|
Bibliography
[1] B. Lewin, editor. Genes VIII. Oxford University Press, New York, NY, 2004. [2] D. Tautz, M. Trick and G. A. Dover, “Cryptic simplicity in DNA is a major source of genetic variation,” Nature, vol. 322, pp. 652–656, 1986. [3] M. L. Pardue, K. Lowenhaupt, A. Rich and, A. Nordheim, “(dC-dA)n (dG-dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and functionm,” J. EMBO, vol. 6, pp. 1781–1789, 1987. [4] P. Bucher and G. Yagil, “Occurrence of oligopurine. oligopyrimidine tracts in eukaryotic and prokaryotic genes, ”DNA Seq., vol. 1, pp. 157–172, 1991. [5] C. Burge, A. M. Campbell, and S. Karlin, “Over- and underrepresentation of short oligonucleotides in DNA sequences,” Proc. Natl Acad. Sci., USA, vol. 89, pp.1358–1362, 1992. [6] Q. Lu, L. L. Wallrath, H. Granok, and S. C. Elgin, “(CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene,” Mol.” Cell Biol., vol. 13, pp. 2802–2814, 1993. [7] T. K. Kundu and M. R. Rao, “CpG islands in chromatin organization and gene expression,” J. Biochem., vol. 125, pp. 217–222, 1999 [8] E. S. Lander, “Initial sequencing and analysis of the human genome,” Nature, vol. 409, pp. 860–921, 2001. [9] A. Links, “Analysis of the genome sequence of the flowering plant Arabidopsis thaliana,” The Arabidopsis Genome Initiative of Nature, vol. 408, pp. 796–815. 2000. [10] G. Benson, “Tandem repeats finder: A program to analyze DNA sequences,” Nucleic Acids Res., vol. 27, pp. 573-580, 1999. [11] S. Kurts and C. Schleiermacher, “REPuter: Fast computation of maximal repeats in Complete genomes,” Bioinformatics, vol. 15, pp. 426-427, 1999. [12] T. Yoshida, N. Obata, and K. Oosawa, “Color-coding reveals tandem repeats in the Esherichia coli genome,” J. Mol. Biol., vol. 298, pp. 343-349, 2000. [13] H. Martinez, “An efficient method for finding repeats in molecular sequences,” Nucleic Acids Res., vol. 11, pp.4629–4634. 1983. [14] J. Devereux, P. Haeberli, and O. Smithies, “A comprehensive set of sequence analysis programs for the VAX,” Nucleic Acids Res., vol. 12, pp. 387–395. 1984. [15] P. Agarwal and D. States, “The repeat pattern toolkit (rpt): Analyzing the structure and evolution of the c. elegans genome,” Proc. ISMB ‘94, pp. 1–9. 1994. [16] É. Rivals, M. Dauchet, J. Delahaye, and O. Delgrange, “Fast discerning repeats in DNA sequences with a compression algorithm,” Proceedings of the Workshop on Genome and Informatics, (GIW97), Genome Informatics, Tokyo, vol. 8, pp. 215-266, 1997. [17] M. Leung, B. Blaisdell, C. Burge, and S. Karlin, “An efficient algorithm for identifying matches with errors in multiple long molecular sequences,” J. Mol. Biol., vol. 221, pp. 1367–1378. 1991. [18] P. Agarwal and D. J. States, “The Repeat Pattern Toolkit (RPT): analyzing the structure and evolution of the C. elegans genome,” Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology, ISMB 94, pp. 1-9, 1994. [19] S. K. Kannan and E. W. Myers, “An algorithm for locating nonoverlapping regions of maximal alignment score,” SIAM J. Comput., vol. 25, pp. 648–662, 1996. [20] G. Benson, “Tandem repeats finder: A program to analyze DNA sequences,” Nucleic Acids Res., vol. 27, pp. 573–580, 1999. [21] RepeatMasker. http://ftp.genome.washington.edu/RM/RepeatMasker.html [22] J. A. Bedell , I. Korf and, W. Gish, “MaskerAid: A performance enhancement to RepeatMasker,” Bioinformatics., vol. 16, pp. 1040–1041, 2000. [23] W. Gish and D. J. States. “Identification of protein coding regions by database similarity search,” Nat Genet., vol. 3, pp. 266–272, 1993. [24] Washington University School of Medicine: Index of /blast/blast. http://blast.wustl.edu/blast [25] A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White and, S. L. Salzberg, “Alignment of whole genomes,” Nucleic Acids Res., vol. 27, pp. 2369–2376. 1999. [26] S. Kurtz and C. Schleiermacher, “REPuter - fast computation of maximal repeats in complete genomes,” Bioinformatics, vol. 15, pp. 426–427, 1999. [27] S. Kurtz, E. Ohlebusch, C. Schleiermacher, J. Stoye, and R. Giegerich, “Computation and visualization of degenerate repeats in complete genomes,” Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology, pp. 228–238. 2000. [28] J. Parkhill, “Complete DNA sequence of a serogroup a strain of Neisseria meningitidis Z2491,” Nature, vol. 404, pp. 502–506. 