之data-logger 82
圖4 . 8 TCTS動力三軸試驗系統規劃圖 83
圖4 . 9 TCTS動力三軸試驗系統主體架構 84
圖4 . 10 TCTS動力三軸試驗系統自動氣壓控制單元 86
圖4 . 11 動力三軸之自動控制系統硬體 90
圖4 . 12 動力三軸試驗系統自動控制程式功能與流程 91
圖4 . 13 TCTS動力三軸試驗系統基本資料輸入畫面 92
圖4 . 14 試驗基本資料輸入畫面 94
圖4 . 15 試體通氣步驟畫面 95
圖4 . 16 試體通水步驟畫面 95
圖4 . 17 試體加壓飽和畫面 96
圖4 . 18 Check B值程式畫面 96
圖4 . 19 手動轉為自動控制 97
圖4 . 20 試體壓密方式選擇畫面 97
圖4 . 21 均向壓密設定 97
圖4 . 22 均向壓密加壓過程歷時 97
圖4 . 23 壓密設定 98
圖4 . 24 壓密加壓過程歷時 98
圖4 . 25 透水試驗設定 99
圖4 . 26 透水試驗歷時 99
圖4 . 27 可進行之三軸試驗選擇畫面 100
圖4 . 28 三軸壓縮試驗設定畫面 100
圖4 . 29 三軸壓縮試驗反水壓(BP)與 100
圖4 . 30 三軸壓縮試驗軸向應力(AP)與 100
圖4 . 31 三軸軸、徑向動態試驗設定 101
圖4 . 32 三軸軸、徑向動態試驗反水壓(BP)與圍壓(CP)歷時變化 101
圖4 . 33 三軸軸、徑向動態試驗軸向應力(AP)與軸向變形(LVDT)歷時變化 101
圖4 . 34 試驗完成選擇畫面 101
圖5 . 1 10分鐘之水位變化圖 104
圖5 . 2 波浪及孔隙水壓擷取資料之檔案示意圖 105
圖5 . 3 波浪訊號擷取資料 105
圖5 . 4 孔隙水壓擷取資料 106
圖5 . 5 給各孔隙水壓計之激勵電壓值及連接方式示意圖 106
圖5 . 6 現場裝設之孔隙水壓計與相對應之激勵電壓值編號示意圖 107
圖5 . 7 現場裝設之各孔隙水壓計 圖 109
圖5 . 8 取樣10分鐘之水位與孔隙水壓變化對應示意圖(06101300) 111
圖5 . 9 取樣0-120 sec之水位與孔隙水壓變化對應示意圖(06101300) 111
圖5 . 10 取樣120-240 sec之水位與孔隙水壓變化對應示意圖(06101300) 112
圖5 . 11 取樣240-360 sec之水位與孔隙水壓變化對應示意圖(06101300) 112
圖5 . 12 取樣360-480 sec之水位與孔隙水壓變化對應示意圖(06101300) 113
圖5 . 13 取樣480-600 sec之水位與孔隙水壓變化對應示意圖(06101300) 113
圖5 . 14 (06101300)水面變位機率分布 114
圖5 . 15 (06102723)水面變位機率分布 114
圖5 . 16 (06110822)水面變位機率分布 114
圖5 . 17 (06112020)水面變位機率分布 115
圖5 . 18 (06121123)水面變位機率分布 115
圖5 . 19 (06122723)水面變位機率分布 115
圖5 . 20 波浪統計代表值之理論模式結果(20061012~1017) 118
圖5 . 21 波浪統計代表值之理論模式結果(20061019~1101) 119
圖5 . 22 波浪統計代表值之理論模式結果(20061111~1118) 119
圖5 . 23 波浪統計代表值之理論模式結果(20061120~1125) 120
圖5 . 24 波浪統計代表值之理論模式結果(20061217~1222) 120
圖5 . 25 10月~12月理論 值之比較 121
圖5 . 26 10月~12月理論 值之比較 121
圖5 . 27 以波高計資料進行無因次化之實測值 125
圖5 . 28 波浪統計代表值之監測結果(20061012~1017) 125
圖5 . 29 波浪統計代表值之監測結果(20061019~1101) 126
圖5 . 30 波浪統計代表值之監測結果(20061111~1118) 126
圖5 . 31 波浪統計代表值之監測結果(20061120~1125) 127
圖5 . 32 波浪統計代表值之監測結果(20061217~1222) 127
圖5 . 33 頻譜高低頻濾波前後差異 129
圖5 . 34 濾波前後動態孔隙水壓差異 129
圖5 . 35 濾波後監測結果(20061012~1017) 130
圖5 . 36 濾波後監測結果(20061019~1101) 130
