跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/25 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹雅帆
研究生(外文):Ya-Fan Chan
論文名稱:台灣東北部沿岸海域色素型鞭毛蟲(PNF)攝食反應之研究-對藍綠細菌攝食率之季節變動
論文名稱(外文):The ingestion response of Pigmented Nanoflagellate on Synechococcus spp. in the coastal western subtropical Pacific
指導教授:蔣國平蔣國平引用關係
指導教授(外文):Kuo-Ping Chiang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:72
中文關鍵詞:微細鞭毛蟲攝食率藍綠細菌
外文關鍵詞:nanofalgellateingestion rateSynechococcus.
相關次數:
  • 被引用被引用:1
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:1
中文摘要
本研究使用螢光標識珠子餵食法量測色素型及非色素型鞭毛蟲對藍綠細菌之攝食速率。在夏季研究期間 (5月至10月),色素型鞭毛蟲平均可攝食63%的藍綠細菌生產量,為藍綠細菌最主要的攝食者。而非色素型鞭毛蟲由於體型較小,且於實驗中並沒有發現有攝食螢光標識珠子的情況,因此本研究認為非色素型鞭毛蟲的攝食對藍綠細菌的影響很小。
在2005-2006年的實驗希望了解不同體型大小之色素型鞭毛蟲是否有不同之個體攝食速率。實驗中發現整體色素型鞭毛蟲攝食藍綠細菌之速率有明顯的季節性變動。且其個體攝食速率之變動與現場藍綠細菌數量呈明顯正相關,此結果說明本海域色素型鞭毛蟲隨著餌料增加會產生明顯功能性反應 (functional response)。而表示藍綠細菌數量增加會刺激色素型鞭毛蟲攝食速率的增加。但不同體型大小對藍綠細菌的攝食變化不一。其中<3 μm的色素型鞭毛蟲沒有攝食反應,推測其屬自營性微細鞭毛蟲。而3-5 μm的色素型鞭毛蟲為主要的優勢種組成,平均佔62%總色素型鞭毛蟲組成。但此類體型大小之色素型鞭毛蟲攝食速率相當低 (0.3-1.6 Syne. Fla.-1 h-1)且沒有季節變動產生,因而推論本海域3-5 μm大小的色素型鞭毛蟲應會攝食其他餌料,如:細菌。另外5-10 μm及>10 μm的個體攝食速率呈現明顯的季節性攝食變動,其高值出現在6月(各為18 Syne. Fla.-1 h-1及12 Syne. Fla.-1 h-1)。此兩類色素型鞭毛蟲個體攝食速率的改變是隨著藍綠細菌數量所影響。兩者的數量在總色素型鞭毛蟲中平均僅佔20%,但此兩類族群之群體攝食率卻可佔全體69%。因此,5-10 μm及>10 μm此兩類為色素型鞭毛蟲中藍綠細菌重要的攝食者。就以季節變動而言,暖季時,藍綠細菌主要攝食者為>5 μm之色素型鞭毛蟲群集為主,其可佔約藍綠細菌70%被攝食的比例。而冷季則是以3-5 μm與5-10 μm大小的色素型鞭毛蟲為主,此兩類可各約佔50%左右。
由本研究補充實驗發現,光照對於色素型鞭毛蟲的攝食速率沒有顯著的影響。但以添加營養鹽的實驗清楚看出,色素型鞭毛蟲對於藍綠細菌的個體攝食速率顯著的降低。表示在本海域夏季貧營養鹽的環境下,5-10 μm及>10 μm體型大小的色素型鞭毛蟲其個體攝食速率增高,可能原因為利用攝食的行為以獲得不足之營養鹽,以利行光合作用。
英文摘要
The key grazers on Synechococcus are generally though to be nanoflagellates (both non-pigmeted and pigmeted) and ciliates, as previously reported in our western subtropical Pacific coastal study site. In this study, we used fluorescently labeled particle (FLP) and lablled Synechococcus (FLS) as Synechococcus -sized mimics to examine the contribution of pigmented versus non-pigmmented nanoflagellate grazing to Synechococcus morality. For two years, we assessed seasonal patterns in ingestion rate of the pigmented nanoflagellate on the Synechococcus spp., and the grazing effects of the differences size of pigmented nanoflagellates on the Synechococcus spp. Pigmented nanoflagellates are major grazers on Synechococcus spp. whose grazing accounts for 63% of Synechococcus production from Jun to September. On the other hands, non-pigmented nanoflagellate ingesting FLP was not observed in our experiments. The ingestion rates of pigmented nanoflagllate showed a significant seasonal variation, and a functional response was observed as prey concentration increased. The <3 μm of pigmented nanofalgellate apparently did not ingest FLS and were considered autotrophic nanoflagellates. Although, the 3-5 μm of pigmented nanoflagellate was the dominated grazer, the ingestion rate revealed no seasonal variation and remained low (0.3-1.6 Syne. Fla.-1 h-1). Thus, we suppose they ( pigmented nanoflagellate of 3-5 μm) might have grazed on other prey. Both the ingestion rates of the 5-10 μm fraction and the >10 μm fraction of pigmented nanoflagellates showed significantly seasonal variation, and the ingestion ability also presented functional response. In the warm season, the average of the consumption rate on Synechococcus spp. by these two sizes of pigmented nanoflagellate was high, which was about 70% of the consumption rate on Synechococcus spp. In the cold season, the 3-5 μm fraction and 5-10 μm fraction of pigmented nanoflagellates were responsible for 50% of the consumption rates on Synechococcus. In the nutrient enrichment experiment, we demonstrated that pigmented nanoflagellates were using their phagotrophic capability to obtain the nutrients when the nutrient is limiting.
目錄
表目錄………………………………………………….………...3
圖目錄……………………………………………………...…….4
中文摘要…………………………………………..…….……….6
英文摘要………………………………………………..….…….8

