跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/14 23:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍國瑋
研究生(外文):Lan Kuo-Wei
論文名稱:阿拉伯海黃鰭鮪漁況與環境變動特性
論文名稱(外文):The Fishing Condition of Yellow-fin Tuna Associated with the Marine Environment Variation in the Arabian Sea
指導教授:李明安李明安引用關係
指導教授(外文):Ming-Anne Lee
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:96
中文關鍵詞:黃鰭鮪阿拉伯海衛星遙測主成分分析法
外文關鍵詞:Yellow-fin tunaArabian SeaSatellite remote sensingPrinciple Component Analysis
相關次數:
  • 被引用被引用:6
  • 點閱點閱:514
  • 評分評分:
  • 下載下載:64
  • 收藏至我的研究室書目清單書目收藏:1
本研究收集蒐集1998~2004 年台灣印度洋鮪釣漁船於阿拉伯海海
域捕獲黃鰭鮪的漁獲統計資料,與海表面水溫、海洋水色、海面高度、
降雨量和風速等衛星遙測資料以及該海域垂直水溫資料,並且利用主
成分分析法分析漁況與海洋環境之間變動的關係。結果顯示阿拉伯海
鮪釣漁船的CPUE 與海洋環境因子間有明顯的季節變動。主要漁獲時
間集中於每年2~7 月,平均CPUE 為10.71 尾/千鈎,其中4~5 月為每
年的盛漁期,平均CPUE(標準偏差)值為17.58±9.47 尾/千鈎。
主成分分析結果顯示影響該海域黃鰭鮪CPUE 之因子則與水溫、
溫躍層深度變化、葉綠素a 濃度與漁獲體長有關:
(ㄧ) 水溫與溫躍層深度: 高CPUE 主要發生於每年4~5 月,此時水深
105m 之水溫為21~24°C,溫躍層深度在115~155m,垂直水溫變化較
緩,趨於穩定的海況使得黃鰭鮪CPUE 有正向之變動趨勢,反之當夏
季(6~7 月)西南季風增強,索馬利亞湧昇強度增強時,水溫變低且垂直
水溫變化較劇烈季節,導致CPUE 的下降。
(二) 葉綠素a 濃度: 高漁獲區域主要分布於葉綠素a 濃度值較高的區
域,且該海域內的葉綠素a 濃度與阿拉伯海黃鰭鮪的CPUE 存在著2
個月延遲的正向關係,則表示CPUE 之變動可能與與餌料生物之多寡變動有關。
(三) 漁獲體長:月平均的漁獲體長介於98~145cm 之間,且隨著作業
時間之推移,月平均漁獲體長有增加的現象。又2002 年的CPUE 與體
長小於105cm 之魚群的比率呈正相關關係,且2002 年月平均體長介於
98~112cm 之間,顯示2002 年高CPUE 可能與漁獲體長小於105cm 之
幼魚加入群的比率明顯增加有關。
2004 年在該海域亦有最高漁獲量的現象,其原因則可能因為溫躍層
深度變淺、該海域東西半部海域有相同的溫躍層深度梯度,致使漁獲
量及單位體積內的魚群密度均增加。
Yellow-fin tuna is one of the major target fishes of commercial tuna longline fishery in the Arabian Sea. In this study, we collected the catch statistical data of yellow-fin tuna, water temperature, and satellite-derived
data during the period of 1998 to 2004 for analysis. The satellite-derived data include Sea surface temperature (SST), ocean color, Sea surface height, precipitation images, and wind speed of the Arabian Sea. Principle
components analysis (PCA) is used to investigate the relationship between the fishing condition of yellow-fin tuna and the oceanic environmental factors. The catch data shows that the fishing season began from February
to July, the averaged CPUE (Catch per unit effort) is 10.71 (inds/1000 hooks), the highest value of mean(±SD) about 17.58(±9.47) (inds/1000 hooks) in April and May.