圖5 . 37 濾波後監測結果(20061111~1118) 131
圖5 . 38 濾波後監測結果(20061120~1125) 131
圖5 . 39 濾波後監測結果(20061217~1222) 132
圖6 . 1 理論值與原始監測值比較(20061012~1017) 144
圖6 . 2 理論值與濾波後監測值比較(20061012~1017) 145
圖6 . 3 理論值與原始監測值比較(20061019~1101) 145
圖6 . 4 理論值與濾波後監測值比較(20061012~1017) 145
圖6 . 5 理論值與原始監測值比較(20061111~1118) 146
圖6 . 6 理論值與濾波後監測值比較(20061111~1118) 146
圖6 . 7 理論值與原始監測值比較(20061120~1125) 147
圖6 . 8 理論值與濾波後監測值比較(20061120~1125) 147
圖6 . 9 理論值與原始監測值比較(20061217~1222) 148
圖6 . 10 理論值與濾波後監測值比較(20061217~1222) 148
圖6 . 11 土壤剪力與波浪剪力於各深度之影響 154
圖6 . 12 相同振幅下 之差異性 155



表 目 錄 頁次
表1 . 1 波浪力與地震力對海床作用形態比較表 5
表2 . 1 各相對水深微小振幅前進波相關物理量 21
表2 . 2 Stokes二階前進波相關物理量 22
表2 . 3 三階Cn橢圓波相關物理量 23
表2 . 4 橢圓波理論之係數(Isobe等人(1978)) 24
表2 . 5 Biot多孔隙介質三維壓縮理論 28
表2 . 6 現地監測孔隙水壓文獻成果整理表 40
表2 . 7 海床土壤剪力破壞相關研究整理表 45
表3 . 1 台南地區海岸概況(資料來源:經濟部水利署) 51
表3 . 2 黃金海岸相關海床土壤參數表 56
表3 . 3 七股波浪觀測樁研究成果 58
表3 . 4 七股波高週期機率分佈表 58
表3 . 5 台南高雄地區潮位站之潮位統計值 59
表3 . 6 台南地區氣象資料一覽表 60
表3 . 7 台南地區海堤資料(節錄) 63
表3 . 8 研究相關條件選定結果綜合表 65
表3 . 9 1998~2006年台南海岸災害事件統計 66
表3 . 10 1998~2006年台南海岸災害事件統計(續) 67
表3 . 11 土壤三軸試驗垂直壓密應力計算結果 73
表3 . 12 季節風條件作用下土壤三軸試驗各動態應力計算結果 74
表3 . 13 三軸試驗項目與試驗條件表 74
表4 . 1 水位浪高觀測儀器規格表 80
表4 . 2 壓力供給系統各項主要硬體設備規格一覽表 86
表4 . 3 自動控制系統輸出電壓門檻值限制條件與計算結果 92
表4 . 4 各量測感應器校正係數一覽表 102
表4 . 5 各電控調壓閥校正係數一覽表 102
表5 . 1 研究之孔隙水壓計選定基本參數一覽表 107
表5 . 2 理論解析解之參數 118
表5 . 3 10月~12月份 無因次化值( ) 122
表5 . 4 10月~12月份 無因次化值( ) 123
表5 . 5 三軸壓縮不排水試驗結果(1) 134
表5 . 6 三軸壓縮不排水試驗結果(2) 135
表5 . 7 三軸壓縮不排水試驗結果(3) 136
表5 . 8 軸向三軸動態試驗結果(1) 138
表5 . 9 軸向三軸動態試驗結果(2) 139
表5 . 10 三軸透水試驗結果(1) 141
表5 . 11 三軸透水試驗結果(2) 141
表5 . 12 三軸透水試驗結果(3) 142
表6 . 1 各月份濾波前後孔隙水壓統計值(-0.5m) 150
表6 . 2 各月份濾波前後孔隙水壓統計值(-1.5m) 150
表6 . 3 各月份濾波前後孔隙水壓統計值(-2.5m) 151
表6 . 4 無因次化孔隙水壓月平均表 152
1. Barends, F.B.J., Spierenburg, S.E.J., (1991), “Interaction between ocean waves and seabed”, Proceedings of the International Conference on Geotechnical Engineering for Coastal Development –Theory and Practice on Soft Ground (Geot-Coastal’91), Yokohama, Japan, 2, pp.1091-1108.