第一章、副熱帶沿岸生態系誰是藍綠細菌主要攝食者?

一、前言………………………………………….………....9
二、材料與方法………………………………………...…13
三、結果………………………………………………..….17
四、討論……………………………………………….….19

第二章、色素型鞭毛蟲攝食藍綠細菌的攝食速率之季節變動

一、前言………………………………….……………..….24
二、材料與方法………………………………………..….27
三、結果……………………………………………………30
四、討論…………………………………………………...35

結論……………………………………………………………..41
參考文獻………………………………………………..………43
附表……………………………………………………………..51
附圖……………………………………………………………..53
參考文獻

林芸琪 (2006)。臺灣東北部沿岸生態系中藍綠細菌(Synechococcus)與色素型鞭毛蟲攝食連鎖之關係。碩士論文。環境生物與漁業科學研究所。國立臺灣海洋大學。

陳焜明 (2001)。沿岸及陸棚生態系中纖毛蟲對聚球藻捕食率的時空變異在生物碳循環中的重要性。博士論文。海洋生物所。國立台灣海洋大學。

蔡安益 (2005)。臺灣東北部沿岸海域細菌與藍綠細菌日夜豐度變動之季節變化與微細鞭毛蟲攝食損耗之研究。博士論文。環境生物與漁業科學研究所。國立臺灣海洋大學。

Ayukai T. (1996). Possible limitation of the dilution technique for estimated growth and grazing morality rates of picoplanktonic cyanobacteria in oligotrophic tropical waters. J Exp Mar. Biol. Eol. 198: 101-111.

Benni H. (1994). The size ratio between planktonic predators and their prey. Limnol. Oceanogr. 39: 395-403.

Bird D.F. and J. Kalff (1987). Algal phagotrophy: Regulating factors and importance relative to photosynthesis in Dinobryon (Chrysophycea). Limnol. Oceanogr. 32: 277-284.

Blanchot J. and M. Rodier (1996). Picophytoplankton abundance and biomass in the western tropical Pacific Ocean during the 1992 El Nino year: results from flow cytometry. Deep-sea Res. I 43(6): 877-895.

Børsheim K. Y. and G. Bratbak (1987). Cell volume to carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 8: 211-223.

Campbell L. and D. Vaulot (1993). Photosynthetic picoplankton community structure in the subtropical north Pacific Ocean near Hawaii (station ALOHA). Deep-sea Res. I 40(10): 2043-2060.

Caron D. A., E. L. Lim, G. Miceli, J.B. Waterbury and F.W. Valois (1991). Grazing and utilization of chroococcoid cyanobacteria and heterotrophic bacteria by protozoa in laboratory cultures and a coastal plankton community Mar. Ecol. Prog. Ser. 76: 205-217.

