跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃令慧
研究生(外文):Ling-huei Huang
論文名稱:奈米粒固定化硫酸鋅及超氧歧化酶抗氧化能力探討
論文名稱(外文):Antioxidative properties of zinc sulfate and superoxide dismutase immobilized on nanoparticles
指導教授:張克亮
指導教授(外文):Ke-Liang Chang, Ph. D.
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:97
中文關鍵詞:超氧歧化酶硫酸鋅奈米粒
外文關鍵詞:superoxide dismutasezinc sulphatenanoparticles
相關次數:
  • 被引用被引用:1
  • 點閱點閱:353
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究以幾丁聚醣、矽酸鈉與硫酸鋅、超氧歧化酶為原料,以乳化沉澱法製備出具抗氧化能力之含有硫酸鋅、硫酸鋅+超氧歧化酶或超氧歧化酶之幾丁聚糖-二氧化矽複合奈米粒,並分析其特性。含有超氧歧化酶之幾丁聚醣-二氧化矽奈米粒,於幾丁聚醣及矽酸鈉濃度分別為0.55% 及 0.55% 時為最佳製備條件,平均粒徑約36 nm,超氧歧化酶包覆率為89% ;在90℃加熱2小時後,清除超氧陰離子能力仍可維持在70% ;儲存於pH=3之檸檬酸buffer中340小時後,清除超氧陰離子能力仍可維持在50%。含有超氧歧化酶及硫酸鋅之幾丁聚醣-二氧化矽奈米粒,於幾丁聚醣及矽酸鈉濃度皆為0.87% 時為最佳製備條件,SEM觀察奈米粒近圓形,平均粒徑約27 nm,硫酸鋅包覆率為82 %,超氧歧化酶包覆率則為94%;在90℃加熱2小時後,清除超氧陰離子能力仍可維持在90%;儲存於pH=3之檸檬酸buffer中340小時後,清除超氧陰離子能力仍有約60%。含硫酸鋅之幾丁聚醣-二氧化矽奈米粒,於幾丁聚醣及矽酸鈉濃度分別為0.87 % 及 0.87% 時為最佳製備條件,平均粒徑約28 nm,硫酸鋅包覆率有93%;清除過氧化氫能力為51%。三種奈米粒均可抑制對A549肺癌細胞及SK-Hep-1肝癌細胞生長,又以含超氧歧化酶之幾丁聚醣-二氧化矽複合奈米粒效果最為顯著,於高濃度 ( 167 μg / ml ) 時可使A549肺癌細胞及SK-Hep-1肝癌細胞之細胞存活率降至38% 及 50% 。
雖然隨儲存時間的延長,奈米粒之抗氧化效果會逐漸降低,以奈米粒固定超氧歧化酶確實可以增進其抗氧化能力及熱與酸環境下之安定性。
Abstract
This research explores the method of using chitosan and silica to immobilize superoxide dismutase and zinc sulphate on nanoparticles by emulsion-droplet coalescence.
The optimal combination of particle size and entrapment efficiency of superoxide dismutase (SOD) was obtained by using 0.55% chitosan and 0.55% silicate . The average particle diameter was 36 nm and the entrapment efficiency of SOD was 89%. The superoxide anion radical scavenging effect reached 70% after heating for 2 hrs at 90℃. After stored for 340 hrs in citric acid buffer (pH=3), the superoxide anion radical scavenging effect was 50%.
The optimal combination of particle size and entrapment efficiency of both SOD and zinc sulphate was obtained by using 0.87% chitosan and 0.87% silicate. The average particle diameter was 27 nm and the entrapment efficiency of SOD was 94%. The superoxide anion radical scavenging effect was maintained at 90% after heating for 2 hrs at 90℃. After stored for 340 hrs in citric acid buffer (pH=3), the superoxide anion radical scavenging effect was 60%.
The optimal combination of particle size and entrapment efficiency of zinc sulphate was obtained by using 0.87% chitosan and 0.87% silicate. The average particle diameter was 28 nm and the entrapment efficiency of Zn was 93%. The hydroden peroxide scavenging effect was maintained at 48% after stored for 340 hrs in citric acid buffer (pH=3).
All three nanoparticles could inhibit the growth of both A549 and SK-HEP-1 cancer cell lines. The cell proliferation decreased to 38% and 50% at the concentration of 167 μg/ml of chitosan-silica–SOD nanoparticles. Apparently chitosan-silica containing SOD, zinc, or both SOD and zinc can inhibit the growth of several tumor cells in vitro.
The antioxidant effect of nanoparticles decreased with inereasing storage time. However, the encapusation/immobilization of SOD by chitosan-silica nanoparticles help retain the antioxidative ability and increase its thermal stability.
目錄
目錄…………………………………………………………………….Ⅰ
圖目錄…………………………………………………………..………V
表目錄…………………………………………………………….........VII
中文摘要………………………………………………………………. X
英文摘要…………………………………………………………...….XII
壹、研究背景與目的.................................................................................1
貳、文獻整理…………………………………………………………….3
1.1自由基………………………………………………………………..3
1.2自由基的產生………………………………………………………..3
1.3自由基之種類…………………………………................................4
1.4 自由基對生物體之傷害…………………………………………….5
2 生物之抗氧化機制………………………………................................6
2.1 超氧歧化酶……………………………………………………..…...7
2.2 超氧歧化酶之分類…………………………………………...……7
2.3 超氧歧化酶之生理功能性……………………………………..…..9
3. 鋅的功能性及代謝………………………………….......................12
4. 酵素固定化…………………………………..................................14
4.1 固定化技術…………………………………................................14
5 奈米載體………………………………….......................................16
5.1 奈米載體的製造方法………………………………….…….........17
6. 幾丁類物質…………………………………..................................18
6.1 幾丁質 ( Chitin ) ………………………………….......................18
6.2 幾丁聚醣…………………………………....................................19
参、實驗材料與方法
一、實驗藥品………………………………………………………..21
二、實驗儀器………………………………………………………..23
三、實驗流程圖……………………………………………………..24
四、實驗步驟.…………………………………………………….…25
1. 幾丁聚醣-二氧化矽-超氧歧化酶、超氧歧化酶+硫酸鋅、硫酸鋅複合奈米粒製備……………………………………………………25
1.1 乳化沉澱法………………………………..…………………..….25
2. 複合奈米粒之特性分析………………………………………….25
2.1 粒徑分析…………………………………………..…………….26
a. 光散射分析………………………………………………………...26
b. 掃描式電子顯微鏡( SEM )………..………………………………26
2.2 包覆率測定…………………………………………………….…26
2.3 抗氧化能力試驗……….………………………………………....27
a. 清除超氧陰離子能力……………………………………………...27
b. 清除過氧化氫能力………………………………………...…..…..29
2.4 細胞存活試驗…………………………………………..………...30
a. 肺癌細胞 ( A 549 )………………………………………………….30
b. 肝癌細胞 ( SK-Hep-1 )………………………………….………….30
c. 胃癌細胞 ( MKN-28 )………………………………………………30
d. 大腸癌細胞( HT-29 )………………………………………………..30
2.4 安定性試驗……………………………………………………..….30
a. 超氧歧化酶之最適pH值…………………………………………...31
b. 奈米粒固定化酵素之不同酸鹼條件下室溫儲存性試驗………….31
c. 奈米粒固定化酵素之熱穩定性實驗……………………………...31
肆、結果與討論…………………………………………………............33
1、乳化沉澱法製備複合奈米粒之粒徑及包覆率之探討…....…..….33
2、幾丁聚醣-二氧化矽-超氧歧化酶、超氧歧化酶+硫酸鋅、硫酸鋅
複合奈米粒之特性探討………………………………………....34
2.1粒徑分析…………………………………………………………….34
2.2細胞存活試驗………………………………….………..…….....…35
2.3奈米粒之抗氧化性測定…………………………………………….36
2.4奈米粒固定化酵素之安定性試……………………………….....…37
伍、結論…………………………………………………………….…...42
陸、參考文獻……………………………………………………..……..44
圖…………………………………………………………………….….52
表..………………………………………………………………………66
附圖……………………………………………………………………..76
附表……………………………………………………………………..79














