跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/15 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鍾佩珊
研究生(外文):Pei-Shan Chung
論文名稱:利用大腸桿菌系統表現綠豆澱粉分支酶ІІ基因之重組蛋白質
論文名稱(外文):Expression of mungbean (Vigna radiata L.) starch branching enzyme ІІ recombinant protein in E. coli system
指導教授:柯源悌
指導教授(外文):Yuan-Tih Ko
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:85
中文關鍵詞:綠豆澱粉分支酶表現
外文關鍵詞:mungbeanstarch branching enzymeexpression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
澱粉分支酶 (Starch branching enzyme, SBE, EC 2.4.1.18) 是澱粉生合成路徑的酵素之ㄧ,在支鏈澱粉 (amylopectin) 的合成上扮演重要的角色。本論文目的是將台南五號綠豆的 (Vigna radiata cv. Tainan no.5) VrsbeII 次選殖到表現載體,並於大腸桿菌系統表現出具有活性的 rVrSBEⅡ 重組蛋白質。首先將 VrsbeII 構築於 pET-30 EK/LIC 表現載體中,並轉形到 NovaBlue 宿主細胞,希望獲得只含 ORF 之序列,但發現全長只接入約 350 bp 片段,經過慎察斷裂位置,發現存在相同 6 bp (CCAGTT) direct repeat的跳動子突變位置,因此避開此序列重新設計具有 Bam HI 和 Not I 切位的引子,PCR 量化出在C端短少24個核苷酸的目標片段,載入兩端經限制酶處理的pET21b 載體中,並轉型至大腸桿菌 BL21 表現系統,成功的表現出以可溶性形式存在於細胞質的重組蛋白。 rVrSBEⅡ在宿主的最佳誘導條件,為 37℃震盪培養至 OD600 到 0.6 後,以 0.2 mM IPTG 誘導 5 小時可獲得最佳 rVrSBEⅡ表現量,粗萃物比活性為 0.252 U/mg。利用具親和性之 Ni-NTA (Ni-Nitrilotriacetic acid) 管柱純化,以 SDS-PAGE 評估 rVrSBEⅡ 分子量為 108-kDa。並進一步利用西方點墨法來確認,結果顯示粗萃物與部份純化後的rVrSBEⅡ,皆可被專一性 Anti-6xHis tag mouse monoclonal 所雜合,可確定所誘導出的重組蛋白質。經由具親和性之 Ni-NTA resin 管柱純化,所得之純化重組蛋白質比活性提高至 6.402 U/mg,其純化倍數已達 25.4 倍。本探討已將VrsbeⅡ 基因放入大腸桿菌系統表現出具有生物活性之重組蛋白質,預期未來可進一步以基因工程改善其酵素性質利用於食品科學應用。
Starch branching enzyme (SBE, EC 2.4.1.18) is a vital enzyme for amylopectin synthesis in the starch biosynthetic pathway. The aim of this thesis was to subclone VrsbeII of mungbean (Vigna radiata L. cv Tainan no. 5) into expression vector and produce active enzymes in the E. coli system. First, VrsbeII was constructed into pET-30 EK/LIC vector and transformed into E. coli NovaBlue host cells, hopefully full length sequence of the open reading frame could be obtained. However, there was only approx. 350 bp fragment could be stably maintained in pET-30 EK/LIC system and the unexpected outcome reoccurred. The sequence in the 350 bp was carefully examined and found astonishingly that two transposon-like 6-bp (CCAGTT) direct repeat sequences were in VrsbeII. Therefore, primers designed with Bam HІ and Not І sites which skipped one direct repeat sequence were used to prepare a 24 nucleotide shortened VrsbeII at the 3’-end by PCR. The redesigned insert fragment was ligated into the parallel sites on pET21b vector, followed by transforming into E. coli BL21 (DE3) cells, and expressed successfully as a soluble protein in the cytosol. The optimal expression condition for rVrSBEⅡwas evaluated that the cells were grown at 37℃ until OD600 to 0.6, then induced with 0.2 mM IPTG for 5 hrs, and the maximal crude enzyme activity of 0.25 U/mg was obtained. The crude enzyme was purified by HisTrapTM affinity column and the molecular size of rVrSBEⅡwas 108-kDa whose activity has enriched 25.5-fold (6.402 U/mg). The 108-kDa rVrSBEⅡwas also detected by anti-6x His-tag mouse monoclonal antibodies in Western blot. In summary, VrsbeⅡ has been expressed into a biologically functional protein in E. coli system and expected to further improve its enzymatic properties by genetic engineering for application in food use.
