跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/14 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳欣蕙
研究生(外文):Xin-Hui Wu
論文名稱:PseudomonasvesicularisMA103菌株所產agarasesPV-1與PV-2之純化與性質探討
論文名稱(外文):Sudies on Purification and Characterization of Agarases PV-1 and PV-2 from Pseudomonas vesicularis MA103
指導教授:潘崇良
指導教授(外文):Vhorng-Liang Pan
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:115
中文關鍵詞:洋菜酶酵素純化酵素生化性質新洋菜寡糖水解產物洋菜降解
外文關鍵詞:agaraseenzyme purificationenzyme characterizationneoagaroligosaccharidehydrolysateagar-degrading
相關次數:
  • 被引用被引用:10
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

Pseudomonas vesicularis MA103 為一株具有分解洋菜能力的海洋細菌。將此菌於 MMB-MAEF108 發酵槽中26oC、150 rpm、48 hr、pH 6.2、通氣量 4.0 L/min培養,收集離心去除菌體後之培養液,進行洋菜酶的分離與純化。
以 DE-52 離子交換樹脂層析,可分離出三個具分解洋菜能力的蛋白質波峰劃分區域,個別收集後命名為 PV-1、PV-2、及 PV-3,其比活性分別為 5008.73 U/mg、5801.76 U/mg、及 6604 U/mg,純化倍數分別為 18.89 倍、20.69 倍、及 23.85 倍。PV-1 及 PV-2 再經 Bio-Gel P-100 膠體過濾層析其純化後,經 12% SDS-PAGE 電泳後得知酵素分子質量分別為 62.9 kDa 及 86.4 kDa
Agarase PV-1 的最適作用 pH 值為 6.0,最適作用溫度為 40oC,但於 50oC 下反應 15 min 相對活性降至 20.00%。Agarase PV-2 的最適作用 pH 值為 7.0,最適作用溫度為 40oC 或 45oC,於50oC 下反應 15 min 相對活性降至 58.86%。
Agarases PV-1 與 PV-2 以 HIMEDIATM agar 為基質時有最佳之基質特異性活性,相對 agarose 為基質分解活性分別為 1.43 及 1.24 倍。Agarase PV-2 無法分解馬尾藻 (褐藻) 多醣。
Agarases PV-1 或 PV-2 個別水解中性洋菜 (agarose) 之水解產物經 HPLC 分析,所得產物各為一介於新洋菜二糖與新洋菜六糖間之寡醣類。利用 agarases PV-1 或 PV-2 個別與新洋菜六糖 (neoagarohexaose) 混合反應,經 HPLC 分析,所得產物各為一大於六糖之寡醣類,故推測 agarases PV-1 與 PV-2 為兼具水解及合成反應活性之酵素。
Abstract

Pseudomonas vesicularis MA103 is a marine bacterium, which has the ability to degrade agar. Strain MA103 was grown at 26oC for 48 hr in MMB-MA103 broth with 150 rpm, pH 6.2, air flow rate 4.0 L/min in fermenter. After removing the cells, collected crude enzymes proceed in the separation and purification of the agarases.
The chromatograph of the wide enzymes with DE-52 gel achieved the separation of three agarases, they are named PV-1, PV-2, and PV-3 by their elution order in NaCl gradient. The following properties of these PV-1, PV-2, and PV-3 agarases were: specific activity, 5008.73, 5801.76, and 6604 U/mg; purification fold, 18.89, 20.96, and 23.85 fold; respectively. Agarases PV-1 and PV-2 were purified further by Bio-Gel P-100 chromatography. The estimated molecular mass of agarases PV-1 and PV-2 were 62.9 kDa and 86.4 kDa, respectively.
The optimum pH for agarase PV-1 was found to be 6.0. The optimum temperature for PV-1 was 40oC, but 80% of the enzyme activity was inactivated in 15 minutes under 50oC. The optimum pH for agarase PV-2 was found to be 7.0. The optimum temperature for PV-2 was 40oC or 45oC, but 58.86% of the enzyme activity was inactivated in 15 minutes under 50oC.
The best substrate specific activities of agarases PV-1 and PV-2 toward HIMEDIATM agar were 1.42 and 1.24 folds digestion activity compare to agarose, respectively. Agarase PV-2 did not have the capability to degrade Sargassum sp. polysaccharide.