2. Bea R. G., S. G. Wright, P. Sircar and A. W. Niedoroda (1983), “Wave-induced Slides in South Pass Block 70, Mississippi Delta”, Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 1, pp. 619-644.
3. Bennett R. H. (1978), “Pore-water Pressure Measurements: Mississippi Delta Submarine Sediments”, Marine Geotechnology, Vol. 2, pp. 177-189.
4. Bennett R. H. and J. R. Faris (1979), “Ambient and Dynamic Pore Pressures in Fine-grained Submarine Sediments: Mississippi”, Applied Ocean Research, Vol. 1, No. 3, pp. 115-123.
5. Bjerrum L. (1973), “Geotechnical Problems in Foundations of Structures in the North Sea”, Géotechnique, Vol. 23, No. 3, pp. 319-358.
6. Biot M. A. (1941), “General Theory of Three-dimensional Consolidation”, Journal of Applied Physics, Vol. 12, pp. 155-164.
7. Boussinesq, J. (1871), “Théorie de L’intumescence Liquide, Appelée Onde Solitaire ou de Translation se Propageant Dans un Canal Rectangulaire”, Comptes Rendus Acad. Sci., Paris, Vol. 72, pp. 755-759.
8. Chillarige, A-R V.,N.R. Morgenstern, P.K. Robertson, and H.A Christian, (1997), “Seabed instability duo to flow liquefaction in the Fraser River delta”, Can. Geotech. Journal, Vol34, No. 4, pp.520-533.
9. Chappelear, J. E., (1961) “Direct numerical calculation of nonlinear Ocean waves”, Journal of Geophysical Research, Vol. 66,No. 2, pp. 501-508.

10. Cheng L., B. M. Sumer and J. Fredsøe (2001), “Solution of Pore Pressure Build up Due to Progressive Waves”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 25, pp. 885-907.
11. Dean R. G., (1970) “Relative validities of water wave theories”, Journal of Waterway, Port, Coastal and Ocean Engineering, Vol.96, pp.105-119.
12. Demars K. R. and E. A. Vanover (1985), “Measurement of Wave-induced Pressure and Stresses in a Seabed”, Marine Geotechnology, Vol. 6, No. 1, pp.29-59.
13. Fenton, J. D., (1979) “A higher-order cnoidal wave theory”, Journal of Fluid Mechanics, Vol.94, pp.257-271.
14. Finn W. D. L., R. Siddharthan and G. R. Martin (1983),“Response of Seafloor to Ocean Waves”, Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 4, pp. 556-572
15. Foda, M.A. and Tzang, S.Y., (1994), “Resonant fluidization of silty soil by water waves”. Journal of Geophysical Research, Vol. 99(C10), pp. 20463-20475.
16. Gatmiri B. (1992), “Response of Cross-anisotropic Seabed to Ocean Waves”, Journal of Geotechnical Engineering, ASCE, Vol. 118, No. 9, pp. 1295-1314.
17. Henkel, D.J., (1970),“The Role of Waves in Causing Submarine Landslides”, Geotechnique, Vol.20, No.1, pp.75-80.
18. Hsu J. R. C. and D. S. Jeng (1994), “Wave-induced Soil Response in an Unsaturated Anisotropic Seabed of Finite Thickness”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 18, No. 11, pp. 785- 807.
19. Huang L. H. and A. T. Chang (1990), “Trapping and Absorption of Sound Waves II: A Sphere Covered with a Porous Layer”, Wave Motion, Vol. 12, pp. 401-414.
20. Huang L. H. and C. H. Song (1993), “Dynamic Response of Poro-plastic Bed to Water Waves”, Journal of Hydraulic Engineering, ASCE, Vol. 119, No. 9, pp. 1003-1020.