The result of PCA shows seasonal evolution of CPUE and oceanic condition of the Arabian Sea. The fishing condition of yellow-fin tuna may vary with the water temperature, thermocline depth, the occurrence rate of forge, and the body length. In general, the water temperature at 105 m is
21~24°C and thermocline of 115~155m during the high CPUE period. When the southwesterly monsoon increased with the strong Somalia Basin upwelling, the water temperature changes more quickly and then the CPUE value gradually decreases accordingly. Yellow-fin tuna was much like
inhabited at the oceanic condition in stable, while the shallow thermocline depth less then 125m enhancing the the aggregating density which may cause the highest catch in 2004 in Arabian Sea. At the same time, the positive relationship of 2-month lag of Chl-a concentration and CPUE
suggested the forage concentration of Yellow-fin tuna was also the attracted factors to accumulate the tuna school. The monthly mean body length of yellow-fin tuna is varied about 98cm to 145cm by month and year. The CPUE was also significantly in accordance with the occurrence rate of
young yellow-fin tuna less than 105 cm of body length, as the monthly mean length of yellow-fin caught was varied between 98 to 112 cm in 2002. It suggested the high CPUE in 2002 was associated with the more recruits.
目 錄------------------------------------------ I
表目錄------------------------------------------III
圖目錄------------------------------------------IV
摘要--------------------------------------------VI
Abstract -------------------------------------- VIII
壹、前言----------------------------------------1
ㄧ、印度洋阿拉伯海漁場環境特性------------------1
二、黃鰭鮪的特徵與生態--------------------------2
三、研究目的與動機------------------------------4
貳、材料與方法----------------------------------7
一、衛星遙測資料收集----------------------------7
二、中下層水文環境資----------------------------9
三、漁獲資料收集與分析------------------------ 10
四、主成份分析法------------------------------ 11
參、結果-------------------------------------- 14
一、衛影遙測影像資料-------------------------- 14
1、海水表面溫度------------------------------- 14
2、海表面高度--------------------------------- 14
3、海洋水色----------------------------------- 15
4、降雨量和風速------------------------------- 16
二、中下層水文環境資-------------------------- 18
三、漁獲資料變動------------------------------ 20
1、黃鰭鮪漁獲量與CPUE 之月別變動-------------- 20
2、漁獲體長----------------------------------- 21
四、影響黃鰭鲔月別CPUE 與漁獲量之主要環境因子- 22
肆、結論與討論-------------------------------- 25
一、阿拉伯海域環境特性------------------------ 25
二、環境因子與黃鰭鮪漁況間的關係-------------- 27
三、2004 年黃鰭鮪高漁獲量之探討--------------- 31
謝辭------------------------------------------ 34
參考文獻-------------------------------------- 36
Andrade, H. A. (2003). The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south-western Atlantic. Fish Oceanogr, 12, 1, 10–18.
Anderson, D. M., J. C. Brock, and W. L. Prell (1992). Physical upwelling processes, upper ocean environment and the sediment record of the southwest monsoon. Upwelling system: Evolution since the Early Miocene, 121-129.
Alvarinho, J. L. and P. C. Pandey (2005). Characteristics of atmospheric divergence and convergence in the Indian Ocean inferred from scatterometer winds. Remote Sensing of Environment, 97, 231 – 237.
Baars, M. A., K. M. Bakker, T. F. Bruin, M. V. Couwelaar, M.A. Hielde, G. W. Kraaij, S. S. Oosterhuis, P. H. Schalk, I. Sprong, M. J. W. Veldhuis, C. J. Wiebinga and J. I. Witte (1994). Seasonal fluctuations in plankton biomass and productivity in the ecosystems of the Somali current, Gulf of Aden and southern Red Sea. In: Baars, M.A. (Ed.), Monsoons and Pelagic Systems, Cruise Reports Netherlands Indian Ocean Programme, 1, National Museum of Natural History, Leiden, 13-34.
Behringer, D.W. and Y. Xue (2004). Evaluation of the global ocean data assimilation system at NCEP: The Pacific Ocean. Eighth Symposium on Integrated Observing and Assimilation Systems for Atmosphere, Oceans, and Land Surface, AMS 84th Annual Meeting, Washington State Convention and Trade Center, Seattle, Washington, 11-15.
Claudia, R. Z., J. A. Lorenzzetti and J. L. Stech (2004). Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic. Remote Sensing of Environment, 93, 267-281.