Hydrolytic products of agarose digested by either agarases PV-1 or PV-2 were analyzed by HPLC, and the results showed that they could be oligosaccharides, which have molecular size between neoagarohexaose and neoagarobiose. Products of neoagarohexaose reacted with agarases PV-1 and PV-2 were analyzed by HPLC. The products examined could be oligosaccharides, whose molecular size was larger than neoagarohexaose. Based on these results, agarases PV-1 and PV-2 are enzymes that could have both hydrolytic and polymeric activitires.
目  錄

目錄 i
圖目錄 v
表目錄 viii
附錄目錄 ix
中文摘要 x
英文摘要 (Abstract) xi
壹、前言 1
貳、文獻整理 3
一、洋菜的構造與特性 3
二、洋菜酶生產菌株及其分離來源 3
三、洋菜酶對洋菜水解的作用機制 5
四、洋菜酶之生化特性 6
4-1 溫度和 pH 值 6
4-2 分子量 7
4-3 金屬離子 8
五、海藻寡醣組成成分鑑定 9
5-1 薄層層析法 (Thin-layer chromatography, TLC) 9
5-2 高效能液相層析法 (High-performance liquid chromatography, HPLC) 10
5-3 磁核共振光譜法 (Nuclear magnetic resonance, NMR) 10
六、洋菜酶的應用 11
6-1 細胞的分離 11
6-2 DNA的分離 12
6-3 藻類原生質體的製作 12
6-4 海藻多醣的生產與黏度降低 13
6-5 藻類組成的分析 13
6-6 融合瘤細胞的分離 14
七、藻類多醣之洋菜酶水解物 14
7-1 生理活性 14
7-2 應用 15
參、實驗設計 18
肆、實驗材料與方法 19
一、實驗材料 19
1-1 實驗菌株 19
1-2 試驗藥品 19
     1-2-1 藥品 19
     1-2-2 電泳標準品 21
     1-2-3 培養基組成 22
     1-2-4 洋菜酶反應基質 22
     1-2-5 DNS 溶液 23
     1-2-6 膠過濾緩衝液 23
     1-2-7 SDS-PAGE 23
     1-2-8 電泳溶液 24
    1-3 儀器設備 24
二、實驗方法 26
    2-1 洋菜酶之生產及濃縮 26
     2-1-1 菌株保存 26
     2-1-2 菌株活化 26
     2-1-3 洋菜酶之生產 26
     2-1-4 洋菜酶之濃縮 27
    2-2 洋菜酶的活性測定 27
    2-3 蛋白質的定量 28
    2-4 洋菜酶的純化分離 28
     2-4-1 DE-52 離子交換樹脂層析 28
     2-4-2 Bio-Gel P-100 膠體過濾層析 29
     2-4-3 純化酵素之命名 29
    2-5 洋菜酶之生化性質測試 29
     2-5-1 分子量的鑑定 29
     2-5-2 基質特異性 30
     2-5-3 最適作用 pH 值 30
     2-5-4 pH 值的安定性 30
     2-5-5 最適作用溫度 30
     2-5-6 熱安定性 31
     2-5-7 金屬離子的影響 31
     2-5-8 儲藏安定性 31
    2-6 洋菜酶之分解產物的探討 31
     2-6-1 HPLC 鑑定 31
    2-7 洋菜酶定序 32
     2-7-1 內部可能胺基酸序列質譜儀分析 32
    2-8 統計與分析 32
伍、結果與討論 33
  一、洋菜酶的純化分離 33
  二、洋菜酶的生化性質 35
    2-1 最適作用溫度與溫度安定性 35
    2-2 最適作用 pH 值與 pH 值安定性 38
    2-3 金屬離子之影響 40
    2-4 儲藏安定性 41
    2-5 基質特異性 43
    2-6 水解產物分析 45
     2-6-1 MA103 agarases 粗酵素液之水解產物分析 45
     2-6-2 Agarase PV-1 之水解產物分析 46
     2-6-3 Agarase PV-2 之水解產物分析 47
陸、結論 50
柒、參考文獻 52
捌、附錄 105


圖目錄

圖一、 MA103 garases 粗酵素DE-52層析圖 64
圖二、 P. vesicularis MA103 所產洋菜酶 DE-52 部份純化 之12% SDS-PAGE 圖 65
圖三、 Agarase PV-1 之 Bio-Gel P-100 膠體過濾層析圖 66
圖四、 P. vesicularis MA103所產agarase PV-1 12% SDS- PAGE 圖 67