21. Ishihara K. (1993), “Liquefaction and Flow Failure During Earthquakes”, Géotechnique, Vol. 43, No. 3, pp. 351-415.
22. Ishihara K. (1993), “Liquefaction and Flow Failure During Earthquakes”, Géotechnique, Vol. 43, No. 3, pp. 351-415.
23. Ishihara K. and A. Yamazaki (1984), “Analysis of Wave-induced Liquefaction in Seabed Deposits of Sand”, Soils and Foundations, Vol. 24, No. 3, pp. 85- 100.
24. Jeng D. S. and Y. S. Lin (1996), “Finite Element Modeling for Water Waves-soil Interaction”, Soil Dynamics and Earthquake Engineering, Vol. 15, No. 5, pp. 283-300.
25. Jeng D. S. and Y. S. Lin (1997), “Non-linear Waves-induced Response of Porous Seabed: A Finite Element Analysis”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 21, No. 1, pp. 15-42.
26. Jeng D. S. (1997), “Soil Response in Cross-anisotropic Seabed Due to Standing Waves”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 123, No. 1, pp. 9-19.
27. Jeng D. S. (1997), “Wave-induced Seabed Instability in front of a Breakwater”, Ocean Engineering, Vol. 24, No. 10, pp. 887-917.
28. Jeng D. S., L. Cheng and Y. S. Lin (1998), “Numerical Study of Wave-seabed Interaction in Gibson Soil”, Computational Techniques and Applications: CTAC97 (edited by Noye, Teubner and Gill), World Scientific Publishing Co., pp. 321-328.
29. Jeng D. S. and Y. S. Lin (1998), “Wave-induced Pore Pressure in a Cross- anisotropic Seabed with Variable Soil Characteristics”, The 8th International Offshore and Polar Engineering Conference (ISOPE98), Vol. 1, pp. 598-604.
30. Jeng D. S. (2001), “Mechanism of the Wave-induced Seabed Instability in the Vicinity of a Breakwater: a Review”, Ocean Engineering, Vol. 28, No, 5, pp. 537-570.

31. Jeng, D. S., and Seymour, B.R., (1997), “Wave-induced pore pressure and effective stresses in a porous seabed with variable permeability”, International Journal of Offshore Mechanics and Arctic Engineering, Transaction, ASME, Vol. 119, No. 4, pp.327-334.
32. Jeng D. S. (2003), “Wave-induced Sea Floor Dynamics”, Applied Mechanics Review, Vol. 56, No. 4, pp. 407-429.
33. Kianto T. and H. Mase (1999), “Boundary-layer Theory for Anisotropic Seabed Response to Sea Waves”, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 125, No. 4, pp. 187-194.
34. Kitano T. and H. Mase (2001), “Wave-induced Porewater Pressure in a Seabed with Inhomogeneous Permeability”, Ocean Engineering, Vol. 28, pp. 279-296.
35. Korteweg D. J. and G. de Vries (1895), “On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves”, Philosophical Magazine, Series 5, Vol. 39, pp. 422-443.
36. Lee H.J., and Edwards, B.D., (1986) ,“A Simplified Drained analysis for Wave-induced Liquefaction in Ocean Floor Sands”, Soils and Foundations, Vol.26, No.1, pp.57-68.
37. Lee T. L., C. P. Tsai and D. S. Jeng (2002), “Ocean Waves Propagating over a Coulomb-damped Poroelastic Seabed of Finite Thickness: An Analytical Solution”, Computers and Geotechnics, Vol. 29, No. 2, pp. 119-149.
38. Lé Méhauté B. (1976), “An Introduction to Hydrodynamic and Water Waves”, Springer-Verlag, Dusseldorf.
39. Lin Main and Li Jia-chun, (2001), “Effects of surface waves and marine soil parameters on seabed stability”, Applied Mathematics and Mechanics, Vol. 22, No.8, pp.904-916.
40. Lin Y. S. and D. S. Jeng (1996), “Response of Poro-elastic Seabed in front of a Breakwater: A Finite Element Analysis”, Coastal Engineering in Japan, Vol. 39, No. 2, pp. 165-183.