圖 目 錄 IV
表 目 錄 IV
中文摘要 VII
英文摘要 VIII
第一章 前 言 1
第二章 文獻回顧 4
一、澱粉之簡介 4
1.1 澱粉的組成及顆粒結構 4
1.2 澱粉之生合成酵素 4
二、澱粉分支酶之研究 6
2.1 作用模式與特性 6
2.2 SBE活性分析之方法 7
2.3 基因結構之探討 8
2.4 異構酶作用之差異對澱粉結構的影響 11
2.5 澱粉結構對功能性的影響 12
第三章 材料與方法 24
3.1 實驗材料與藥品 24
3.2 綠豆之sbe II基因的製備與純化 27
3.3 建構綠豆之sbeII基因之表現載體 30
3.4 選殖載體轉形 (transformation) 進入勝任細胞 33
3.5 菌落 PCR 法 33
3.6小量質體DNA抽取 34
3.7 表現質體以限制酶切割確認 35
3.8定序與分析 35
3.9 菌株保存與活化 36
3.10 蛋白質之表現 36
3.11 蛋白質之抽取 37
3.12 重組蛋白質之純化 37
3.13 蛋白質濃度測定 39
3.14 酵素分子量之測定 39
3.15 西方點墨法 (Western blot method) 42
3.16 直鏈澱粉分支試驗 (Amylose-branching assay) 44
3.17 序列分析軟體與檢索之資料庫 45
第四章 結果與討論 51
4.1 綠豆中sbe ІІ基因表現載體之建構 51
4.2 重組rVrSBE ІІ 蛋白質之表現 52
4.3 重組rVrSBE ІІ 蛋白質之純化 54
4.4 重組rVrSBE ІІ之酵素活性分析 55
4.5 VrSBEII蛋白質之結構模擬 57
第五章 結論 76
第六章 參考文獻 77
石韻琦,2004,綠豆澱粉分支酶cDNA之選殖與特性分析,私立中國醫藥大學營養所碩士學位論文,台中。
張敬宜,2002,綠豆澱粉分支酵素的鑑定,私立中國醫藥大學營養所碩士學位論文,台中。
Abad, M.C., Binderup, K., J. R-S, Arni, R.K., Preiss, J. and Geiger, J. H. 2002. The X-ray crystallographic structure of Escherichia coli. J. Biol. Chem. 277(44):42164-42170.
Aslanidis, C. and De Jong, P.J. 1990. Ligation-independent cloning of PCR products (LIC-PCR). Nucleic. Acids Res. 18: 6069-6074.
Baba, T., Kimura, K., Mizuno, K., Etoh, H., Ishida, Y., Shida, O. and Arai, Y. 1991. Sequence conservation of the catalytic regions of amylolytic enzymes in maize branching enzyme-I. Biochem. Biophys. Res. Commun. 181: 87-94.
Bhattacharyya, M.K., Smith, A.M., Ellis, T.H.N., Hedley, C. and Martin, C. 1990. The wrinkled-seed character of pea described by mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60: 115-122.
Binderup, K. 1997. Site directed mutagenesis studies and crystallization experiments in the E. coli branching enzyme. Master’s Thesis. Ǻrhus University, Denmark.
Boyer, C.D. and Preiss, J. 1978a. Multiple forms of (1,-4)-α-D-glucan 6-glucosyl transferase from developing Zea mays L. kernels. Carbohydr. Res. 61: 321-324.
Boyer, C.D. and Preiss, J. 1978b. Multiple forms of starch branching enzyme of maize: Evidence for independent genetic control. Biochem. Biophys. Res. Commun. 80: 169-175.
Burton, R.H., Bewley, J.D., Smith, A.M., Bhattacharyya, M.K., Tatge, H., Ring, S., Bull, V., Hamilton, W.D.O. and Martin, C. 1995. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. Plant J. 7: 3-15.
Cao, H. and Preiss, J. 1996. Evidence for essential arginine residues at tre active site of maize branching enzymes. J. Prot. Chem. 15: 291-304.
Chiang Hsieh, P-Y. and Ko, Y.T. 2005. Incorporation of sucrose gradient centrifugation with spectrophotomertric assay for isolation mungbean starch branching enzyme. Taiwan. J. Agric. Chem. Food Sci. 43 (6): 419-427.