圖五、 Agarase PV-2 之 Bio-Gel P-100 膠體過濾層析圖 68
圖六、 P. vesicularis MA103所產agarase PV-2 12% SDS- PAGE圖 69
圖七、 MA103 agarases 粗酵素液的最適反應溫度 70
圖八、 Agarase PV-1 的最適反應溫度 71
圖九、 Agarase PV-2 的最適反應溫度 72
圖十、 MA103 agarases 粗酵素液之溫度安定性 73
圖十一、 Agarase PV-1之溫度安定性 74
圖十二、 Agarase PV-2之溫度安定性 75
圖十三、 MA103 agarases 粗酵素液於不同緩衝液中的最適 作用 pH 值 76
圖十四、 Agarase PV-1 於不同緩衝液中的最適作用 pH 值 77
圖十五、 Agrase PV-2 於不同緩衝液中的最適作用 pH 值 78
圖十六、 pH 值對 MA103 agrases 粗酵素液之安定性 79
圖十七、 pH 值對 agarase PV-1 之安定性 80
圖十八、 pH 值對 agarase PV-2 之安定性 81
圖十九、 金屬離子對 MA103 agarases 粗酵素液活性之影響 82
圖二十、 金屬離子對 agarase PV-1 活性之影響 83
圖二十一、金屬離子對 agarase PV-2 活性之影響 84
圖二十二、 MA103 agarases粗酵素液對十二種藻類多醣之 基質特異性 85
圖二十三、 Agarase PV-1 對十二種藻類多醣之基質特異性 86
圖二十四、 Agarase PV-2 對十二種藻類多醣之基質特異性 87
圖二十五、 半乳糖、新洋菜二糖、及新洋菜六糖標準品之 高效能液相層析圖 88
圖二十六、 MA103 agarases 粗酵素液與 0.1% agarose 反應 1-4 hr 之高效能液相層析圖 89
圖二十七、 MA103 agarases粗酵素液與0.1% neoagarohexaose
反應 1-4 hr 之高效能液相層析圖 90
圖二十八、 MA103 agarases 粗酵素液與 0.1% neoagarobiose
反應 1-4 hr 之高效能液相層析圖 91
圖二十九、 MA103 agarases 粗酵素液與 0.1% galactose 反應 1-4 hr 之高效能液相層析圖 92
圖三十、 Agarase PV-1 與 0.1% agarose 反應 1-4 hr之高 效能液 相層析圖 93
圖三十一、 Agarase PV-1 與 0.1% neoagarohexaose 反應 1-4 hr之高效能液相層析圖 94
圖三十二、 Agarase PV-1 與 0.1% neoagarobiose 反應 1-4 hr 之高效能液相層析圖 95
圖三十三、 Agarase PV-1 與 0.1% galactose 反應 1-4 hr 之高 效能 液相層析圖 96
圖三十四、 Agarase PV-2 與 0.1% agarose 反應 1-4 hr 之高 效能液相層析圖 97
圖三十五、 Agarase PV-2 與 0.1% neoagarohexaose 反應 1-4 hr 之高效能液相層析圖 98
圖三十六、 Agarase PV-2 與 0.1% neoagarobiose 反應 1-4 hr 之高效能液相層析圖 99
圖三十七、 Agarase PV-2 與 0.1% galactose 反應 1-4 hr 之 高效能液相層析圖 100


表目錄

表一、 Pseudomonas vesicularis MA103 洋菜酶純化表 101
表二、 MA103 agarases 粗酵素液儲藏安定性 102
表三、 Agarase PV-1 儲藏安定性 103
表四、 Agarase PV-2 儲藏安定性 104

附錄目錄

附錄一、 Agarose 的基本構造及洋菜酶作用位置 105
附錄二、 Agaropectin可能組成基本單位構造 105
附錄三、 Agarases 的生產微生物、種類及分離來源 106
附錄四、 微生物所產洋菜酶分解洋菜產物 108
附錄五、 洋菜酶的生化特性 110
附錄六、 Agarase PV-2 胺基酸序列質譜儀比對報告一 112
附錄七、 Agarase PV-2 胺基酸序列質譜儀比對報告二 113
附錄八、 Agarase PV-2 胺基酸序列質譜儀比對報告三 114
柒、參考文獻
李健瑋。2000。高溫洋菜分解酵素生產菌株之菌種鑑定及洋菜分解酵素之純化。私立東吳大學微生物學系碩士論文,臺北,臺灣。
吳紹祺。1999。海洋細菌所產 agarases 生產條件與海藻多醣經 agarase 分解所得寡醣類組成之探討。國立臺灣海洋大學食品科學系碩士學位論文,基隆,臺灣。
吳紹祺。2005。海藻多醣洋菜酶水解物及其發酵產物之生理活性研究。國立臺灣海洋大學食品科學系博士學位論文,基隆,臺灣。
袁景道。2001。海洋細菌 Pseudomonas vesicularis MA103 之 agarases 發酵槽生產條件探討以及海藻多醣與經酵素水解所得寡醣之應用。國立臺灣海洋大學食品科學系博士學位論文,基隆,臺灣。
馬盈瑜。2003。龍鬚菜多醣及其水解物生理活性之探討。國立屏東科技大學食品科學系碩士學位論文。屏東,臺灣。