41. Lin Y. S. and D. S. Jeng (1997), “The Effects of Variable Permeability on the Wave-induced Seabed Response”, Ocean Engineering, Vol. 24, No. 7, pp. 623- 643.
42. Lin Y. S. and D. S. Jeng (2000), “Effects of Variable Shear Modulus on Wave-induced Seabed Response”, Journal of the Chinese Institute of Engineers, Vol. 24, No, 1, pp. 109-115.
43. Madsen O. S. (1978), “Wave-induced Pore Pressure and Effective Stresses in a Porous Bed”, Géotechnique, Vol. 28, No. 4, pp. 337-393.
44. Maeno Y. H. and T. Hasegawa (1985), “Evaluation of Wave-induced Pore Pressure in Sand Layer by Wave Steepness”, Coastal Engineering in Japan, Vol. 28, pp. 31-44.
45. Maeno Y. H. and T. Hasegawa (1987), “In-situ Measurements of Wave-induced Pore Pressure for Predicting Properties of Seabed Deposits”, Coastal Engineering in Japan, Vol. 30, No. 1, pp. 99-115.
46. Madga W. (1990), “On One-dimensional Model of Pore Pressure Generation in a Highly Saturated Sandbed Due to Cyclic Loading Acting on a Sand Surface I: Theoretical Description and Numerical Approach”, Internal Report No. 5, SFB-205, TP A13, Kusteningenieurwesen , University Hanover, pp. 1-42.
47. Mei C. C. and M. A. Foda (1981), “Wave-induced Response in a Fluid-filled Poro-elastic Solid with a Free Surface – a Boundary Layer Theory”, Geophysical Journal of the Royal Astronomical Society, Vol. 66, pp. 597-631.
48. Mitchell J. K., K. K. Tsui and D. A. Sangrey (1972), “Failure of Submarine Slopes under Wave Action”, Proceedings 13th International Conference on Coastal Engineering, ASCE, Vol. 2, pp. 1515-1539.
49. Muir Wood A. M. (1969), “Coastal Hydraulics”, Mac Millon, London, England.
50. Nataraja M. S., and H. S. Gill (1983), “Ocean Wave-induced Liquefaction Analysis”, Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 4, pp.573-590.
51. Nishimura, H., M. Isobe and K, Horikawa, (1978), “Higher order solutions for the Stokes and the cnoidal wave”, J. Fac. Eng., University. Tokyo, B-34, No.2, pp.267-293.
52. Okusa S. and A. Uchida (1980), “Pore-water Pressure Change in Submarine Sediments Due to Waves”, Marine Geotechnology, Vol. 4, No. 2, pp. 145-161.
53. Okusa S. (1985), “Wave-induced Stress in Unsaturated Submarine Sediments”, Géotechnique, Vol. 35, No. 4, pp. 517-532.
54. Okusa S. (1985), “Measurements of Wave-induced Pore Pressure in Submarine Sediments under Various Marine Conditions”, Marine Geotechnology, Vol. 6, No. 2, pp. 119-144.
55. Okusa S., T. Nakamura and M. Fukue (1983), “Measurements of Wave-induced Pore Pressure and Coefficients of Permeability of Submarine Sediments During Reversing Flow”, Seabed Mechanics (edit by Denness B.), Graham and Trotman Ltd., London, pp. 113-122.
56. Phillips R. and H. Sekiguchi (1992), “Generation of Water Wave Trains in Drum Centrifuge”, Proceedings of International Symposium on Technology in Ocean Engineering (Techno-Ocean’92), Yokohama, Vol. 1, pp. 29- 34.
57. Rahman, M.S., 1991,“Wave-induced Instability of Seabed:Mechanism and Condition”, Marine Geotechnology, Vol.10, pp.277-299.
58. Rahman, M.S., 1997, “Instability and Movement of Oceanfloor Sediments: A Review”, International Journal of Offshore and Polar Engineering, Vol.7, No.3, pp.220-225.
59. Rahman M. S., K. El-Zahaby and J. Booker (1994), “A Semi-analytical Method for the Wave-induced Seabed Response”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 18, pp. 213-236.
60. Rahman M. S. and W. Y. Jaber (1986), “A Simplified Drained Analysis for Wave-induced Liquefaction in Ocean Floor Sands”, Soils and Foundations, Vol. 26, No. 1, pp. 57-68.
