|
1. Ying Liu, Dengsheng Zhang, Guojun Lu, Wei-Ying Ma, A survey of content-based image retrieval with high-level semantics, Pattern Recognition, Vol. 40, Issue 1, January 2007, pp. 262-282.
2. F. Jing, M. Li, L. Zhang, H.-J. Zhang, B. Zhang, Learning in region-based image retrieval, Proceedings of the International Conference on Image and Video Retrieval (CIVR2003), 2003, pp. 206–215.
3. H. Feng, D.A. Castanon, W.C. Karl, A curve evolution approach for image segmentation using adaptive flows, Proceedings of the International Conference on Computer Vision (ICCV’01), 2001, pp. 494–499.
4. W.Y. Ma, B.S. Majunath, Edge flow: a framework of boundary detection and image segmentation, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 1997, pp. 744–749.
5. J. Shi, J. Malik, Normalized cuts and image segmentation, IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 22 (8) 2000, pp. 888–905.
6. D. Comaniciu, P. Meer, Robust analysis of feature spaces: color image segmentation, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1997, pp. 750–755.
7. P.L. Stanchev, D. Green Jr., B. Dimitrov, High level color similarity retrieval, Int. J. Inf. Theories Appl. 10 (3) 2003, pp. 363–369.
8. K.A. Hua, K. Vu, J.-H. Oh, SamMatch: a flexible and efficient sampling-based image retrieval technique for large image databases, Proceedings of the Seventh ACM International Multimedia Conference (ACM Multimedia '99), November 1999, pp. 225–234.
9. Y. Deng, B.S. Manjunath, Unsupervised segmentation of color-texture regions in images and video, IEEE Trans. Pattern Anal. Mach. Learn. (PAMI) 23 (8) 2001, pp. 800–810.
10. H. Feng, T.-S. Chua, A bootstrapping approach to annotating large image collection, Workshop on Multimedia Information Retrieval in ACM Multimedia, November 2003, pp. 55–62.
11. Y. Liu, D.S. Zhang, G. Lu, W.-Y. Ma, Region-based image retrieval with perceptual colors, Proceedings of the Pacific-Rim Multimedia Conference (PCM), December 2004, pp. 931–938.
12. C. Carson, S. Belongie, H. Greenspan, J. Malik, Blobworld: image segmentation using expectation-maximization and its application to image querying, IEEE Trans. Pattern Anal. Mach. Intell. 8 (8) 2002, pp. 1026–1038.
13. R. Shi, H. Feng, T.-S. Chua, C.-H. Lee, An adaptive image content representation and segmentation approach to automatic image annotation, International Conference on Image and Video Retrieval (CIVR), 2004, pp. 545–554.
14. S. C. Cheng, Region-growing approach to color segmentation using 3-D clustering and relaxation labeling, IEE Proc.-Vis. Image Signal Process., Vol. 150, N0. 4, August 2003, pp. 270-276.
15. M. Stricker and M. Orengo, Similarity of color images, SPIE Storage and Retrieval for Image and Video Databases III, vol. 2185, Feb. 1995, pp.381-392.
16. C.P. Town, D. Sinclair, Content-based image retrieval using semantic visual categories, Society for Manufacturing Engineers, Technical Report MV01-211, 2001.
17. V. Mezaris, I. Kompatsiaris, M.G. Strintzis, An ontology approach to object-based image retrieval, Proceedings of the ICIP, vol. II, 2003, pp. 511–514.
18. K.N. Plataniotis, A.N. Venetsanopoulos, Color Image Processing and Applications, Springer, Berlin, 2000.
19. Minh, N. Do, and Martin, Vetterli, Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback-Leibler Distance, IEEE Transactions on image processing, Vol. 11, No. 2, Feb., 2002.
20. Reed, T.R. and J.M., A review of recent texture segmentation and feature extraction techniques, CVGIP: Image Understanding, Vol. 57, May, 1993, pp. 359-372.
21. A. K. Jain, Fundamentals of Digital Image Processing, Prentice-Hal, Englewood CliJs, NJ, 1989.
22. H. Tamura, S. Mori, and T. Yamawaki, Texture features corresponding to visual perception, IEEE Trans. On Systems, Man, and Cybernetics, vol. Smc-8, no. 6, June 1978.