莊志仁。2005。食用膠之技術與應用。初版。華香園出版社,台北,台灣。pp. 48-50。
陳姿元。2006。Aeromonas salmoniida MAEF108 菌株所產洋菜酶的純化與性質之探討。國立臺灣海洋大學食品科學系碩士學位論文,基隆,臺灣。
梁鳳鈺。1999。Pseudomonas vesicularis MA103 菌株所產洋菜酶的純化與性質。國立臺灣海洋大學食品科學系碩士學位論文,基隆,臺灣。
郭熙志、劉耀光、羅達。2004。以可轉化人工染色體 (TAC) 載體為基礎的百脈根基因組文庫的構建及篩選。植物生理與分子生物學學報。30: 234-238。
德永隆久、日高秀昌。1991。寒天オリグ糖の生產と利用。バイオサイエンスとインダストリ。49: 28-32。
臺灣海藻資訊網。2007。何謂海藻。http://www.ntm.gov.tw/seaweeds/a/a1_01.asp (June 25, 2007, Taiwan)。
顏嘉怡。2001。海洋嗜熱洋菜分解細菌與其洋菜酶之定性研究。私立東吳大學微生物學系碩士學位論文,臺北,臺灣。
Allouch, J., M. Jam, W. Helbert, T. Barbeyron, B. Kloareg, B. Henrissat, and M. Czjzek. 2003. The three-dimensional structures of two β-agarases. J. Biol. Chem. 278: 47171-47180.
Allouch, J., W. Helbert, B. Henrissat, and M. Czjzek. 2004. Parallel substrate binding sites in a β-agarase suggest a novel mode of action on double-helical agarose. Structure 12: 623-632.
Aoki, T., T. Araki, and M. Kitamikado. 1990a. Purification and characterization of β-agarase from Vibrio sp. AP-2. Nippon Suisan Gakkaishi 56: 825-830.
Aoki, T., T. Araki, and M. Kitamikado. 1990b. Purification and characterization of a novel□ β-agarase from Vibrio sp. AP-2. Eur. J. Biochem. 187: 464-465.
Araki, C. and K. Arai. 1954. Studies on agar-digesting bacteria. The isolation of agar-digesting bacteria and enzymatic activities. Memoirs. Science and Technology/Faculty of Industrial Arts, Kyoto Technical University 3B: 7-23.
Araki, T., Z. Lu, and T. Morishita. 1998a. Optimization of parameters for isolation of protoplasts from Gracilaria verrucosa (Rhodophyta). J. Mar. Biotechnol. 6: 193-197.
Araki, T., M. Hayakawa, Z. Lu, S. Karita, and T. Morishita. 1998b. Purification and characterization of agarases from a marine bacterium, Vibrio sp. PO-303. J. Mar. Biotechnol. 6: 260-265.
Belas, R., D. Barlent, and M. Silverman. 1988. Cloning and gene replacement mutagensis of a Pseudomonas atlantica agarase gene. Appl. Environ. Microbiol. 54: 30-37.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Biochemistry 72: 248-254.
Call, L. M., C. S. Moore, G. Stetten, and J. D. Gearhart. 2000. A Cre-lox recombinationsystem for the targeted integration of circular yeast artificial chromosomes into embryonic stem cells. Hum. Mol. Genet. 9: 1745-1751.
Carlsson, J., and M. Malmqvist. 1977. Effects of bacterial agarase on agarose gel in cell culture. In Vitro 13: 417-422.