61. Raman-Nair W. and G. C. W. Sabin (1991), “Wave-induced Failure of Poro- Plastic Seabed Slopes: A Boundary Element Study”, Proceedings, Institution of Civil Engineers, Part 2, Vol. 91, pp. 771-794.
62. Sassa S. (2000), “Fundamental Studies of Wave-induced Liquefaction of Sand Beds”, PhD Thesis, Kyoto University, Japan.
63. Sassa S. and H. Sekiguchi (1999), “Wave-induced Liquefaction of Beds of Sand in a Centrifuge”, Géotechnique, Vol. 49, No. 5, pp. 621-638.
64. Sassa S. and H. Sekiguchi (2001), “Analysis of Wave-induced Liquefaction of Sand Beds”, Géotechnique, Vol. 51, No. 2, pp. 115-126.
65. Sassa S., H. Sekiguchi and J. Miyamamot (2001), “Analysis of Progressive Liquefaction as Moving-boundary Problem”, Géotechnique, Vol. 51, No. 10, pp. 847-857.
66. Seed H. (1979), “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 105, No. 2, pp. 201-255.
67. Sekiguchi H. and R. Phillips (1991), “Generation of Water Waves in a Drum Centrifuge”, Proceedings of the International Conference Centrifuge, pp. 343- 350.
68. Seymour B. R., D. S. Jeng and J. R. C. Hsu (1996), “Transient Soil Response in a Porous Seabed with Variable Permeability”, Ocean Engineering, Vol. 23, No. 1, pp. 27-46.
69. Sharma, S.S., and Fahey, M., 2003(a), “Evaluation of Cyclic Shear Strength of Two Cemented Calcareous Soils”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 7, pp.608-618.
70. Sleath J. F. A. (1970), “Wave-induced Pressure in Beds of Sand”, Journal of Hydraulics Division, ASCE, Vol. 96 No. 2, pp. 367-378.
71. Song C. H. and L. H. Huang (2000), “Laminar Poroelastic Media Flow”, Journal of Engineering Mechanics, ASCE, Vol. 126, No. 4, pp. 358-366.
72. Stokes G. G. (1847), “On The Theory of Oscillatory Waves”, Transaction Cambridge Philosophical Society, Vol. 8, pp. 441-455.
73. Sumer B. M. and N. S. Cheng (1999), “A Random-walk Model for Pore Pressure Accumulation in Marine Soils”, The 9th International Offshore and Polar Engineering Conference (ISOPE99), Brest, France, Vol. 1, pp. 521-528.
74. Sumer B. M. and J. Fredsøe (2002), “The Mechanics of Scour in the Marine Environment”, World Scientific.
75. Thomas S. D. (1989), “A Finite Element Model for the Analysis of Wave Induced Stresses, Displacements and Pore Pressure in an Unsaturated Seabed I: Theory”, Computer and Geotechnics, Vol. 8, No. 1, pp. 1-38.
76. Thomas S. D. (1995), “A Finite Element Model for the Analysis of Wave Induced Stresses, Displacements and Pore Pressure in an Unsaturated Seabed II: Model Verification”, Computer and Geotechnics, Vol. 17, No. 1, pp.107-132.
77. Tsai, C. P. (1995), “Wave-induced Liquefaction Potential in a Porous Seabed in Front of a Breakwater”, Ocean Engineering, Vol. 22, No.1, pp. 1-18.
78. Tsotsos, S., Georgiadis, M., and Damaskindou, A., (1989), “Numerical Analysis of Liquefaction Potential of Partially Drained Seafloor”, Coastal Engineering, Vol. 13, No.2, pp.117-128.
79. Tsui Y. T. and S. C. Helfrich (1983), “Wave-induced Pore Pressure in Submerged Sand Layer”, Journal of Geotechnical Engineering, ASCE, Vol. 109, No. 4, pp. 603-618.
80. Tzang S.Y., (1998) “Unfluidized Soil Response of A Silty Seabed to Monochromatic Waves”, Coastal Engineering, Vol.35, pp.283-301.
81. Umehara Y., K. Zen and H. Yoshizawa (1991), “Design Concept of Treated Ground by Premixing Method”, Proceedings of the International Conference on Geotechnical Engineering for Coastal Development – Theory and Practice on Soft Ground (Geot-Coastal 91), Yokohama, Japan, Vol. 1, pp. 519-524.