23. W. Y. Ma and B. S. Manjunath, A comparison of wavelet features for texture annotation, Proc. of IEEE Int. Conf. on Image Processing, vol. II, , Washington D.C. Oct. 1995, pp. 256-259.
24. J. G. Daugman, Complete discrete 2D Gabor transforms by neural networks for image analysis and compression, IEEE Trans. ASSP, vol. 36, July 1998, pp. 1169-1179.
25. A. C. Bovic, M. Clark, and W. S. Geisler, Multichannel texture analysis using localized spatial filters, IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 12, January 1990, pp. 55-73.
26. A. K. Jain and F. Farroknia, Unsupervised texture segmentation using Gabor filters, Pattern Recognition, 24(12), 1991, pp. 1167-1186.
27. K. S. Thyagarajan, Tom Nguyen, and Charles Persons, A maximum likelihood approach to texture classification using wavelet transform. In Proc. IEEE Int. Conf. on Image Proc., 1994.
28. M. K. Hu, Visual pattern recognition by moment invariants, in J. K. Aggarwal, R. O. Duda, and A. Rosenfeld, Computer Methods in Image analysis, IEEE computer Society, Los Angeles, CA, 1977.
29. D. Cai, X. He, Z. Li, W.-Y. Ma, J.-R. Wen, Hierarchical clustering of WWW image search results using visual, textual and link information, Proceedings of the ACM International Conference on Multimedia, 2004.
30. D. Cai, X. He, W.-Y. Ma, J.-R. Wen, H. Zhang, Organizing WWW images based on the analysis of page layout and web link structure, Proceedings of the International Conference on Multimedia and Expo (ICME), Taipei, 2004.
31. J. Ren, Y. Shen, L. Guo, A novel image retrieval based on representative colors, Proceedings of the Image and Vision Computing, N.Z., November 2003, pp. 102–107.
32. S. Kulkarni, B. Verma, Fuzzy logic for texture queries in CBIR, Proceedings of the International Conference on Computational Intelligence and Multimedia Applications (ICCIMA), Xi’an, China, 2003, pp. 223–226.
33. C.-Y. Chiu, H.-C. Lin, S.-N. Yang, Texture retrieval with linguistic descriptors, IEEE Pacific Rim Conference on Multimedia, 2001, pp. 308–315.
34. Y. Zhuang, X. Liu, Y. Pan, Apply semantic template to support content-based image retrieval, Proceedings of the SPIE, Storage and Retrieval for Media Databases, vol. 3972, December 1999, pp. 442–449.
35. M. Obeid, B. Jedynak, M. Daoudi, Image indexing and retrieval using intermediate features, Proceedings of the Ninth ACM International Conference on Multimedia, Ottawa, Canada, 2001, pp. 531–533.
36. D.M. Conway, An experimental comparison of three natural language color naming models, Proceedings of the East–West International Conference on Human-Computer Interactions, St. Petersburg, Russia, 1992, pp. 328–339.
37. T. Berk, L. Brownston, A. Kaufman, A new color-naming system for graphics language, IEEE Computer Graphics Appl. 2 (3) 1982, pp. 37–44.
38. A.R. Rao, G.L. Lohse, Towards a texture naming system: identifying relevant dimensions of texture, IEEE Proceedings of the Fourth Conference on Visualization, 1993, pp. 220–227.
39. A. Vailaya, M.A.T. Figueiredo, A.K. Jain, H.J. Zhang, Image classification for content-based indexing, IEEE Trans. Image Process. 10 (1) 2001, pp. 117–130.
40. J. Luo, A. Savakis, Indoor vs outdoor classification of consumer photographs using low-level and semantic features, International Conference on Image Processing (ICIP), vol II, October 2001, pp. 745–748.
41. V.N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998.
42. W. Jin, R. Shi, T.-S. Chua, A semi-naı‥ve bayesian method incorporating clustering with pair-wise constraints for auto image annotation, Proceedings of the ACM Multimedia, 2004.
43. L. Zhang, F. Liu, B. Zhang, Support vector machine learning for image retrieval, International Conference on Image Processing, October 2001, pp. 7–10.
44. S. Tong, E. Chang, Support vector machine active learning for image retrieval, Proceedings of the ACM International Conference on Multimedia, Ottawa, Canada, 2001, pp. 107–118.