Chen, L. C.-M., J. S. Craigie, and Z. K. Xie. 1994. Protoplast production from Porphyra linearis using a simplified agarase procedure capable of commercial application. J. Appl. Phycol. 6: 35-39.
Chen, Y.-C., and Y.-M. Chiang. 1994. Development of protoplasts from Grateloupia sparsa and G. filicina (Halymeniaceae, Phodophyta). Botanica Marina 37: 361-366.
Corzo, A., J. J. Vegara, and M. C. Garcia-Jimenez. 1995. Isolation and flow cytometric characterization of protoplasts from marine macroalgae. J. Phycol. 31: 1018-1026.
Couto, L. B., E. A. Spangler, and E. M. Rubin. 1989. A method for the preparative isolation and concentration of intact yeast artificial chromosomes. Nucl. Acids Res. 17: 8010.
Dong, J., S. Hashikawa, T. Konishi, Y. Tamaru, and T. Araki. 2006. Cloning of the novel gene encoding □-agarase C from a marine bacterium, Vibrio sp. strain PO-303, and characterization of the gene product. Appl. Environ Microbiol. 72: 6399-6401.
Dong, T., Y. Tamaru, and T. Araki. 2007. Molecular cloning, expression, and characterization of a □-agarase gene, agaD, from marine bacterium, Vibrio sp. strain PO-303. Biosci. Biotechnol. Biochem. 71: 38-46.
Enzyme Nomenclature Database. 2007. Agarase. http://ca.expasy.org/cgi-bin/enzyme-search-ful?agarase (June 25, 2007, USA)
Fukasawa, S., and H. Kobayashi. 1987. Properties of agarase from a luminous bacterium, Vibrio harveyi. Agric. Biol. Chem. 51: 269-270.
Gnirke, A., C. Huxley, K. Peterson, and M. V. Olson. 1993. Microinjection of intact 200-to-500-kb fragments of YAC DNA into mammalian cells. Genomics 15: 659-667.
Gray, F., J. S. Kenney, and J. F. Dunne. l995. Secretion capture and report web: Use of affinity derivatized agarose microdroplets for the selection of hybridoma cells. J. Immunol. Methods 182: 155-163.
Ha, J. C., G. T. Kim, S. K. Kim, T. K. Oh, J. H. Yu, and I. S. Kong. 1997. β-Agarase from Pseudomonas sp. W7: Purification of the recombinant enzyme from Escherichia coli and the effects of salt on its activity. Appl. Biochem. Biotechnol. 26: 1-6.
Hassairi, I., R. B. Amar, M. Nonus, and B. B. Gupta. 2001. Production and separation of α-agarase from Alteromonas agarlyticus strain GJ1B. Bioresour. Technol. 79: 47-51.
Hodgson, D. A., and K. F. Chater. 1981. A chromosomal locus controlling extracellular agarase production by Streptomyces coelicolor A3(2), and its inactivation by chromosomal integration of plasmid SCP1. J. Gen. Microbiol. 124: 339-348.
Hosoda, A., and M. Sakai. 2006. Isolation of Asticcacaulis sp. SA7, a novel agar-degrading alphaproteobacterium. Biosci. Biotechnol. Biochem. 70: 722-725.
Hosoda, A., M. Sakai, and S. Kanazawa. 2003. Isolation and characterization of agar-degrading Paenibacillus spp. associated with the rhizosphere of Spinach. Biosci. Biotechnol. Biochem. 67: 1048-1055.
Imai, T., and M. V. Olson. 1990. Second-generation approach to the construction of yeast artificial-choromosome libraries. Genomics 8: 297-303.
Jaffray, A. E., and V. E. Coyne. 1996. Development of an in situ assay to detect bacterial pathogens of the red alga Gracilaria gracilis (Stackhouse) Steentofr, Irvine et Farnham. J. Appl. Phycol. 8: 409-414.
Kamiunten, H. l995. Involvement of a plasmid in the expression of virulence in Pseudomonas syryngae pv. eriobotryae. Nippon Shokubutsu Byori Gakkaiho 61: 376-380.
Kang, N. Y., L. Choi, T. S. Cho, B. K. Kim, B. S. Jeon, J. Y. Cha, C. H. Kim, and Y. C. Lee. 2003. Cloning, expression and characterization of a □-agarase gen from a marine bacterium, Pseudomonas sp. SK.38. Biotechnol. Lett 25: 1165-1170.