Chang J., C. G. Chung and G. C. Gong (1996). Influences of cyclones on chlorophyll a concentration and Synechococcus abundance in a subtropical western Pacific coastal ecosystem. Mar. Ecol. Prog. Ser. 140: 199–205.

Choi J. W. (1994). The dynamic nature of protistan ingestion response to prey abundance. J. Euk. Microbiol. 41: 137-146.

Christaki U., C. Courties, H. Karayanni, A. Giannakourou, C. Maravelias, K. Ar. Kormas and P. Lebaron (2002). Dynamic Characteristics of Prochlorococcus and Synechococcus Consumption by Bacterivorous Nanoflagellates. Microb. Ecol. 43: 341-352.

Cuevas L. A. and C. E. Morales (2006). Nanoheterotroph grazing on bacteria and cyanobacteria in oxic and suboxic waters in coastal upwelling areas off northern Chile. J. Plankton Res. 28(4): 385-397.

Dolan J. R. and K. Šimek (1999). Diel periodicity in Synechococcus populations and grazing by heterotrophic nanoflagellate: Analysis of food vacuole contents. Limnol. Oceanogr. 44: 1565-1570.

Domaizon I., S. Viboud and D. Fontvieille (2003). Taxon-specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy-importance of mixotrophy. FEMS Micro. Ecol. 46: 317-329.

Hall J.A., D.P. Barret and M.R. James (1993). The importance of phytoflagellate, heterotrophic flagellate and ciliate grazing on bacteria and picophytoplankton sized prey in a coastal marine environment. J. Plankton Res. 15: 1075-1086.

Havskum H. and B. Riemann (1996). Ecological importance of bacterivorous, pigmented flagellates (mixotrophs) in the Bay of Aarhus. Mar. Ecol. Prog. Ser. 137: 251-263.

Isaksson A., A.-K. Bergström, P. Blomqvist and N. Jansson (1999). Bacterial grazing by phagotrophic phytoflagellates in a deep humic lake in northern Sweden. J. Plankton Res. II 21: 247–268.

Iturriaga R. and B.G. Mitchell (1986). Chroococcoid cyanobacteria: a significant component in the food web dynamic of the open ocean. Mar. Eco. Pro. Ser. 28: 291-297.

Iturriaga R., B. G. Mitchell and D. A. Kiefer (1988). Microphotometric Analysis of Individual Particle Absorption Spectra. Limnol. Oceanogr. 33(1): 128-135.

Jansson M., P. Blomqvist, A. Jonsson and A.K. Bergström (1996). Nutrient limitation of bacterioplankton, phytoplankton and heterotrophic nanoflagellates in Lake Őrträsket, alarge humic lake in northern Sweden. Limnol. Oceanogr. 41: 1552-1559.

Jiao N., Y. Yang, K. Hiroshi and W. Masataka (2002). Influence of hydrographic conditions on picoplankton distribution in the East China Sea. Aquat. microb. ecol. 30(1): 37-48.

Kudoh S., J. Kanda and M. Takahashi (1990). Specific growth rates and grazing mortality of chroococcoid cyanobacteria Synechococcus spp. in pelagic surface waters in the sea. J. Exp. Mar. Biol. Ecol. 42: 201-212.

McManus, G. B. and J. A. Fuhrman (1986). Bacterivory in seawater studied with the use of inert fluorescent particles. Limnol. Oceanogr. 31: 420-426.

Pace, M. L. and M. D. Bailiff (1982). Evaluation of a fluorescent microsphere technique for measuring grazing rates of phagotrophic microorganisms. Mar. Eco. Pro. Ser. 40: 185-193.

Partensky F., W. R. Hess and D. Vaulot (1999). Prochlorococcus, a marine photosynthetic prokaryote of global significance. Mirob. Mol. Biol. Rev. 63: 106-127.

Porter K.G. (1990). Heterotrophic, autotrophic, and mixotrophic nanoflagellates: Seasonal abundances and bacterivory in a eutrophic lake. Limnol. Oceanogr. 35(8) 1821-1832.

Porter K.G. and Y.S. Feig (1980). The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948.

Quevedo M. and R. Anadón (2001). Protist control of phytoplankton growth in the subtropical north-east Atlantic. Mar. Ecol. Prog. Ser. 221: 29-38.