Chang, S. K. and S. J. Wang (2004). Cpue standardization of Indian Ocean Swordfish from Taiwanese longline fishery for data up to 2002. IOTC, 7, 001-013.
Chen, I. C., P. F. LEE and W. N. Tzeng (2005). Distribution of albacore (Thunnus alalunga) in the Indian Ocean and its relation to environmental factors. Fisheries Oceanography, 14(1), 71-48.
Conan, S. M. H. and Brummer, G. J. A. (2000). Fluxes of planktic foraminifera in response to monsoonal upwelling on the Somalia Basin margin. Deep-Sea Research II, 47, 2207-2227.
Dennett, M. R., D. A. Caron, S. A. Murzov, I. G. Polikarpov, M. A. Gavrilova, L. V. Georgieva and L. V. Kuzmenko (1999). Abundance and biomass of nano- and microplankton during the 1995 Northeast Monsoon and Spring Intermonsoon in the Arabian Sea. Deep-Sea Research, II, 46, 1691–1717.
Donguy, J. R., and G. Meywes (1996). Seasonal variations of sea-surface salinity and temperature in the tropical Indian Ocean. Deep-Sea Research I, 43(2), 117-138.
Huang, C. C., L. Sun and R. T. Yang (1973). Age, growth and population structure of the Indian yellowfin tuna. J. Fish. Soc. Taiwan, 2, 1, 16-30.
Huang, H. Y. (1995). National report on Taiwanese longline fisheries in the Induan Ocean in 1994. FAO IPTP Collective Volume, 9, 47-48.
Juan, A. D. A., A. A. Buenrostrob, M. Susana and M. Adriana (2004). Spatial analysis of yellowfin tuna (Thunnus albacares) catch rate and its relation to El Nin˜ o and La Nin˜ a events in the eastern tropical Pacific. Deep-Sea Research II, 51, 575–586.
Kimura, S., A. Kasai, H. Nakata, T. Sugimoto, J. H. Simpson and J. V. S Cheok, (1997b). Biological productivity of meso-scale eddies caused by frontal disturbances in the Kuroshio. ICES J. Mar. Sci, 54, 179-192.
Kumar, S. P., J. Narvekar (2005). Seasonal variability of the mixed layer in the central Arabian Sea and its implication on nutrients and primary productivity. Deep-Sea Research II, 52, 1848–1861.
Lehodey, P., M. Bertignac, J. Hampton, A. Lewis and J. Picaut (1997). El Nino Southern Oscillation and tuna in the western Pacific. Nature, 389, 715-718.
Lehodey, P., J-M. Ander, M. Bertignac, J. Hampton, A. Stoens, C. Menkes, Lmemery and N. Grima (1998). Predicting skipjack tuna forage distributions in the equatorial Pacific using a coupled dynamical bio-geochemical model. Fisheries Oceanoger, 7, 3/4.
Liu, C. T, C. H. Nan, C. R.Hu, N. J. Kuo, M. K. Hsu and R. S. Tseng (2002). Tuna Catch and Satellite Remote Semsing. The Sixth Pan Ocean Remote Sensing Conference, 3-6.
Lu, H. J., K. T. Lee and C. H. Liao (1998). On the relationship between El Nino/Southern oscillation and South Pacific albacore. Fisheries Research, 39, 1-7.
Lu, H. J., K. T, Lee, H. L. Lin and C. H., Liao (2001). Spatio-temporal distribution of yellowfin tuna Thunnus albacares and bigeye tuna Thunnus obesus in the Tropical Pacific Ocean in relation to large-scale temperature fluctuation during ENSO episodes. Fisheries Science, 67, 1046–1052.
Luis, A. J. and P. C. Pandey, (2004). Relationship between surface atmospheric convergence over the Indian Ocean and Indian rainfall. Geophysical Research Letters, 31, L06208.
Luis, A. J. and P. C. Pandey, (2005). Characteristics of atmospheric divergence and convergence in the Indian Ocean inferred from scatterometer winds. Remote Sensing of Environment, 97, 231 – 237.
Lisan Yu (2003). Variability of the depth of the 20 C isothermalong 6 N in the Bay of Bengal: its response to remote and local forcing and its relation to satellite SSH variability. Deep-Sea Research II, 50, 2285–2304.