Kim, B. J., H. J. Kim, S. D. Ha, S. H. Hwang, D. S. Byun, T. H. Lee, and J. Y. Kong. 1999. Purification and characterization of β-agarase from marine bacterium Bacillus cereus ASK202. Biotechnol. Lett. 21: 1011-1105.
Kirimura, K., N. Masuda, Y. Iwasaki, H. Nakagawa, R. Kobayashi, and S. Usami. 1999. Purification and characterization of a novel β-agarase from an alkalophilic bacterium, Alteromonas sp. E-1. J. Biosci. Bioeng. 87: 436-441.
Kobayashi, R., M. Takimasa, T. Suzuki, K. Kirimura, and S. Usami. 1997. Neoagarobiose as a novel moisturizer with whitening effect. Biosci. Biotechnol. Biochem. 61: 162-163.
Kobayashi, T., S. Ito, and K. Horikoshi. 2005. Novel and useful enzymes from deep-sea and deep-subsurface microorganisms. International Symposium on Extremophiles and Their Application 2005. Yokosuka, Japan.
Kong, J. Y. 2001. Production and functional properties of agarooligosaccharides. Proceedings of Symposium on Scientific Study and Industrialization of Health Food, Health Food Society of Taiwan, Taipei. pp. 60-81.
Lee, D.-G., G.-T. Park, N. Y. Kim, E.-J. Lee, M. K. Jang, Y. G. Shin, G.-S. Park, T.-M. Kom, J.-H. Lee, S.-J. Kim, and S.-H. Lee. 2006. Cloming, expression, and characterozation of a glycosid hydrolase family 50 □-agarase from a marine Agarivorans isolate. Biotechnol. Lett. 28: 1952-1932.
Leon, O., L. Quintana, G. Peruzzp, and J. C. Slebe. 1992. Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Appl. Environ. Microbiol. 58:4060-4063.
Li, X., X. Dong, C. Zhao, Z. Chen, and F. Chen. 2003. Isolation and some properties of cellulose-degrading Vibrio sp. LX-3 with agar-liquefying ability from soil. World J. Microbiol. Biotechnol. 19: 375-379.
Liu, Y.-G., H. Liu, L. Chen, W. Qiu, Q. Zhang, H. Wu, C. Yang, J. Su, Z. Wang, D. Tain, and M. Mei. 2002. Development of new transformation-competent artificial chromosome vectors and rice genomic libraries for efficient gene cloning. Gene 282: 247-255.
Ma, C., X. Lu, C. Shi, J. Li, Y. Gu, Y. Ma, Y. Chu, F. Han, Q. Gong, and W. Yu. 2007. Molecular cloning and characterization of a novel □-agarase, AgaB, from marine Pseudoalteromonas sp. CY24. J. Biol. Chem. 282: 3747-3754.
Malmqvist, M. 1978. Purification and characterization of two different agarose-degrading enzymes. Biochem. Biophys. Acta 537: 31-43.
Mathesius, U., G. Keijzers, S. H. A. Natera, J. J. Weinman, M. A. Djordjevic, and B. G. Rolfe. 2001. Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics. 1: 1424-1440/
Maule, J. C., D. J. Porteous, and A. J. Brookes. 1994. An improved method for recovering intact pulsed field gel purified DNA, of at least 1.6 megabases. Nucleic Acids Res. 22: 3245-3246.
Mollet, J. C., M. C. Verdus, and H. Morvan. l995. Improved protoplast yield and cell wall regeneration in Gracilaria verrucosa (Huds.) Papenfuss (Gracilariles, Rhodophyta). J. Exp. Bot. 46: 239-247.
Morrice, J. M., M. W. McLean, W. F. Long, and F. B. Williamson. 1983a. Porphyran primary structure. An investigation using β-agarase I from Pseudomonas atlantica and 13C-NMR spectroscopy. Eur. J. Biochem. 133: 673-684.
Morrice, L. M., M. W. McLean, F. B. Williamson, W. F. Long. 1983b. β-agarase I and II from Pseudomonas atlantica. Purification and some properties. Eur. J. Biochem. 135: 553-558.
Morrice, L. M., M. W. McLean, W. F. Long, and F. B. Williamson. 1983c. □-agarases I and II from Psseudomonas atlantica. Substrate specificites. Eur. J. Biochem. 137: 149-154.
Northnagel, E. A., M. McNeil, P. Albersheim, and A. Dell. 1983. Host-pathogen interactions. XXII. A galacturonic acid oligosaccharide from plant cell walls elicits phytoalexins. Plant Physiol. 71: 916-926.