82. Vaid Y. P. and J. C. Chern (1985), “Cyclic and Monotonic Undrained Response of Saturated Sands”, Advances in the art of Testing Soils under Cyclic Condition, ASCE, pp. 120-147.
83. Varley E. and B. R. Seymour (1988), “A Method for Obtaining Exact Solutions to Partial Differential Equations with Variable Coefficients”, Studies in Applied Mathematics, Vol. 78, pp. 183-225.
84. Wright S. G. and R. S. Dunham (1972), “Bottom Stability under Wave Induced Loading”, Proceedings 4th Annual Offshore Technology Conference, Houston, pp. 853-862.
85. Yamamoto T. (1977), “Wave Induced Instability Seabeds”, Proceedings ASCE Special Conference, Coastal Sediments 77, Charleston, SC., pp. 898-913.
86. Yamamoto T., H. L. Koning, H. Sellmeijer and E. V. Hijum (1978), “On the Response of a Poro-elastic Bed to Water Waves”, Journal of Fluid Mechanics, Vol. 87, pp. 193-206.
87. Yuhi M. and H. Ishida (1997), “Theoretical Analysis of the Response of a Cross-anisotropic Seabed to Ocean Surface Waves”, Proceeding of Japanese Society of Civil Engineering, JSCE, Vol. 572, pp. 49-61.
88. Yuhi M. and H. Ishida (2002), “Simplified Solutions for Wave-induced Response of Anisotropic Seabed”, Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 128. No. 1, pp. 46-50.
89. Zen K, and Yamazaki, (1990a), “Mechanism of wave-induced liquefaction anddensification in seabed foundations”, Soils and Foundations, Vol. 30, pp.90-104.
90. Zen, K., Yamazaki, H. and Sato, Y., (1990b), “Oscillatory pore pressure and liquefaction in seabed induced by ocean waves”, Soils and Foundations, Vol. 30, No, 4, pp. 147- 161.
91. Zen K. and H. Yamazaki (1991), “Field Observation and Analysis of Wave- induced Liquefaction in Seabed”, Soils and Foundations, Vol. 31, No, 4, pp. 161- 179.
92. Zen K. and H. Yamazaki (1995), “Slope Instability Due to Wave-induced Liquefaction in the Seabed”, River, Coastal and Shoreline Protection: Erosion Control Using Riprap and Armourstone, John Wiley & Sons Ltd, pp. 381-393.
93. Zen K., D. S. Jeng, J. R. C. Hsu and H. Ohyana (1998), “Wave-induced Seabed Instability: Difference between Liquefaction and Shear Failure”, Soils and Foundations, Vol. 38, No. 2, pp. 37-47.
94. 郭一羽(2001),「海岸工程學」,文山書局。
95. 陳景文與楊朝景(1996),「高雄附近沿海砂質海床之液化潛能評估」,中國土木水利工程學刊,第8卷,第1期,第1-12頁。
96. 張志新(2004),「波浪作用下海床砂土液化機制與評估模式之研究」,博士論文,國立台灣海洋大學河海工程學系,基隆,台灣。
97. 張燿顯(2002),「波浪作用對海床砂土動態特性與液化行為之研究」,碩士論文,國立台灣海洋大學河海工程學系,基隆,台灣。
98. 張上君(2006),「波浪引致基礎附近土壤動態行為對直立式防波堤穩定影響之研究」,博士論文,國立台灣海洋大學河海工程學系,基隆,台灣。
99. 簡連貴、張上君、張耀顯(2003),「波浪引致海床液化簡易評估方式介紹」,技師月刊(Professional Engineer Journal),技術論文,第27期,第52~59頁。
100. 許泰文(2003),「近岸水動力學」,中國土木水利工程學會。
101. 簡連貴、張志新,(2004),「波浪引致海床液化潛能評估模式之探討」,海洋工程學刊(Journal of Coastal and Ocean Engineering),第3卷,第2期,第75-96頁。
102. 簡連貴,張志新(2005),「波動引致海床砂土液化機制探討-動力三軸試驗」,中國土木水利工程學刊,第十七卷,第二期,第257-268頁。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