跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/17 01:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳建全
研究生(外文):Jian-Quan Chen
論文名稱:研製銦鋅氧化物(IZO)薄膜應用於光感測器分析
論文名稱(外文):The Study and Fabrication with Performance Improvement for Indium Zinc Oxide (IZO) Thin films on Photonsensor Applications
指導教授:何志傑何志傑引用關係張忠誠張忠誠引用關係
指導教授(外文):Jyh-Jier HoChung-cheng Chang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:62
中文關鍵詞:射頻磁控濺鍍系統銦鋅氧化物光感測器量子效率
外文關鍵詞:RF Mgnetron Sputtering SystemIZOPhotonsensorQuantum Efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文運用射頻磁控濺鍍系統,沈積多層銦鋅氧化物(indium zinc oxide, IZO),並於中增加金屬金(Au)薄膜層,使得透明導電膜變成IZO- Au多層結構薄膜。在一定的透光下,能有效的降低電阻率。吾人利用改變IZO-Au多層構的層數分別為3、5、7、9層,總厚度仍然控制在210nm,並進行薄膜之光電分析量測。經由實驗比較發現,在IZO-Au最佳總層數為5層時,在可見光有61.8%的平均穿透率、和0.014Ω-cm的電阻率。
於光感測元件製作方面,吾人首先製作矽基板在矽晶圓上成長SiO2/ p+- Poly-Si0.82Ge0.18/ p-Poly-Si0.82Ge0.18/ i-Poly-Si0.82Ge0.18/ n- Poly-Si0.82Ge0.18/ n+-poly Si0.82Ge0.18,最後再將最佳結構銦鋅氧化物鍍製在頂層。經由實驗結果,具5層最佳IZO-Au薄膜結構之光感測研發元件,當於固定照光度與逆向偏壓分別為100W、與14.95 V時,其研發元件之光電流、響應係數、與量子效率,分別為1029.9μA、0.66A/W、與60.4%;然鍍製於傳統單層IZO薄膜之光感測器,其光電流、響應係數、與量子效率,分別為309.9μA、0.15 A/W、與13.96%。相較於傳統單層IZO薄膜,本研發5層IZO-Au膜之光感測器,其光電流可提升1029.9μA、響應係數提升0.51 A/W、量子效率提升46.44%。因此,本研發元件之光電分析結果,可提供業界參考。
關鍵字:射頻磁控濺鍍系統、銦鋅氧化物、光感測器、量子效率。
In this thesis, we used RF Magnetron Sputtering System to deposit indium zinc oxide (IZO). The Au film layer was added on IZO glass substrate. The transparent conductive film changed to IZO-Au multi-layer film, which could effectively reduce the electrical resistivity under certain light transmission.
Keeping the deposited thickness of multi-layer IZO-Au at 210nm, we changed the layers to 3, 5, 7 and 9 to conduct the photoelectric analysis. It is found out in the empirical comparisons that 5-layer is the optimal structure for IZO-Au multi-layer film. Its average transmittance in the visible light is 58.8%, and the resistivity is 0.014Ω-cm.
For the fabrication of photosensor component, we made silicon substrate on the wafer SiO2/ p+- Poly-Si0.82Ge0.18/ p-Poly-Si0.82Ge0.18/ i-Poly-Si0.82Ge0.18/ n- Poly-Si0.82Ge0.18/ n+-poly Si0.82Ge0.18. The IZO-Au was deposited with optimum structure on the top layer. The experimental results showed that the photocurrent, response coefficient and quantum efficiency of the photosensor with optimal 5-layer IZO-Au structure were respectively 1029.9μA、0.66A/W、and 60.4%, under the fixed illuminance (100W) and reverse bias (14.95V) respectively. The traditional single-layer IZO film was plated on the photosensor. Its photocurrent, response coefficient and quantum efficiency were respectively 309.9μA、0.15 A/W、and 13.96% . Comparing to traditional single-layer IZO film and the photosensor of 5-layer IZO-Au film, photo-electric characteristics could be promoted to 1029.9μA, 0.51A/W, and 46.44% of the photocurrent, response coefficient and quantum efficiency. Therefore the photoelectric analysis result of the photosensor developed by this research could provide some references for the industry.
Keywords: RF Magnetron Sputtering System, IZO, photosensor, quantum efficiency
Chapter 1 Introduction……………………………………………1

