跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/19 21:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張復詒
研究生(外文):Fu-I Chang
論文名稱:一種模糊自適應漸消卡爾曼濾波器於GPS導航之設計
論文名稱(外文):An Innovative Fuzzy Adaptive Fading Kalman Filter for GPS Navigation
指導教授:卓大靖
指導教授(外文):Dah-Jing Jwo
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:通訊與導航工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:英文
論文頁數:53
中文關鍵詞:模糊邏輯自適應漸消卡爾曼濾波器
外文關鍵詞:GPSFuzzy logicAdaptive Fading Kalman Filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
擴展型卡爾曼(Extended Kalman Filter, EKF)是一種重要消除全球定位系統(GPS)動態定位的隨機誤差的方法。有一種方法稱為自適應漸消卡爾曼濾波器(Adaptive Fading Kalman Filter, AFKF),它利用次佳化漸消因子(Fading Factor,λ)去限制EKF的記憶長度。本論文中我們利用比例因子(Scaling Factor,α)去調整漸消因子λ以加強追蹤性能。
傳統上選擇比例因子十分依賴個人經驗或電腦模擬。為了改進這項缺失,本論文提出命名為模糊自適應漸消卡爾曼濾波器(Fuzzy Adaptive Fading Kalman Filter, FAFKF)這個改進方法。
FAFKF 結合了AFKF以及模糊邏輯自適應系統(Fuzzy Logic Adaptive System, FLAS),FLAS利用模糊推論系統(Fuzzy Reasoning System, FRS) 與虛擬距離殘差均值與方差的Degree of divergence (DOD)參數,來動態調整比例因子α以更加符合載體實際的動態。
本論文應用FAFKF於全球定位系統 (Global Position System, GPS)導航系統,使其有更佳的定位性能,將與EKF以及AFKF做追蹤性能上的評估比較。
The extended Kalman Filter (EKF) is an important method for eliminating stochastic errors of dynamic position in the Global Positioning System (GPS). One of the adaptive methods is called the Adaptive Fading Kalman filter (AFKF), which employs suboptimal multiple fading factors for limiting the length of memory in an EKF. A scaling factor α has been proposed for increasing the fading factors so as to improve the tracking capability. Traditional approach for selecting the scaling factor α heavily relies on personal experience or computer simulation. In order to resolve this shortcoming, a novel scheme called the fuzzy adaptive fading Kalman filter (FAFKF) is carried out. In the FAFKF, the fuzzy logic reasoning system is incorporated into the adaptive fading Kalman filter. By monitoring the degree of divergence (DOD) parameters based on the innovation information, the fuzzy logic adaptive system (FLAS) is designed for dynamically adjusting the scaling factor according to the change in vehicle dynamics. GPS navigation processing using the FAFKF will be simulated to validate the effectiveness of the proposed strategy. The performance of the proposed scheme will be assessed and compared to those of conventional EKF and AFKF.
誌謝……………………………………………………………………………………i
摘要…………………………………………………………………………………...ii
Abstract………………………………………………………………………...……iii
Table of Contents…………………………………………………………………....iv
List of Figures…………………………………………………………………….….vi
List of Tables………………………………………………………………………..viii

Chapter 1 Introduction………………………………………………………………1
§1.1.General………………………………………………………………….… 1
§1.2 Research Motivation and Method………………………...……………...3
§1.3 Thesis Outline…………………………………………………………...…4

Chapter 2 GPS Navigation processing………………………………………...……6

Chapter 3 GPS Navigation Processing Using The Extend Kalman Filter….…….9

Chapter 4 The Fuzzy adaptive fading Kalman Filter…………………………….14
§4.1 Adaptive fading Kalman filter(AFKF)....................................................15
§4.2 The fuzzy logic adaptive system(FLAS)…………………………..……18
§4.3 Fuzzy adaptive fading Kalman filter (FAFKF)......................................20

Chapter 5 Simulation Experiments…………………………………..…………...24
§5.1 Structure and Settings………….………………………………………..24
§5.2 Simulation and analysis………………………………………………….34
§5.2.1 Results from the Extended Kalman Filter…….…………...................34
§5.2.2 Results from the Adaptive Fading Kalman Filter…………….…….36
§5.2.3 Results from the Fuzzy Adaptive Fading Kalman Filter…………...39
§5.2.4 Comparison and Analysis…………………………………………….41
§5.2.5 Numerical Experimental Results……………………….…………....47
§5.2.6Conclusion…………………….………………………………………..50