圖目錄
圖一、超氧歧化酶活性測定之標準曲線圖…..………………………..52
圖二、鋅濃度測定之檢量線……………………………………..…….53
圖三、以掃描式電子顯微鏡觀察含超氧歧化酶及硫酸鋅之幾丁聚醣-二氧化矽奈米粒…………………………………………….….54
圖四、以掃描式電子顯微鏡觀察含超氧歧化酶之幾丁聚醣-二氧化矽奈米粒……………………………………………………..……55
圖五、以掃描式電子顯微鏡觀察含硫酸鋅之幾丁聚醣-二氧化矽奈米粒…………………………………………………………..…..56
圖六 、含硫酸鋅、超氧歧化酶或硫酸鋅+超氧歧化酶之幾丁聚醣-二氧化矽奈米粒對(a) 肺癌細胞 (b) 肝癌細胞 (c) 胃癌細胞 (d) 大腸癌細胞存活率之影響………………………….…..57
圖七、超氧歧化酶之最適pH值……………………………………...58
圖八、超氧歧化酶與含超氧歧化酶、硫酸鋅或超氧歧化酶+硫酸鋅之幾丁聚醣-二氧化矽奈米粒清除超氧陰離子能力於不同溫度之熱安定性…………………………..……………………………59
圖九、超氧歧化酶與含有超氧歧化酶、硫酸鋅或超氧歧化酶+硫酸鋅之幾丁聚醣-二氧化矽奈米粒清除超氧陰離子能力於 90℃之熱安定性……………………………………………………..…60
圖十、超氧歧化酶於不同pH值溶液中儲存不同時間後之清除超氧陰離子能力………………………………………………………..61
圖十一、含超氧歧化酶之幾丁聚醣-二氧化矽奈米粒於不同pH值溶液中之清除超氧陰離子自由基室溫儲存安定性..……………62
圖十二、含超氧歧化酶及硫酸鋅之幾丁聚醣-二氧化矽奈米粒於不同
pH值溶液中之清除超氧陰離子自由基室溫儲存安定性...63
圖十三 、含硫酸鋅之幾丁聚醣-二氧化矽奈米粒於不同pH值之溶液中清除超氧陰離子自由基室溫儲存安定性………………..64
圖十四 、含硫酸鋅或超氧歧化酶+硫酸鋅之幾丁聚醣-二氧化矽奈米粒於不同pH值之溶液中清除過氧化氫能力於室溫中之儲存安定性…………………………………………………....65