45. D. Stan, I.K. Sethi, Mapping low-level image features to semantic concepts, Proceedings of the SPIE: Storage and Retrieval for Media Databases, 2001, pp. 172–179.
46. M. Bilenko, S. Basu, R.J. Mooney, Integrating constraints and metric learning in semi-supervised clustering, Proceedings of the 21st International Conference on Machine Learning (ICML), July 2004, pp. 81–88.
47. Y. Chen, J.Z.Wang, R.Krovetz, An unsupervised learning approach to content-based image retrieval, IEEE Proceedings of the International Symposium on Signal Processing and its Applications, July 2003, pp. 197–200.
48. X. Zheng, D. Cai, X. He, W.-Y. Ma, X. Lin, Locality preserving clustering for image database, Proceedings of the 12th ACM Multimedia, October 2004.
49. G. Salton, Automatic Text Processing, Addison-Wesley, Reading, MA, 1989.
50. Y. Rui, T.S. Huang, M. Ortega, S. Mehrotra, Relevance feedback: a power tool for interactive content-based image retrieval, IEEE Trans. Circuits Video Technol. 8 (5) 1998, pp. 644–655.
51. Y. Rui, T.S. Huang, Optimizing learning in image retrieval, Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, June 2000, pp. 1236–1243.
52. X.S. Zhu, T.S. Huang, Relevance feedback in image retrieval: a comprehensive review, Multimedia System 8 (6) 2003, pp. 536–544.
53. J.R. Smith, C.-S. Li, Decoding image semantics using composite region templates, IEEE Workshop on Content-Based Access of Image and Video Libraries (CBAIVL-98), June 1998, pp. 9–13.
54. S.-F. Chang, W. Chen, Semantic visual templates: linking visual features to semantics, International Conference on Image Processing (ICIP), Workshop on Content Based Video Search and Retrieval, vol. 3, October 1998, pp. 531–534.
55. G. Miller, R. Beckwith, C. Fellbaum, D. Gross, K. Miller, Introduction to Wordnet: an on-line lexical database, Int. J. Lexicography 3 1990, pp. 235–244.
56. Barnard K, Duygulu P, Forsyth D, Clustering Art. IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2001, pp. 434-439
57. Srihari R K, Rao A B, Han B, Munirathnam S, Wu X Y. A Model for Multimodal Information Retrieval. IEEE International Conference on Multimedia & Expo. 2000.
58. Zhou X S, Huang T S, Unifying Keywords and Visual Contents in Image Retrieval, IEEE Multi Media, 2002.
59. C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic, W. Equitz, Efficient and effective querying by image content, J. Intell. Inf. Syst. 3 (3–4) 1994, pp. 231–262.
60. A. Pentland, R.W. Picard, S. Scaroff, Photobook: content-based manipulation for image databases, Int. J. Computer Vision 18 (3) 1996, pp. 233–254.
61. J.R. Smith, S.F. Chang, VisualSeek: a fully automatic content-based query system, Proceedings of the Fourth ACM International Conference on Multimedia, 1996, pp. 87–98.
62. J.Z. Wang, J. Li, G. Wiederhold, SIMPLIcity: semantics-sensitive integrated matching for picture libraries, IEEE Trans. Pattern Anal. Mach. Intell. 23 (9) 2001, pp. 947–963.
63. Andrea F. Abate, Michele Nappi, Genny Tortora, and Maurizio Tucci. IME: an image management environment with content-based access, Image and Vision Computing 17, 1999, pp.967-980.
64. Nevenka, Thomas McGee, and Herman Elnbaas, Video Keyframe Extraction and Filtering : A Keyframe is not a Keyframe to Everyone, Proceedings of the 103 sixth international conference on Information and Knowledge management, 1997, pp. 113-120.
65. http://fishdb.sinica.edu.tw/
66. http://turing.csie.ntu.edu.tw/ncnudlm/index.html
67. D. Ballard, Generalizing the Hough transform to detect arbitrary shapes, Pattern Recognition, 13 (2) 1981, pp. 111-122.
68. C.P Chau and W.C. Siu, Generalized Hough Transform Using Regions with Homogeneous Color, Int. J. Computer Vision 59 (2) 2004, pp. 183–199.
|