References…………………………………………………………………………..52
[1]莊智清、黃國興,“電子導航”,全華科技圖書股份有限公司,2001。
[2] Gelb, A.: Applied optimal estimation, M. I. T. Press, MA, 1974.
[3] Brown R. G., Hwang P. Y. C., Introduction to random signals and applied Kalman filtering, John Wiley & Sons, New York, 3rd edn. 1997.
[4] Axelrad P., Brown R. G., GPS navigation algorithms, in: B. W. Parkinson, J. J. Spilker, P. Axelrad, , and P. Enga, (Ed.), Global Positioning System: Theory and Applications, Volume I, AIAA, Washington DC, Chap. 9, 1996.
[5] Mehra R. K., Approaches to adaptive filtering, IEEE Trans. Automat. Contr., vol. AC-17, pp.693-698,1972.
[6] Mohamed A.H., Schwarz K. P.: Adaptive Kalman filtering for INS/GPS, Journal of Geodesy vol. 73, no. 4, pp.193-203, 1999.
[7] Xia, Q., Rao, M., Ying, Y. and Shen X.: Adaptive Fading Kalman filter with an Application, Automatica, vol. 30. no.8, pp.1333-1338, 1994.
[8] Wang, Z., You Z.-S., Du C.-L., Wang H.: Optimized Algorithm of Dynamic Kalman Filtering for GPS/INS, Journal of Sichuan University (Engineering Science Edition), vol.38 no.4, 2006
[9]蘇木春、張孝德,機器學習:“類神經網路、模糊系統以及基因演算法則” , 全華科技圖書股份有限公司,2001。
[10] Sasiadek J. Z., Wang Q., Zeremba M. B.: Fuzzy Adaptive Kalman filtering for INS/GPS data fusion,” in: Proc. 15th IEEE int. Symp. on intelligent control, Rio, Patras, Greece, pp.181-186, 2000.


[11] Abdelnour G., Chand S., Chiu S.: Applying fuzzy logic to the Kalman filter divergence problem,” in: Proc. IEEE Int. Conf. on Syst., Man and Cybernetics, Le Touquet, France, pp. 630-634, 1993.

[12] Kobayashi K., Cheok K., Watanabe K., Estimation of the absolute vehicle speed using fuzzy logic rule-based Kalman filter, in: Proc. American Control Conf., Seattle, pp. 3086-3090, 1995.
[13] Mostov K., Soloviev A.: Fuzzy adaptive stabilization of higher order Kalman
filters in application to precision kinematic GPS, in: Proc. ION GPS-96, vol. 2,
Kansas City, pp. 1451-1456, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 朱慧清(2000)。從原住民學童的學業成就談家庭文化衝擊。原住民教育季刊,19,41-49。
2. 吳天泰(1996)。泰雅父母對子女教育的看法。原住民教育季刊,4,22-34。
3. 林庭玉(1999)。南台灣幼兒與西方幼兒在書寫發展階段性之比較探討。正修學報,12,197-210。
4. 林慧萍(1999)。淺談國小原住民教育之困境與因應之道。原住民教育季刊,13,91-96。
5. 紀惠英、劉錫麒(2000)。泰雅族兒童的學習世界。花蓮師院學報,10,65-100。
6. 胡永寶(1995)。原住民學生學習現況調查研究。國教園地,51、52,p.54-71。
7. 胡美智、段慧瑩(2003)。幼兒園主題教學對幼兒讀寫萌發之影響探討。慈濟技術學院學報,5,187-208。
8. 陳建志(1998)。族群及家庭背景對學業成績之影響模式—以台東縣原、漢學童作比較。教育與心理研究,21,85-106。
9. 陳盛賢(2003)。由多元文化教育典範觀論原住民教育不利的文化因素研究。學生事務,42(4),62-66。
10. 黃淑苓(1994)。幼兒認字教學。嘉義師院學報,8,471-492。
11. 黃意舒(1999)。幼兒運筆姿勢之年齡及性別分析。臺北市立師範學院學報,30,397-414。
12. 謝銘賢(2001)。提升原住民學生學習成就之策略—以台東縣為例。原住民教育季刊,21,132-135。
13. 簡鈺琛(1999)。國小原住民學童學習困難與補救。原住民教育季刊,13,97-102。