Ohta, Y., Y. Nogi, M. Miyazaki, Z. Li, Y. Hayada, S. Ito, and K. Horikoshi. 2004. Enzymatic properties and nucleotide and amino acid sequences of a thermostable β-agarase from the novel marine isolate, JAMB-A94. Biosci. Biotechnol. Biochem. 68: 1073-1081.
Osumi, Y., M. Kawai, H. Amano, and H. Noda. 1997. Isolation and indentification of a porphyran-decomposing bacterium. Nippon Suisan Gakkaishi 63: 709-714.
Osumi, Y., M. Kawai, H. Amano, and H, Noda. 1998. Effect of oligosaccharides from prophyran on in vitro digestions, utilizations by various intestinal bacteria, and levels of serum lipids in mice. Nippon Suisan Gakkaishi 64: 98-104.
Osoegawa, K., P. Y. Woon, B. Zhao, E. Frengen, M. Tateno, J. J. Catanese, and P. J. de Jong. 1998. An improved approach for construction of bacterial artificial chromosome libraries. Genomics 52: 1-8.
Potier, M.-C., W. L. Kuo, A. Dutriaux, J. Gray, and M. Goedert. 1992. Construcion and characterization of a yeast artificial chromosome library containing 1.5 equivalents of human chromosome 2l. Genomics 14: 481-483.
Potin, P., C. Richard, C. Rochas, and B. Kloareg. 1993. Pruification and characterization of the □-agarase from Alteromonas agarlyticus (Cataldi) comb. nov., strain GJ1B. Eur. J. Biochem. 214: 599-607.
Rochas, C., P. Potin, and B. Kloareg. 1994. NMR spectroscopic investigation of agarase oligomers produced by an □-agarase. Carbohydr. Res. 253: 69-77.
SAS. 1999. SAS/GRAPH User’s Guide 6.03ed. SAS Institute Inc., Cary, USA.
Schroeder, D. C., M. A. Jaffer, and V. C. Coyne. 2003. Investigation of the role of a β(1-4) agarase produced by Pseudoalteromonas gracilis B9 in eliciting disease symptoms in the red alga Gracilaria gracilis. Microbiology 149: 2919-2929.
She, K. 2003. So you want to work with giants: The BAC vector. Bio. Tech. J. 1: 69-74.
Shibasaki, Y., J. C. Maule, R. S. Devon, E. M. Slorach, J. R. Gosden, D. J. Porteous, and A. J. Brookes. 1995. Catch-linker+PCR labeling: A simple method to generate fluorescence in situ hybridization probes from yeast artificial chromosomes. PCR Methods Appl. 4: 209-211.
Shizuya, H., and H. Kouros-Mehr. 2001. The development and applications of the bacterial artificial chromosome cloning system. Keio J. Med. 50: 26-30.
Sieburth, J. M. C. N., and J. L. Tootle. 1981. Seasonality of microbial fouling on Ascophyllum nodosum (L.) Lejol., Fucus vesiculosus L., Polysiphonia lanosa (L.) tandy and Chondrus cripus stackh. J. Phycol. 17: 57-64.
Singh, R., P. A. Lessard, T. S. Guan, J. M. Panandam, A. Sinskey, and S.-C. Cheah. 2003. Preliminary attempts at the construction of large insert DNA libraries for oil palm. J. Oil Palm. Res. 15: 12-20.
Singh, T. 1992. Agar and Agar Production. INFOFISH, Kuala Lumpur. pp. 1-25.
Solursh, M. l991. Formation of cartilage tissue in vitro. J. Cell. Biochem. 45: 258-260.
Spiro, M. D., B. L. Ridley, S. Eberhard, K. A. Kates, Y. Mathieu, M. A. O’Neill, D. Mohnen, J. Guern, A. Darvill, and P. Albersheim. 1998. Biological activity of reducing-end-derivatized oligosaccharides in tobacco tissue cutures. Plant Physiol. 116: 1289-1298
Stedman, T. L. 1982. Stedman’s Medical Dictionary. 24th ed. Williams and Awaikins, London. p. 30.
Sugano, Y., I. Terada, M. Arita, M. Noma, and T. Matsumoto. 1993a. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol. 59: 1549-1554.
Sugano, Y., T. Matsumoto, H. Kodama, and M. Noma. 1993b. Cloning and sequencing of agaA, a unique agarase 0107 gene from a marine bacterium, Vibrio sp. strain JT0107. Appl. Environ. Microbiol. 59: 3750-3756.
