跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 14:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李豪勳
研究生(外文):Hao-Hsun Lee
論文名稱:鈦合金高溫變形微觀組織與銲接殘留應力分析
論文名稱(外文):The Microstructure of High Temperature Deformation and Welding Residual Stress Analysis of Titanium Alloys
指導教授:王星豪
指導教授(外文):Shing-Hoa Wang
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:機械與機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:71
中文關鍵詞:Ti-6Al-4VSP700高溫變形潛變銲接殘留應力鑽石薄膜有限元素法
外文關鍵詞:Ti-6Al-4VSP700high temperature deformationcreepweldresidual stressdiamond like carbonfinite element method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:367
  • 評分評分:
  • 下載下載:109
  • 收藏至我的研究室書目清單書目收藏:0
雙相鈦合金Ti-6Al-4V 與 β-rich SP700為本論文之主要材料。兩種材料具有相近的機械性質,於本論文中,將分別比較兩種鈦合金在500℃及100 MPa下的高溫變形潛變行為及鑽石鍍膜對銲接殘留應力之影響。
本論文研究發現β-rich SP700的抗潛變性較Ti-6Al-4V 優越。在經過160個小時潛變後β相之體積分率增加5%,而負潛變則相對只增加2%。在應力遽降後之潛伏期間(incubation period)其晶粒會成長且此時之晶粒尺寸會大於定應力潛變。穩態潛變為造成動態再結晶的細晶粒消散於變形晶粒基質中主要成因。
此研究以實驗與模擬兩種鈦合金於相同輸入熱下的銲接殘留應力分佈。Ti-6Al-4V有較SP700大的殘留張應力歸因於較低的熱傳導係數、熱擴散係數及相對較高的熱膨脹係數。有限元素模擬結果皆與量測實驗值相符。以陰極電弧鍍DLC鑽石薄膜於銲接過的鈦合金板材上,會降低及釋放某種程度上的銲接殘留應力。
Two kinds of duplex titanium alloys, Ti-6Al-4V and β-rich SP700, are investigated in this research. The high temperature deformation of creep of both titanium alloys and under 500℃ and 100 MPa are investigated in this research. The effect of DLC on welding residual stress is another topic of this research.
The creep resistance of β-rich SP700 is superior to that of Ti64. The volume fraction of the β phase shows a 5% increase for 160 hours of creep, in contrast to a 2% increase for negative creep. The grain growth occurs during the stress drop incubation period, and the grain size is larger than that of constant creep. The dynamic recrystallized fine grains dispersed in the matrix of deformed grains are attributed to the steady creep.
The distribution of welding residual stress in Ti64 and SP700 alloy plate are measured and calculated under the same heat input. Ti64 alloy exhibits a higher residual tensile stress than the SP700 alloy due to the low thermal conductivity and thermal diffusivity of the Ti64 alloy in addition its high thermal expansion coefficient. The simulation results correspond to the measurements. Diamond like carbon (DLC) thin film deposited on the as-welded titanium alloy plates reduces and relaxes the magnitude of welding residual stress by using the cathodic arc PVD process
Chapter 1 Introduction 1
Chapter 2 Literatures Review 3
2.1 Properties of titanium alloys Ti-6Al-4V and SP700 3
2.2 Creep behavior of titanium alloys 7
2.3 Diamond like carbon (DLC) coating and welding residual stress 10
Chapter 3 Experimental procedures 17
3.1 Materials 17
3.1.1 Round bar for creep test 17
3.1.2 Thick plate for welding 17
3.2 Tensile test 18
3.3 Creep test 20
3.4 Optical microstructure observation 22
3.5 SEM microstructure observation 22
3.6 TEM microstructure observation 22
3.7 pulsed gas tungsten arc welding 25
3.8 welding thermal cycle measurement 27
3.9 Residual stress measurement 27
3.10 DLC coating 29
Chapter 4 Results and Discussion 30
4.1 The creep and stress-drop incubation behavior of titanium alloys Ti-6Al-4V and SP700 30
4.1.1 The optical microstructure of as-received Ti64 and SP700 30