表目錄
表一、以不同濃度幾丁聚醣及矽酸鈉製備奈米粒之中心組合實驗設計條件……………………………………………………………66
表二、由不同濃度幾丁聚醣與矽酸鈉以乳化沉澱法製備含 500 unit / ml 超氧歧化酶奈米粒之粒徑與包覆率……………….…...…67
表三、由不同濃度幾丁聚醣與矽酸鈉以乳化沉澱法製備含 500 unit / ml 超氧歧化酶及5 % 硫酸鋅奈米粒之粒徑與包覆率…..…68
表四、由不同濃度幾丁聚醣與矽酸鈉以乳化沉澱法製備含 5 % 硫酸鋅奈米粒之粒徑與包覆率……………………..………………69
表五、含超氧歧化酶、超氧歧化酶+硫酸鋅或硫酸鋅之幾丁聚醣-二氧化矽奈米粒之清除超氧陰離子能力……………………..……70
表六、含超氧歧化酶、超氧歧化酶+硫酸鋅或硫酸鋅之幾丁聚醣-二氧化矽奈米粒之清除過氧化氫能力…………………………..…71
表七、不同奈米粒加入溶液中三小時後之抗氧化能力………..……72
表八、含超氧歧化酶之幾丁聚醣-二氧化矽奈米粒於不同pH值緩衝溶液中之清除超氧陰離子能力…………………………….….…73
表九、含超氧歧化酶 + 硫酸鋅之幾丁聚醣-二氧化矽-奈米粒於不同pH值緩衝溶液中之清除超氧陰離子能力………………..…74
表十、含硫酸鋅之幾丁聚醣-二氧化矽-奈米粒於不同pH值緩衝溶液中之清除超氧陰離子能力……………..……………………..75