Me´nard, F., F. Marsac., E. Bellier and B. Cazelles (2007). Climatic oscillations and tuna catch rates in the Indian Ocean: a wavelet approach to time series analysis. Fish. Oceanogr, 16(1), 95–104.
Nakagome (1978). The study of relation between tuna and oceanography. Japanese Society of Fisheries Oceanography, 231-234.
Nishida, T., H. Matsuura, Y. Shiba, M. Tanaka, M. Mohri and S. K. Chang (2005). Did Ecological Anomalies Cause 1993 and 2003-2004 High Catches of Yellofine Tuna (Thunnus Aalbacares) in th e Western Indian Ocean and Review of Other Possible Causes (Strong Recruitments, High Catchbilities and Excess Fishing Efforts), IOTC/WPTT, 8, 042-057.
O’Reilly, J. E., S. Maritorena, B. G. Mitchell, D. A. Siegcl, K. L. Carder. S. A. Garver, M. Kahru and C. McClain (1998). Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103(C11), 24937-24953.
Paul, B (1976). Marine plankton ecology. North-Hoodlan Publishing Company, 335.
Potier, M. and F. Marsac (2007). Forage fauna in the diet of three large pelagic fishes (lancetfish, swordfish and yellowfin tuna) in the western equatorial Indian Ocean. Fisheries Research, 83, 60–72.
Polovina, J. J., E. Howell, D. R. Kobayashi and M. P. Seki (2001). The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Progress in Oceanography, 49, 469–483.
Stequert, B. J. P. and J. M. Dean (1996). Age and growth of yellowfin tuna, Thunnus albacares, from the western Indian Ocean, based on otolith microstructure. Fishery Bulletin, 94, 124-134.
Tang, D. L., H. Kawamura and A. J. Luis (2002). Short-term variability of phytoplankton blooms associated with a cold eddy in the northwestern Arabian Sea. Remote Sensing of Environment, 81, 82– 89.
Van, W. T. C. E, W, Helder and P. Schalk (1997). The Netherlands Indian Ocean Expedition 1992-1993, first results. Deep-Sea Research, 44, 1177- 1193.
Veldhuis, M. J. W., G. W. Kraay and J. D. L. Bleijswijk (1994). Phytoplankton biomass and productivity. In: Baars, M.A. (Ed.), Monsoons and pelagic systems. Cruise Reports Netherlands Indian Ocean Programme,1, National Museum of Natural History, Leiden, 45-54.
Veldhuis, M. J. W., Kraay, G. W., J. D. L. Bleijswijk and M. A. Baars (1997). Seasonal and spatial variability in phytoplankton biomass, productivity and growth in the Indian Ocean (the NE and SW-Monsoon, 1992-1993). Deep-Sea Research, 44, 425-449.
Wang, S. H., C. C. Hsu, and H. C. Liu (2001). Using fuzzy synthesis approach to extract fishing efforts directed on albacore for Taiwanese longline fleets in the Indian Ocean. J. Fish. Soc. Taiwan, 28:105-118.
Wiebinga, C. J., M. J. W. Veldhuis, H. J. W. Baar (1997). Abundance and productivity of bacterioplankton in relation to seasonal upwelling in the northwest Indian Ocean. Deep-Sea Research , 44, 451-476.
Wyrtki, K (1973). Physical oceanography of the Indian Ocean .The Biology of the Indian Ocean, 18-36.
Zagaglia, C. R., J. A. Lorenzzetti, J. L. Stech (2004). Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic. Remote Sensing of Environment, 93, 267–281.

沈世傑(1993)。台灣魚類誌。國立台灣大學動物學系。

翁筱郡、郭南榮、何宗儒與陳俊德(2005)。衛星遙測海面溫度應用於黃鰭鮪漁場變動之研究。航測及遙測學刊,第十卷,第二期,第139-158 頁。
蘇楠傑(2002)。台灣近海鮪延繩釣漁業黃鰭鮪的年齡、成長、死亡率與單位加入升產量。國立台灣大學海洋研究所碩士論文, 46pp。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top