Chapter 2 Fundamental Principles of IZO and p-i-n…………4

2-1 Principles of IZO……………………………………………4
2-1-1 Optical principles of IZO film……………………………5
2-1-2 Electric principles of IZO film…………………………6
2-1-3 Optical and electric principles of IZO-Au……………6
2-2 p-i-n photosensor..…………………………………………6
2-2-1 Principles of p-i-n photosensor…………………………6
2-2-2 Photo current and dark current……………………………8
2-2-3 Quantum efficiency……………………………………………9
2-2-4 Responsivity……………………………………………………9
2-3 Calculation of optical film refractive index and Extinction coefficient………………………………………………10

Chapter 3 Experiment and Measuring Equipment………………12

3-1. Experimental procedures……………………………………12
3-1-1 Cleaning glass substrate…………………………………12
3-1-2 Deposition steps of IZO and IZO-Au……………………13
3-1-3 Cleaning wafer………………………………………………17
3-1-4 Fabrication procedures of p-i-n photosensor…………17
3-2 Experimental equipment…………………………………………20
3-2-1 Low Pressure Chemical Vapor Deposition (LPCVD)………20
3-2-2 Anneal…………………………………………………………22
3-2-3 Ion implantation……………………………………………23
3-2-4 Exposure system………………………………………………23
3-2-5 RF sputtering machine………………………………………25
3-3 Measuring equipments……………………………………………25
3-3-1 Scanning Electron Microscope (SEM)……………………26
3-3-2 Spectrometer…………………………………………………27
3-3-3 X-ray diffractor ……………………………………………28
3-3-4 Atomic Force Microscopic (AFM)…………………………29
3-3-5 Energy dispersive x-ray spectrometer (EDS)…………30
3-3-6 KEITHLEY I-V curve scanner…………………………………31

Chapter 4 Results and Discussions……………………………32

4-1 Analysis of single layer IZO and Au film………………32
4-1-1 Transmittance…………………………………………………32
4-1-2 Resistivity……………………………………………………37
4-1-3 Surface microstructure……………………………………38
4-1-4 X-ray Diffraction analysis.………………………………40
4-1-5 X-ray Dispersive X-ray Spectrometer analysis………41
4-1-6 Atomic force microscopic analysis………………………42
4-2 Analysis of Multi-layer IZO-Au film……………………43
4-2-1 Transmittance…………………………………………………43
4-2-2 Resistivity..…………………………………………………44
4-2-3 Atomic force microscopic analysis………………………45
4-3 Analysis of applying IZO-Au to photosensor …………48
4-3-1 I-V curve analysis…………………………………………48
4-3-2 Responsivity…………………………………………………52
4-3-3 Quantum efficiency…………………………………………54
Chapter 5 Conclusions……………………………………………57
5-1. Summary…………………………………………………………57
5-2. Future prospects………………………………………………58