附件目錄
附圖一、微脂粒對超氧歧化酶之保護作用………………..…………76
附圖二、活性氧來源及超氧歧化酶抗氧化機制………..…..………..77
附圖三 、丙二醛形成途徑……………………………………..……..78
附表一 、人體自行製造的抗氧化酵素………………………………79
附表二 、六類含鋅酵素……………………………..…………………80
陸、參考文獻
王三郎,1994。應用微生物學。高立圖書出版社 。台灣台北。
古遠丰,2004。由紅麴萃取液製備幾丁聚醣奈米粒之方法及其特性之
探討。國立台灣海洋大學食品科學系碩士論文。
李昂,2001。奈米級顆粒在藥物遞送的應用。化工資訊。15 ( 10 ) : 44-55。
何威震,2002。過氧化酵素之製備及酵素固定化。國立交通大學生物科技系碩士論文。
邱紹華,2003。幾丁聚醣在固定化技術上之應用。國立清華大學化學工程學系博士論文。
黃幼念,2001。利用溶膠凝膠法製備載體固定酵素。長庚大學化工與材料工程研究所碩士論文。
程偉政,2003。以褐藻膠鈣固定轉化酵素。國立雲林科技大學工業化學與災害防治研究所碩士論文。
陳國誠,1992。微生物酵素工程學,藝軒出版社。台灣台北。
董瑞南。保護劑在超氧歧化酶微脂粒劑型之作用與機轉探討。嘉南藥理科技大學生物科技研究所碩士論文 ( 2003 )
崔紅梅、揚月欣、劉建宇, 1999。鋅對紅細胞膜氧化損傷的保護作用研究。營養學報。21(2) : 186-192。
周麗玲、黃連珍,1999。缺鋅對大鼠脂質過氧化及抗氧化系統的影響。營養學報。21(2) : 181-185。
潘子明,2004。自由基清除劑之產生。生物產業。15 ( 3 ) : 61-75。
劉瓊淑,1994。幾丁質,幾丁聚醣及其相關酵素之特性與應用。食品工業。 26 ( 1 ) : 26-36。
劉吉平,郝向陽 ( 2003 ) 編。奈米科學與技術。世茂出版社出版,台灣台北。
Baret, A., Jadot, G. and Michelson, A. M. 1984. Pharmacokinetic and anti-inflammatory proterties in the rat of superoxide dismutase (Cu, SOD and Mn, SOD) from various species . Biochemical Pharmacology. 33 : 2755-2760.

Baret, A., Jadot, G. and Michelson, A. M. 1984. Pharmacokinetic and anti-inflammatory properties in the rat of superoxide dismutases (CuSODs and MnSOD) from various species. Biochemical Pharmacology. 12: 67-72.

Burdon, R. H. and Rice-Evans, C. 1989. Free radicals and the regulation of mammalian cell proliferation. Free Radical Research Communication. 6: 345-358.

Cheng, K. C., Cahill, D. S., Kasai, H., Nishimura, S. and Loeb. L. A. 1992. 8-hydroxyguanine, an abundant form oxidative DNA damage, causes GT and AC substitution. Journal of Bioluminescence and Chemiluminescence. 267: 166-172.

Ciriolo, M. K., Battistoni, A., Falconi, M., Filomeni, G. and Rotilio, G. 2001. Role of the electrostatic loop of Cu, Zn superoxide dismutase in the copper uptake process. Eurpean Journal of Biochemistry. 268: 737-742.

Corvo, M. L., Martins, M. B., France, A. P., Morais, J. G., Eugenia, M. and Cruz, M. 1997. Liposome formulations of Cu, Zn-superoxide dismutase: physicochemical characterization and activity assessment in an inflammation model. Journal of Controlled Release. 43 : 1-8.

Cousins, R. J. and Hempe, J. M. 1990. Zinc. pp : 251-260 in M. L. Brown, editor. Present Knowledge in Nutrition. International Life Sciences Institute Nutrition Foundation, Washington, DC, USA.

Couvreur, P., Kante, B., Roland, M., Goit, P., Bauduin, P. and Speiser, P. 1979. Polycyanoacrylate nanocapsules as potential lysosomotropic carrier: preparation, morphology and sorptive properties. Journal of Pharmacy and Pharmacology. 31: 331-332.

Cunningham-Rundles, S. and Cunningham-Rundles, W. F. 1988. Zinc modulation of immune response. pp : 197-214 in R. K. Chandra, editor. Nutrition and Immunology. Alan R. Liss, Inc., New York, U. S. A.