Sugano, Y., T. Mastsumoto, H. Kodama, and M. Noma. 1994. Purification and characterization of a novel enzyme, □-neoagarooligosaccharide hydrolase (□-NAOS hydrolase), from a marine bacterium, Vibrio sp. strain JT0107. J. Bacteriol. 176: 6812-6818.
Suzuki, H., Y. Sawai, T. Suzuki, and K. Kawai. 2002. Purification and characterization of an extracellular α-neoagarooligosaccharide hydrolase from Bacillus sp. MK03. J. Biosci. Bioeng. 93: 456-463.
Suzuki, H., Y. Sawai, T. Suzuki, and K. Kawai. 2003. Purification and characterization of an extracellular β-agarase from Bacillus sp. MK03. J. Biosci. Bioeng. 95: 328-334.
Swartz, M., and N. Gordon. 1959. Agarase from an agar-digesting bacterium. J. Bacteriol. 77: 403-409.
Turvey, R., and J. Christison. 1967. The enzymic degradation of porphyran. Biochem. J. 105: 317-321.
Usov, A. I. 1992. Sulfated polysaccharides of the red seaweeds. Food Hydrocoll. 6: 9-23.
van der Meulen, H. J., and W. Harder. 1975. Production and characterization of the agarase of Cytophaga flevensis. Antonie van Leeuwenhoek 41: 431-447.
Vera, J., R. Alvarez, E. Murano, J. C. Slebe, and O. Leon. 1998. Identification of a marine agarolytic Pseudoalteromonas isolate and characterization of its extracellular agarase. Appl. Environ. Microbiol. 64: 4378-4383.
Volinia, S., R. P. Piva, A. Bozza, S. Stefani, D. Gandini, and L. del Senno. 1992. Simplified construction and characterization of yeast artificial chromosome libraries. Biochem. Int. 27: 45-53.
Weinberger, F., M. Friedlander, and W. Gunkel. 1994. Abacterial facultative parasite of Gracilaria conferta. Dis. Aquat. Org. 18: 135-141.
Weinberger, F., B. Kloareg, and M. Friedlander. 2001. Structure-activity relationships of oligoagar elicitors towards Gracilaria conferta (Rhodophyta). J. Phycol. 37: 53-54.
Wheeler, D. L., T. Barrett, D. A. Benson, S. H. Bryant, K. Cnese, V. Chetvernun, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen, L. Y. Geer, Y. Kapustin, D. R. Maglott, J. Ostell, V. Miller, K. D.Pruitt, G. D. Schuler, E. Sequeira, S. T. Sherry, K. Sirotkin, A. Souvorov, G. Starchenko, R. L. Tatusov, T. A. Tatusova, L. Wagner, and E. Teschenko. 2007. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 35: D5-D12.
Wu, S. C., and C. L. Pan. 2004. Preparation of algal-oligosaccharide mixtures by bacterial agarase and their antioxidative properties. Fish. Sci. 70: 1164-1173.
Yamaura, I., T. Matsumoto, M. Funatsu, H. Shigeiri, and T. Shibata. 1991. Purification and properties of agarase from Pseudomonas sp. PT-5. Agric. Biol. Chem. 55: 2531-2536.
Yaphe, W. 1957. The use of agarase from P. altantica in the identification of agar in marine algae (Rhodophyceae). Can. J. Microbiol. 3: 987-993.
Yoshizawa, Y., A. Ametani, J. Tsunehiro, K. Nomura, M. Itoh, F. Fukui, and S. Kaminogawa. 1995. Macrophage stimulation activity of the polysaccharide fraction of a marine alga (Porphyra yezoensis): Structure-function relationships and improved solubility. Biosci. Biotechnol. Biochem. 59: 1933-1937.
Yoshizawa, Y., J. Tsunehiro, K. Nomura, M. Itoh, F. Fukui, A. Ametani, and S. Kaminogawa. l996. In vivo macrophage-stimulation activity of the enzyme-degraded water-soluble polysaccharide fraction from a marine alga (Gracilaria verrucosa). Biosci. Biotechnol. Biochem. 60: 1667-1671.
Young, K.S., S. S. Battacharjee, and W. Yaphe. 1978. Enzymic cleavage of the α-linkages in agarose, to yield agaro-oligosaccharides. Carbohydr. Res. 66: 207-212.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