4.1.2 The creep behavior of Ti64 and SP700 31
4.1.3 The volume fraction change in Ti64 and SP700 33
4.1.4 High resolution microstructure observation of crept Ti64 and SP700 34
4.2 Diamond like carbon (DLC) films relaxing the welding residual stress for duplex titanium alloys 51
4.2.1 The residual stress distribution of Ti64 and SP700 weld 51
4.2.2 Stress released by DLC coating on the Ti64 and SP700 weld 53
Chapter 5 Conclusions 63
References 65
Vita 70
[1] C. Leyens and M. Peters, ”Titanium and Titanium alloys fundamental and applications”, WILEY-VCH Gmbh & Co. KGaA, 2003, p16
[2] E. W. Collings, “Materials Properties Handbook”, Titanium Alloys, ASM, p488-491
[3] C. Ouchi, K. Minakawa,” Development of β-rich α+β Titanium alloys: SP700”, NKK technical review, 1992, no. 65, p61-p67
[4] C. Ouchi, H. Fukai, “ Microstructural characteristics and unique properties obtained by solution treating or aging in β-rich α+β titanium alloy” , Materials Science and Engineering A, 263(1999), p132-p136
[5] Peter N. Comley, “Manufacturing advantages of superplastically formed fine-grain Ti-6Al-4V alloy”, Journal of Materials Engineering and Performance, vol. 13(6), 2004, p660-p664
[6] A. Ogawa, H. Iizumi, “Superplasticity and post-spf properties of SP-700”, Titanium '95. Vol. I; Birmingham; UK; 22-26 Oct. 1995. pp. 588-p595. 1996
[7] J. Takeda, M. Niinomi, “Effect of microstructure on fretting fatigue and sliding wear of highly workable titanium alloy Ti-4.5A1-3V-2Mo-2Fe”, International Journal of Fatigue, 26(2004), p1003–p1015
[8] M.J.R. Barboza, C. Moura Neto, “Creep mechanisms and physical modeling for Ti-6Al-4V”, Materials Science and Engineering A, 369(2004) p201-p209
[9] F. J. Seco, A. M. Irisarri, “Creep failure mechanisms of a Ti-6Al-4V thick plate”, Fatigue Fract Engng Mater Struct, 24(2001), p741-p750
[10] J. Koike, K. Maruyama, “Study of primary creep in Ti-6-22-22S alloys”, Materials Science and Engineering A, 263(1999), p155-p159
[11] P. E. Denney and E. A. Metzbower, Weld. J, 1989, 68, (8), p342s-346s
[12] S. H. Wang and M. D. Wei, “Tensile properties of gas tungsten arc welments in commercially pure titanium, Ti-6Al-4V and Ti-15V-3Al-3Sn-3Cr at different strain rates”, Science and Technology of Welding and Joining, 9(2004), p415-422
[13] N. Kishore Babu, S. Ganesh Sundara Raman, “Correlation of microstructure with mechanical properties of TIG weldments of Ti-6Al-4V made with and without current pulsing”, Materials Characterization, 58(2007), p581-587
[14] C. Ouchi, K. Minakawa,” Development of β-rich α+β Titanium allos: SP700”, NKK technical review, 1992, no. 65, p61-p67
[15] Hiroyuki Kokawa, Eiki Nagashima, “Diffusion bonding of Ti-6Al-4V alloy using superplastic titanium alloy insert material”, Science and Technology of Welding and Joining, 1(1996), p29-35
[16] A. A. Wells, Weld. J., 32(1953) 34r
[17] Y. C. Lin, C. P. Chou, “A new technique for reducing the residual stress induced by welding in type 304 stainless steel”, Journal of Materials Processing Technology, 48(1995), p693-698
[18] S. H. Wang, S. H. Shan, and Y. C. Pan, Science and Technology of welding and Joining, 1999, Vol. 4, No. 3, p182-p186