Ebadl, M., Leuschen, M. P., Refaey, H. E., Hamda, F. M. and Rojas, P. 1995. The antioxidant properties of zinc and metallthionein. Neurochemistry International. 29 (2) : 159-166.

Elizabeth, C. and Daniel, E. 1992. NO news is good news. Science. 258 (18) : 1862-1865.

Esterbauer, H. and Chesseman, K. 1990. Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Metallobiochemistry. 186: 470-421.

Frankel, E. N. 1991. Recent advances in lipid oxidation. Journal of the
Science of Food and Agriculture. 54: 495-511.

Fridovich , I. 1975. Superoxide dismutases. Reviews in Biochemical Toxicology. 44:147~159.

Fridovich , I. 1978. The biology of oxygen radicals. Science. 201: 875-880.

Gref, R., Minamitake, Y., Peracchia, M. T., Trubetskoy, V., Torchilin, V. and Langer, R. 1994. Biodegradable long-circulating polymeric nanospheres. Science. 263: 1600-1603.

Hu, F. Q., Hong, Y. and Yuan, H. 2004. Preparation and characterization of solid lipid nanoparticles containing peptide. International Journal of Pharmaceutics. 273: 29-35.

Jasmina , M., Simic, D. V. and Simic, T. P. 1999. Free radicals in cardiovascular diseases. Medical Biology. 6: 11-22.

Jung, T., Breitenbach, A. and Kissel, T. 2001. Sulfobutylated poly (vinyl alcohol)-graft-poly (lactide-co-glycolide)s facilitate the preparation of small negatively charge biodegradable nanospheres. Journal of Controlled Release. 67: 157-169.

Kawashima, Y., Yamamoto, H., Hino, T. and Niwa, T. 1998. Properties of a peptide containing DL-lactide / glycolide copolymer nanospheres prepared by novel emulsion solvent diffusion methods. European Journal of Pharmaceutics and Biopharmaceutics. 45: 41-48.

Kurita, K. 1998. Chemistry and application of chitin and chitosan.
Polymer Degradation and Stability. 59: 117-120.

Leeuwenburgh, C. and Heineck, J. W. 2001. Oxidative stress and antioxidants in exercise. Current Medicinal Chemistry. 8: 829-838.

Lin, C. T., Kuo, T. J., Shaw, J. F. and Kao, M. C. 1999. Characterization of the dimer-monomer equilibrium of the papaya copper / zinc superoxide dismutase and its equilibrium shift by a single amino acid mutation. Journal of Agricultural and Food Chemistry. 47: 2944-2949.

Mann, T. and Kelin, D. 1939. Heamocuprein and hepatocuprein, copper-proein compounds of blood and liver in mammals. Proceedings of the Royal Society of London Series B-Mathematical and Physical Sciences. 128: 303-304.

McCord, J. M. and Fridorich, I. 1969. Superoxide dismutase: an enzymatic function for erythrocuprein. Journal of Biological Chemistry. 244: 6049-6052.

Majeti, N. V. and Kumar, R. 2000. A review of chitin and chitosan applications. Reactive and Functional Polymers. 46: 1-27.

Mocchegiani, E., Muzzioli, M., Cipriano, C. and Giaccni, R. 1998. Zinc, T-cell pathways, aging: role of metallothioneins. Mechanisms of Ageing and Development. 106: 183-204.

Mimic-oka, J., Simic, D. V. and Simic, T. P. 1999. Free radicals in cardiovascular disease. Medical Biology. 6: 11-22.

Nagami, H., Yoshimoto, N., Umakoshi, H., Shimanouchi, T. and Kuboi, R. 2005. Liposome-assisted activity of superoxide dismutase under oxidative stress. Jounal of Bioscience and Bioengineering. 99 (4):423-428.

Powell, S. R. 2000. The antioxidant properties of Zinc. Journal of Nutrition. 130: 1447-1454.

Pantoliano, M. W., Valentine, J.S., Burger, A. R., and Lippard, S. J. 1982. A pH-dependent superoxide dismutase activity for zinc-free bovine erythrocuprein. Reexamination of the role of zinc in the holoprotein. Journal of Inorganic Biochemistry. 17: 325-341.

Peter, H., Proctor, D. M., Edward, S. and Reynolds, M. D. 1984. Free radicals and disease in man. Physiological Chemistry and Physics and Medical. 16: 175-195.