Chou, P.Y. and Fasman, G.D. 1978. Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. 47: 45-148.
Devereux, J., Haeberli, P. and Smithies, O. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic. Acids Res. 12: 387-395.
Dinges, J. R., Colleoni, C., Myers, A. M. and James, M. G. 2001. Molecular structure of three mutations at the maize sugary1 locus and their allele-specific phenotypic effects. Plant Physiol. 125(3): 1406-1418.
Edwards, A., Marshall, J., Sidebottom, C., Visser, R.G.F., Smith, A.M. and Martin, C. 1995. Biochemical and molecular characterization of a novel starch synthase from potato tuber. Plant J. 8: 283-294.
Edwards, J., Green, J. H. and ap Rees, T. 1988. Activity of branching enzyme as a cardinal feature of the Ra locus in Pisum sativum. Phytochem. 27: 1615-1620.
Fisher, D.K., Boyer, C.D. and Hannah, L.C. 1993. Starch branching enzyme II from maize endosperm. Plant Physiol. 102: 1045-1046.
Fisher, D.K., Kim, K.N., Gao, M., Boyer, C.D. and Guiltinan, M.J. 1996. A cDNAs encoding starch branching enzyme І from maize endosperm. Plant Physiol. 108: 1313-1314.
French, D. 1984. Organization of the starch granules. In“Starch: Chemistry and Technology”, eds. Whistler, R.L., BeMiller, J.N. and Paschall, E.F., 183-247. Orlando: Academic Press.
Gao, M., Fisher, D.K., Kim, K.N., Shannon, J.C. and Guiltinan, M.J. 1996. Evolutionary conservation and expression patterns of maize starch branching enzyme I and IIb genes suggests isoform specialization. Plant Mol. Biol. 30: 1223-1232.
Gao, M., Fisher, D.K., Kim, K.N., Shannon, J.C. and Guiltinan, M.J. 1997. Independent genetic control of maize starch-branching enzyme IIa and IIb. Isolation and characterization of a sbe2a cDNA. Plant Physiol. 114: 69-78.
Geiger, D.R. and Servaites, J.C. 1994. Diurnal regulation of photosynthetic carbon metabolism in C3 plants. Annu. Rev. Plant Physiol. Mol. Biol. 45: 235-256.
Guan, C., Li, P., Riggs, P.D. and Inouye, H. 1988. Vectors that facilitate the expression and purification of foreign peptides in Escherichia coli by fusion to maltose-binding protein. Gene 67: 21-30.
Guan, H.P. and Preiss, J. 1993. Differentiation of the properties of the branching isoenzymes from maize (Zea mays). Plant Physiol. 102: 1269-1273.
Hamada, S., Ito, H., Hiraga, S., Inagaki, K., Nozaki, K., Isono, N., Yoshimoto, Y., Takeda, Y. and Matsui, H. 2002. Differential characteristics and subcellular localization of two starch-branching enzyme isoforms encoded by a single gene in Phaseolus vulgaris L. J. Biol. Chem. 277: 16538-16546.
Hamada, S., Nozaki, K., Ito, H., Yoshimoto, Y., Yoshida, H., Hiraga, S., Onodera, S., Honma, M., Takeda, Y. and Matsui, H. 2001. Two starch-branching-enzyme isoforms occur in different fractions of developing seeds of kidney bean. Biochem. J. 359: 23-34.
Haun, R.S., Serveni, I.M. and Moss, J. 1992. Rapid, reliable ligation-independent cloning of PCR products using modified plasmid vectors. Biotechniques 13: 515-518.
Hawker, J.S., Ozbun, J.L., Ozaki, H., Greenberg, E. and Preiss, J. 1974. Interaction of spinach leaf adenosine diphosphate glucose α-1,4-glucan, α-1,4-glucan-6-glucosyl transferase in synthesis of branched α-glucan. Arch. Biochem. Biophys. 160: 530-551.
Hodge, J.E. and Osman, E.M. 1976. Carbohydrates. In“Food Chemistry”pp.102-114. Fennema, O.R. Marcel Dekker Inc., New York.
Hoover, R., Li, Y.X., Hynes, G. and Senanayake, N. 1997. Physicochemical characterization of mung bean starch. Food Hydrocol. 11: 401-408.
Ito, H., Hamada, S., Isono, N., Yoshizaki, T., Ueno, H., Yoshimoto, Y., Takeda, Y., Matsui, H. 2004. Functional characteristics of C-terminal of starch-branching enzymes from developing seeds of kidney bean (Phaseolus vulgaris L.). Plant Sci. 166: 1149-1158.