[19] K. H. Tseng, C. P. Chou, “The effect of pulsed GTA welding on the residual stress of a stainless steel weldment”, Journal of Materials Processing Technology, 123(2002), p346-353
[20] R. John, K. V. Jata, “Residual stress effects on near-threshold fatigue crack growth in friction stir welds in aerospace alloys”, International Journal of Fatigue, 25 (2003), p939-948
[21] William D. Sproul, “Physical vapor deposition tool coatings”, Surface and Coatings Technology, 81(1996), p1-7
[22] Dong-Hwa Kim, Hyoun-Ee Kim, “Characterization of diamond-like carbon films deposited on commercially pure Ti and Ti-6Al-4V”, Materials Science and Engineering C, 22(2002), p9-14
[23] Weng-Jin Wu, Min-Hsiung Hon, “The effect of residual stress on adhesion of silicon-containing diamond-like carbon coatings”, Thin Solid Films, 345(1999), p200-207
[24] Cheng-Hsun Hsu, Ming-Li Chen, “Corrosion resistance of TiN/TiAlN-coated ADI by cathodic arc deposition”, Materials Science and Engineering A, 421(2006), p182-190
[25] Altun H, Sinici H, “Corrosion behaviour of magnesium alloys coated with TiN by cathodic arc deposition in NaCl and Na2SO4 solutions”, Materials Characterization, (2007), in press, corrected proof, available online 19 January 2007,
[26] A. Gunawarman, Mitsuo Niinomi, “Fracture characteristics and microstructural factors in single and duplex annealed Ti–4.5Al–3V–2Mo–2Fe”, Materials Science and Engineering A, 308(2001), p216-p224
[27] T. Kruml, O. Coddet, “The investigation of internal stress fields by stress reduction experiments”, Materials Science and Engineering A, 387-389(2004), p72-p75
[28] C. N. Ahlouist, W. D. Nix, “The measurement of internal stresses during creep of Al and Al-Mg alloys”, Acta Metallurgica, 1971, Vol. 19, p373-p385
[29] M. Es-Souni, “Creep behaviour and creep microstructures of a high-temperature titanium alloy Ti–5.8Al–4.0Sn–3.5Zr–0.7Nb–0.35Si–0.06C (Timetal 834): Part I. Primary and steady-state creep”, Materials Characterization, Vol. 46(5), 2001, p365-p379
[30] J. P. Poirier, “Microscopic creep models and the interpretation of stress-drop tests during creep”, Acta Metallurgica, 25(1977), p913-p917
[31] W.J. Zhang, S.C. Deevi, “The controlling creep processes in TiAl alloys at low and high stress”, Intermetallics, 10(2002), p603-p611
[32] J. S. Kim, J. H. Kim, “Microstructural analysis on boundary sliding and its accommodation mode during superplastic deformation of Ti–6Al–4V alloy”, Materials Science and Engineering A, 263(1999), p272-p280
[33] W. Blum, “Creep of crystalline materials: experimental basis, mechanisms and models”, Materials Science and Engineering A, 319-321(2001), p8-p15
[34] JFE STEEL's TITANIUM PRODUCTS, www.jfe-steel.co.jp/products/titanium/catalog/c1x-003.pdf
[35] H. Oettel, R. Wiedemann, “Residual stress in PVD hard coatings”, Surface and Coatings Technology, 76-77(1995), p265-273
[36] B. R. Sridhar, G. Devananda, “Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834”, Journal of Materials Processing Technology, 139(2003), p628-634
[37] X. L. Peng, T. W. Clyne, “Mechanical stability of DLC films on metallic substrates: Part I-Film structure and residual stress levels, Thin Solid Films, 312(1998), p207-218
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