Roe, J. A., Butler, A., Scholler, D. M., Valentine, J. S., Marky, L. and Breslauer, K. J. 1988. Differential scanning calorimetry of Cu, Zn-superoxide dismutase, the apoprotein, and its zinc-substituted derivatives. Biochemistry. 27 (3): 950–958.

Rinkus, S. J. and Taylor, R. T. 1990. Analysis of hydrogen peroxide in freshly prepared coffees. Food and Chemical Toxicology. 28 : 323-331.

Radi, R., Rodriguez, M., Laura, C. and Telleri, R. 1994 . Inhibition of mitochonodrial electron transport by peroxynitrite. Archives of Biochemistry and Biophysics. 308(1) : 89-95.

Rafael, R., Marianela, R., Laura, C. And Rossana, T. 1994. Inhibition of mitochondrial electron transport by peroxynitrite. Archives of Biochemistry and Biophysics. 308: 89-95.

Rachel, C. K. and Ilan, C. 1998. The molecular biology of chitin digestion. Current Opinion in Biotechnology. 9: 270-277.

Saito, Y., Okano , T., Chanzy, H. and Sugiyama, J. 1995. Structural Study of α chitin from the grasping spines of the arrow worm. Journal of Structural Biology. 114: 218-228.

Sashiwa, H. and Shigemasa, Y. 1999. Chemical modification of chitin and chitosan 2: preparation and water soluble property of N-acylated or N-alkylated partially deacetylated chitins. Carbohydrate Polymers. 39: 127-138.

Skaper, S. D. Fabris, M., Carbonare, V. and Loen, A. 1997. Quercetin protects cutaneous tissue associated cell types including sensory neurons from oxidative stress induced by glutathione deleption: cooperative effect of ascorbic. Free Radical Biology and Medicine. 22: 669-678.

Stadtman, E. R. 1992. Protein oxidation and aging. Science. 257: 1220-1224.

Steller, H. 1995. Mechanisms and genes of cellular suicide. Science. 267: 1445-1448.

Tina, L., Cai, Q. and Wei, H. 1998. Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radical Biology and Medicine. 24: 1477-1484.

Tokumitsu, H., Ichikawa, H. and Fukumori, Y. 1999. Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron capture therapy of cancer: Preparation by novel emulsion-droplet coalescence technique and characterization.
Pharmaceutical Research. 16: 1830-1835.

Villalonga, R., Cao, R., Fragoso, A., Damiao, A. E., Ortiz, P. D. and Caballero, J. 2005. Supramolecular assembly of β-cyclodextrin-modified gold nanoparticles and Cu, Zn-superoxide dismutase on catalase. Journal of Molecular Catalysis B: Enzymatic. 35: 79-85.

Vuokko, L. Kinnula and James, D. Crapo. 2003. Superoxide dismutase in the lung and human lung diseases. American Journal of Respiretory and Critical Care Medicine. 167: 1600-1619.

Walling, C. 1982. In Oxidase and Related Redox Systems. John Wiley. New York. pp: 85-97.

Wapnir, R. A. 1990. Protein Nutrition and Mineral Absorption. CRC Press, Inc., Florida, USA.

Zambaux, M. F., Bonneaux, F., Gref, R., Maincent, P., Dellacherie, E., Alonso, M. J., Labrude, P. and Vigneron, C. 1998. Influence of experimental parameters on the characteristics of poly (lactic acid) nanoparticles prepared by double emulsion method. Journal of Controlled Release. 50: 31-40.

Zam , M. F., Bonneaux, F., Gref, R., Dellacherie, E. and Vigneron, C. 2001. Protein C-loaded monomethoxypoly (ethylene oxide)-poly (lactic acid) nanoparticles. International Journal of Pharmaceutics. 212: 1-9.

Zago, M. P. and Oteiza, P. I. 2001. The antioxidant properties of zinc: interactions with iron and antioxidants. Free Radical Biology and Medicine. 31 (2): 266-274.

Zhou. J. Y., and Prognon, P. 2005. Raw material enzymatic activity determination: A specific case for validation and comparison of analytical methods - The example of superoxide dismutase (SOD). Journal of Pharmaceutical and Biomedical Analysis. 40: 1143-1148.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top