References………………………………………………………………59
[1] 潘漢昌, “IZO 透明導電薄膜製程研究”, 精儀中心簡訊 63 期 p.8-9, 2004.
[2] K. L. Chopra, □Growth of Thin Metal Films under Applied Electric Field□, Applied Physics Letters, Volume 7, Number 5, 1 September P.140-142, 1965
[3] D. I. Kennedy, R. E. Hayes and R. W. Alsford, □The Influence of Charge Effects on the Growth and Electrical Resistivity of Thin Metal Films□, J. of Appl. Phys., 38, P.1986-1987, 1967.
[4] E. Ahilea and A. A. Hirsch, □Resistance of Thin Metal Films Grown under a Longitudinal Electric Field□, J. of Applied Physics, Volume 42, Number 13, P.5601-5608, December 1971.
[5] 楊明輝,“透明導電膜”,藝軒圖書出版社p.1-7, 2006
[6] Yeon Sik Jung, Ji Yoon Seo, Dong Wook Lee, Duk Young Jeon, “Influence of DC magnetron sputter parameters on the properties of amporphous indium zinc oxide thin film, Thin Solid Films, Volume 445, Issue 1, Pages 63-71, 24 November 2003.
[7] E. Fortunato, A. Pimentel, A. Goncalves, A Marques, R. Martins, “High mobility amorphous/nanocrystalline indium zinc oxide deposited at room temperature”, Thin Solid Films, Volume 502, Issues 1-2, Pages 104-107, 28 April 2006.
[8] Burag Yaglioglu, Yen-Jung Huang, Hyo-Young Yeom and David C. Paine, “A study of amorphous and crystalline phases in In2O3–10 wt.% ZnO thin films deposited by DC magnetron sputtering”, Thin Solid Films, Volume 496, Issue 1, Pages 89-94, 1 February 2006.
[9] Furong Zhu, Keran Zhang, Ewald Guenther and Chua Soo Jin, “Optimized indium tin oxide contact for organic light emitting diode applications”, Thin Solid Films, Vol.363, p.314-317, 2000
[10] J. C. Bean, T. T. Sheng, L. C. Feldman, A. T. Fiory, and R. T. Lynch, “Pseudomorphic growth of GexSi1-x on silicon by molecular beam epitaxy”, Appl. Phys. Letts., 44 (1), pp.102-104, 1 January. (1984).
[11] R. People, J. C. Bean, “Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures,” Appl. Phys. Lett., Vol. 47, pp.322-324, 1985.
[12] 李玉華, □透明導電膜及其應用□,科儀新知,第十二卷第一期79-7,P.94-102, 1990.
[13] 陳學龍, “IZO 透明金屬薄膜之研製及其在GaN 基LEDs之應用研究”, 成功大學碩士論文 九十二年六月
[14] S.M. Sze, “Semiconductor Device Physics and Technology”, 2nd wiley p.313-317, 2002
[15] 李正中, □薄膜光學與鍍膜技術□, 藝軒圖書出版社,P.389-392, 2001
[16] J.C.Manifacier, J. Gasiot, and J. P. Fillard, “A simple method for the determination of the optical constansts n, k and the thickness of a weakly absorbing thin film”, J. Phy. E: Scientific Instruments, Volume 9, 1002-1004 (1976)
[17] K.H. Choia , J.Y. Kima, Y.S. Leeb, H.J. Kima,” ITO/Ag/ITO multi-layer flms for the application of a very low resistance transparent electrode”, Thin Solid Films, 341, 152-155, 1999.
[18] Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tsai, C. S. Chang, S. C. Shei, S. J. Hsu, C. H. Liu, U. H. Liaw, S. C. Chen, and B. R. Huang, “Nitride-Based Light-Emitting Diodes With Ni/ITO p-Type Ohmic Contacts”, IEEE photonics technology letters, Vol. 14, no. 12, December 2002.
[19] D. L. Peng, K. Sumiyama, N. Nozawa, T. Hihara, and H. Morikawa,” Ferromagnetic, Transparent and Conducting ITO-Fe-Cluster Composite Films”, IEEE Transactions on magnetics, vol. 41, no. 10, October 2005.
[20] June-O Song, Dong-Seok Leem, Joon Seop Kwak, Y. Park, S. W. Chae, and Tae-Yeon Seong, ” Improvement of the Luminous Intensity of Light-Emitting Diodes by Using Highly Transparent Ag–Indium Tin Oxide p-Type Ohmic Contacts”, IEEE photonics technology letters, vol. 17, no. 2, February 2005.
[21] Lin Ke, Ramadas Senthil Kumar, Peng Chen, Lu Shen, Soo-Jin Chua, and Adrian Paul Burden, “Au-ITO Anode for Efficient Polymer Light-Emitting Device Operation”, IEEE photonics technology letters, vol. 17, no. 3, March 2005.
[22] 楊燕智,“研製正-本-負(p-i-n)多晶矽鍺(Poly-SiGe)薄膜應用於光測器與太陽光電池之效能分析”,海洋大學碩士論文,九十五年五月
[23] 蕭宏,“半導體製程技術導論”,歐亞書局, p152~154, p351-352, 2001.
[24] 國家奈米元件實驗室,“高溫及低水平爐管技術資料”,p.2, 2006.
[25] Peter Van Zant, “Microchip Fabrication”, Mc Graw Hill p.351~353, 2001.
[26] Michael Quirk, Julian Serda, ”Semiconductor Manufacturing Technology”, Prentice Hall p174~176, p-342~345, 2001
[27] 張勁燕,“半導體製程設備”,二版,五南圖書, p.359~393, 2004.
[28] PDF#201438, JCPDS-ICCDD PCPDFWIN Version 2.3, 2002 June
[29] PDF#893697, JCPDS-ICCDD PCPDFWIN Version 2.3, 2002 June
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top