Jespersen, H.M., MacGregor, E.A., Henrissat, B., Sierks, M.R. and Svensson, B. 1993. Starch and glycogen-debranching and branching enzymes: prediction of structural features of the catalytic (β/α)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J. Protein Chem. 12: 791-805.
Jobling, S. 2004. Improving starch for food and industrial applications. Curr. Opin. Plant Biol. 7: 210-218.
Jobling, S.A., Schwall, G.P., Westcott, R.J., Sidebottom, C.M., Debet, M., Gidley, M.J., Jeffcoat, R. and Safford, R. 1999. A minor form of starch branching enzyme in potato ( Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBE A. Plant J. 18: 163-171.
Kawasaki, T., Mizuno, K., Baba, T. and Shimada, H. 1993. Molecular analysis of the gene encoding a rice starch branching enzyme. Mol. Gen. Genet. 237: 10-16.
Khoshnoodi, J., Blennow, A., Ek, B., Rask, L. and Larsson, H. 1996. The multiple forms of starch-branching enzyme I in Solanum tuberosum. Eur. J. Biochem. 242: 148-155.
Kossmann, J. and Lloyd, J. 2000. Understanding and influencing starch biochemistry. Crit. Rev. Biochem. Mol. Biol. 35(3): 141-196.
Kossmann, J., Visser, R.G.F., Muller-Rober, B., Willmitzer, L. and Sonnewald, U. 1991. Cloning and expression analysis of a potato cDNA that encodes branching enzyme: Evidence for co-expression of starch biosynthetic genes. Mol. Gen. Genet. 230: 39-44.
Krisman, C.R. 1962. A method for the colorimetric estimation of glycogen with iodine. Anal. Biochem. 4: 17-23.
Kuriki, T., Guan, H., Sivak, M. N. and Preiss, J. 1996. Analysis of the active center of branching enzyme Ⅱ from maize endosperm. J. Prot. Chem. 15: 305-313.
Kuriki, T., Stewart, D. C. and Preiss, J. 1997. Construction of chimeric enzymes out of maize endosperm branching enzymes ⅠandⅡ: Activity and properties. J. Biol. Chem. 272: 28999-29004.
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685.
Larsson, C.T., Hofvander, P., Khoshnoodi, J., Ek, B., Rask, L. and Larsson, H. 1996. Three isoforms of starch synthase and two isoforms of branching enzyme are present in potato tuber starch. Plant Sci. 117: 9-16.
Larsson, C.T., Khoshnoodi, J., Ek, B., Rask, L. and Larsson, H. 1998. Molecular cloning and characterization of starch-branching enzyme II from potato. Plant Mol. Biol. 37: 505-511.
Li C.Y., Chu, Y.L. and Chung, Y.H. 1987. Isolation and characterization of mungbean starch. In Mungbean, Proceedings of the second Internaional Symposium. Bangkok, Thailand, 1987. Asian Vegetable Research and Development Center, p.528-535.
Martin, C. and Smith, A.M. 1995. Starch biosynthesis. Plant Cell 7: 971-985.
Mizuno, K., Kawasaki, T., Shimada, H., Satoh, H., Kobayashi, E., Okumura, S., Arai, Y. and Baba, T. 1993. Alteration of the structural properties of starch commponents by the lack of an isoform of starch branching enzyme in rice seeds. J. Biol. Chem. 286: 19084-19091.
Mizuno, K., Kimura, K., Arai, Y., Kawasaki, T., Shimada, H. and Baba, T. 1992. Starch branching enzymes from immature rice seeds. J. Biol. Chem. 112: 643-651.
Mizuno, K., Kobayashi, E., Tachibana, M., Kawasaki, T., Fujimura, T., Funane, K., Kobayashi, M. and Baba, T. 2001. Characterization of an isoform of rice starch branching enzyme, RBE4, in developing seeds. Plant Cell Physiol. 42: 349-357.
Morell, M.K., Blennow, A., Kosar-Hashemi, B. and Samuel, M.S. 1997. Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiol. 113: 201-208.
Morell, M.K., Kosar-Hashemi, B., Cmiel, M., Samuel, M.S., Chandler, P., Rahman, S., Buleon, A., Batey, I.L. and Li, Z. 2003. Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant J. 34: 173-185.