2000. [29] G. Benson, “Tandem repeats finder: a program to analyze DNA sequences,” Nucleic Acids Res., vol. 27, pp. 573–580, 1999. [30] D. G. Arques and C. J. Michel, ”Periodicities in introns,” Nucleic Acids Res., vol. 15, pp. 7581–7592, 1987. [31] D. G. Arques and C. J. Michel, “Periodicities in coding and noncoding regions of the genes,” J. Theor. Biol., vol. 143, pp. 307–318, 1990. [32] S. Tiwari, S. Ramachandran, A. Bhattacharya, S. Bhattacharya, and R. Ramaswamy, “Prediction of probable genes by Fourier analysis of genomic sequences,” Comput. Appl. Biosci., vol. 13, pp. 263–270, 1997. [33] M. Yan, Z. S. Lin, and C. T. Zhang, “A new Fourier transform approach for protein coding measure based on the format of the Z curve,” Bioinformatics, vol. 14, pp. 685–690, 1998. [34] B. Issac, H. Singh, H. Kaur, and G. P. S. Raghava, “Locating probable genes using Fourier transform approach,” Bionformatics, vol. 18, pp. 196–197, 2002. [35] S. H. Nawab and T. F. Quatieri, “Short Time Fourier Transform,” Chapter in Advanced Topics in Signal Processing, J. S. Lim and A. V. Oppenheim, eds., Englewood Cliffs, NJ: Prentice Hall, October 1987. [36] M. R. Portnoff, “Representation of digital signals and systems based on the short-time Fourier transform,” IEEE Trans. Acoustics, Speech, Signal Process., vol. 28, pp. 55-69, Feb. 1980. [37] D. Griffin and J. S. Lim, “Signal estimation from modified short-time Fourier transform,” IEEE Trans. Acoustics, Speech, Signal Process., vol. 32, pp. 236-243, Apr. 1984. [38] F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations,” IEEE Signal Process. Mag., vol. 9, no. 2, pp. 21-67, Apr. 1992. [39] S. H. Nawab and T. F. Quatieri, “Short Time Fourier Transform”, Chapter in Advanced Topics in Signal Processing, J. S. Lim and A. V. Oppenheim, eds., Englewood Cliffs, NJ: Prentice Hall, October 1987. [40] V. Heine, M. Koen, and D. Uir, Theogl of Pseudopotentials, Moscow: MIR, 1973. [41] A. Antoniou, Digital Filters: Analysis, Design, and Applications, McGraw-Hill, New York, 1993. [42] S. Bagchi and S. K. Mitra, The NonUniform Discrete Fourier Transform and its Applications in Signal Processing, Norwell Massachusetts: Kluwer Academic Publishers, 1999. [43] C. Mueller, M. Dalkilic and, A. Lumsdaine, “High-performance direct pairwise comparison of large genomic sequences,” Proceedings of the 19th IEEE Internationa Parallel and Distributed Processing Symposium (IPDPS’05), pp. 1530-2075, 2005. [44] A.J. Gibbs and G. A. McIntyre, “The diagram, a method for comparing sequences,” Eur. Jour. Biochem, vol. 16(1), pp. 1–11, 1970. [45] W. M. Fitch, “Locating gaps in amino acid sequences to optimize the homology between two proteins,” Biochem. Genet. vol. 3, pp. 99–108, 1969. [46] R. Staden, “An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences,” Nucleic Acids Res., vol. 10, pp. 2951–2961, 1982. [47] A .D. McLachlan, “Test for comparing related amino acid sequences. Cytochrome c and cytochrome c551,” J. Mol. Biol. vol. 61, pp. 409–424, 1971. [48] A. D. McLachlan, “Analysis of gene duplication repeats in the myosin rod,” J. Mol. Biol., vol. 169, pp. 15–30, 1983. [49] A. D. McLachlan and D. R. Boswell, “Confidence limits for homology in protein or gene sequences. The c-myc oncogene and Adenovirus E1A protein,” J. Mol. Biol. vol. 185, pp. 39–49, 1985. [50] J .G. Reich and W. Meiske, “A simple statistical significance test of window scores in large dot matrices obtained from protein or nucleic acid sequences,” Comput. Appl. Biosci. vol. 3, pp. 25–30, 1987. [51] C. Mueller, M. Dalkilic, and A. Lumsdaine, “High-performance direct pairwise comparison of large genomic sequences,” IEEE Transactions on Signal Processin, vol. 19, pp. 1530-2075, 2005. [52] P. Argos, “A sensitive procedure to compare amino acid sequences,” J. Mol. Biol. vol. 193, pp. 385–396, 1987. [53] J. Parkhill, et al. “Complete DNA sequence of a serogroup a strain of Neisseria meningitidis Z2491.” Nature, vol. 404, pp. 502–506, 2000. [54] G. Benson, “Tandem repeats finder: a program to analyze DNA sequences,” Nucleic Acids Res., vol. 27, pp. 573–580, 1999. [55] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” Proc. of Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp.39-43, 1995. [56] 胡曉輝,「粒子群優化算法介紹」, http://web.ics.purdue.edu/~hux/tutorials.shtml,民國91 年4 月。 [57] J. Kennedy and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann Press. 2001. [58] R.C. Eberhart and Y. Shi, “Comparison between genetic algorithms and particle swarm optimization,” 1998 Annual Conference on Evolutionary Programming, San Diego, 1998. [59] D. Srinivasan, W. H. Loo, and R. L. Cheu, “Traffic incident detection using article swarm optimization,” Swarm Intelligence Symposium. Proceedings of the 2003 IEEE, pp.144-151, 2003.
|