Rassoulzadegan F., M. Lavel-Peuto and R. W. Sheldon (1988). Partitioning of the food ratio of marine ciliates between pico- and nanoplankton. Hydrobiologia 159: 75-88.

Reckermann M. and M. J. W. Veldhuis (1997). Trophic interactions between picophytoplankton and micro- and nanozooplankton in the western Arabian Sea during the NE monsoon 1993. Aquat. Microb. Ecol. 12: 263-273.

Rivkin R. B., L. Legendre, D. Deibel, J.-É. Tremblay, B. Klein, K. Crocker, S. Roy, N. Silverberg, C. Lovejoy, F. Mesplé, N. Romero, M.R. Anderson, P. Matthews, C. Savenkoff, A. Vézina, J.-C. Therriault, J. Wesson, C. Bérubé and R.G. Ingram (1996). Vertical Flux of Biogenic Carbon in the Ocean: Is There Food Web Control? Science 272(5265): 1163-1166.

Rublee P. A. and C. L. Gallegos (1989). Use of fluorescently labeled algae (FLA) to estimate microzooplankton grazing. Mar. Ecol. Prog. Ser. 51: 221-227.

Safi K. A. and J. A. Hall (1999). Mixotrophic and heterotrophic nanoflagellate grazing in the convergence zone east of New Zealand. Aquat. Microb. Ecol. 20: 33-93.

Safi K. A., W. N. Vant and J. A. Hall (2002). Growth and grazing within the microbial food web of a large coastal embayment. Aquat. Microb. Ecol. 29: 39–50.

Salonen W. and S. Jokinen (1988). Flagellate grazing on bacteria in a small dystrophic lake. Hydrobiologia. 161: 303-309.

Sherr B. F., E. B. Sherr and R. D. Fallon (1987). Use of monodispersed fluorescently labeled bacteria to estimate in situ protozoan bacterivory. Appl. Envir. Microbiol. 53: 958-965.

Sherr E.B. and B.F. Sherr (1988). Role of Microbes in Pelagic Food Webs: A Revised Concept. Limnol. Oceanog. 33(5): 1225-1227.

Sherr E.B. and B.F. Sherr (1993). Protistan grazing rates via uptake of fluorescently labeled prey. In Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis, Boca Raton, FL, p 695-701

Sherr E.B., B.F. Sherr and J. McDaniel (1991). Clearance rates of < 6 mu m fluorescently labeled algae (FLA) by estuarine protozoa: Potential grazing impact of flagellates and ciliates. MAR. ECOL. PROG. SER. 69(1-2): 81-92.

Sieburth J. McN., V. Semetacek and J. Lenz (1978). Pelagic ecosystem structure: heterotrophic compartment of the plankton and their relationship to plankton size. Limnol. Oceanogr. 23: 1256-1263.

Šolic M. and N. Krstulovic (1994). Role of predation in controlling bacterial and heterotrophic nanoflagellate standing stocks in the coastal Adriatic Sea: seasonal patterns. Mar. Eco. Prog. Ser. 114: 219-235.

Stephen D. A., G. Y. Peter and S. Jacqueline (2000). Impact of microzooplankton on the progression and fate of spring bloom in fjords of northern Norway. Aquat. Microb. Ecol. 22: 27-42.

Stockner J.G. (1988). Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol. Oceanogr. 33(4): 765-775.

Tsai A.Y., K. P. Chiang and J. Chang (2005). Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnol. Oceanogr. 50(4): 1221-1231.

Tsai A.Y., K.P. Chiang, Y.F. Chan, Y.C. Lin and J. Chang (2007). Pigmented nanoflagellates in the coastal western subtropical Pacific are important grazers on Synechococcus populations. J. Plankton. Res. 29(1): 71-77.

Unrein F, R. Massana, L. Alinsi-Sáez and M.J. Gasol (2007). Significant year-round effect of small mixotrophic flagellates on bacterioplankton in an oligotrophic coastal system. Limnol. Oceanogr. 52(1): 456-469.

Vaqué D., J. M.Gasol and C. Marrasé (1994). Grazing rates on bacteria: The significance of methodology and ecological factors. Mar. Ecol. Prog. Ser. 109: 263-227.

Waterbury J.B., S.W. Watson, F.W. Valois and D.G. Franks (1986). Biological and ecological characterization of the marine unicellular cyanobacterium Synehococcus. Can Bull Fish Aquat. Sci. 214: 71-120.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