Mutisya, J., Sathish, P., Sun, C., Andersson, L., Ahlandsberg, S., Baguma, Y., Palmqvist, S., Odhiambo, B., Per, A. and Jansson, C. 2003. Starch branching enzymes in sorghum (Sorghum bicolor) and barley (Hordeum vulgare): comparative analyses of enzyme structure and gene expression. J. Plant Physiol. 160: 921-930.
Nair, R.B., Baga, M., Scoles, G.J., Kartha, K.K. and Chibbar, R.N. 1997. Isolation, characterization and expression analysis of a starch branching enzyme II cDNA from wheat. Plant Sci. 122: 153-163.
Nakamura, Y. and Yamanouchi, H. 1992. Nucleotide sequence of a cDNA encoding starch-branching enzyme, or Q-enzyme І, from rice endosperm. Plant Physiol. 99: 1265-1266.
Nilsson, B. and Abrahmsen, L. 1990. Fusions to staphylococcal protein A. Methods-Enzymol. 185: 144-161.
Nishi, A., Nakamura, Y., Tanaka, N. and Satoh, H. 2001. Biochemical and genetic analysis of the effects of amylase-extender mutation in rice endosperm. Plant Physiol. 127: 459-472.
Nozaki, K., Hamada, S., Nakamori, T., Ito, H., Sagisaka, S., Yoshida, H., Takeda, Y., Honma, M. and Matsui, H. 2001. Major isoforms of starch branching emzymes in premature seed of kidney bean (Phaseolus vulgaris L.). Biosci. Biotechnol. Biochem. 65: 1141-1148.
Rahman, S., Regina, A., Li, Z., Mukai, Y., Yamamoto, M., Kosar-Hashemi, B., Abrahams, S. and Morell, M.K. 2001. Comparison of starch-branching enzyme genes reveals evolutionary relationships among isoforms. Characterization of a gene for starch-branching enzyme IIa from the wheat D genome donor Aegilops tauschii. Plant Physiol. 125: 1314-1324.
Richardson, P.H., Jeffcoat, R. and Shi, Y-C. 2000. High-amylose starches: from biosynthesis to their use as food ingredients. MRS Bulletin 25: 20-24.
Robin, J.P., Mercier, C., Charbonniere, R. and Guilbot, A. 1974. Lintnerized starch gel filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 51: 389-406.
Salehuzzaman, S.N.I.M., Jacobsen, E. and Visser, R.G.F. 1992. Cloning, partial sequencing and expression of a cDNA coding for branching enzyme in cassava. Plant Mol. Biol. 20: 809-819.
Sivak, M.N. and Preiss, J. 1998. Branching enzyme. In“Advances in Food and Nutrition Research”, eds. Sivak, M.N. and Preiss, J., 41: 89-106. San Diego, London, Boston, New York, Sydney, Tokyo and Toronto: Academic press.
Smith, A.M. 1988. Major differences in isoforms of starch-branching enzyme between developing embryos of round and wrinkled-seeded peas (Pisum sativum L.). Planta. 175: 270-279.
Smith, D.B. and Johnson, K.S. 1988. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67: 31-40.
Stofko-Hahn, R.E., Carr, D.W. and Scott, J.D. 1992. A single step purification for recombinant proteins. Characterization of a microtubule associated protein (MAP2) fragment which associates with the type ІІ cAMP-dependent protein kinase. FEBS Lett. 302: 274-278.
Sun, C., Sathish, P., Ahlandsberg, S. and Jansson, C. 1998. The two genes encoding starch-branching enzymes IIa and IIb are differentially expressed in barley. Plant Physiol. 118: 37-49.
Svensson, B. 1994. Protein engineering in the α-amylase family: Catalytic mechanism, substrate specificity and stability. Plant Mol. Biol. 25: 141-157.
Takeda, Y., Guan, H. P. and Preiss, J. 1993. Branching of amylose by the branching isoenzymes of maize endosperm. Carbohydr. Res. 168: 79-88.
Van Dyke, M.W., Sereto, M. and Sawadogo, M. 1992. Single-step purification of bacterially expressed polypeptides containing an oligo-histidine domain. Gene 111: 99-104.
Visser, R.G.F. and Jacobsen, E. 1993. Towards modifying plants for altered starch content and composition. TIBTECH. 11: 63-68.
Yamanouchi, H. and Nakamura, Y. 1992. Organ specificity of isoforms of starch branching enzyme (Q-enzyme) in rice. Plant Cell Physiol. 33: 985-991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top