(3.231.29.122) 您好!臺灣時間:2021/02/25 16:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:沙部.魯比
研究生(外文):Sha Pu.Lu Pi
論文名稱:低氧再充氧刺激對人體紅血球氧化壓力的影響
論文名稱(外文):Effect of Oxidative Stress Induced by Hypoxia/Reoxygenation on Human Erythrocytes
指導教授:楊忠祥楊忠祥引用關係林嘉志林嘉志引用關係
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:體育學系碩士班
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:102
中文關鍵詞:紅血球氧化壓力低氧再充氧
外文關鍵詞:erythrocyteoxidative stresshypoxia/reoxygenation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:30
  • 收藏至我的研究室書目清單書目收藏:0
背景與目的:低氧再充氧已知能造成許多組織包括紅血球一些組成的氧化傷害。然而,由運動及/或低氧再充氧產生的活性氧在作用機轉上仍不十分清楚。本研究探討在低氧再充氧條件下有無衰竭運動刺激之離體紅血球與血漿的交互作用影響。方法:徵募8位健康男性為受試者(年齡:28.9 ± 2.9 yr,身高:170.1 ± 5.9 cm,體重:68.9 ± 7.4 kg)。收集其衰竭跑步機運動前後紅血球依以下條件組合:有無白血球、以PBS取代血漿、運動前後血漿互換等。重組之檢體加入diphenylene iodonium(DPI) (5μM)或allopurinol(5μM)於常壓常氧、常壓低氧或低壓低氧環境室溫培養一小時。分析項目有上清液之葡萄糖、乳酸、葡萄糖代謝率、一氧化氮;紅血球抗氧化酶活性包括superoxide dimutase (SOD)、glutathione peroxidase (GPx)、catalase (CAT)、紅血球脆性(fragility);上清液與紅血球之thiobarbituric acid reactive substances ( TBARS)等。統計採相依樣本雙因子變異數分析法,顯著水準為p ≦ .05。結果:紅血球脆性、上清液一氧化氮似乎不易受運動、血樣重組方式、allopurinol、DPI與低氧再充氧等處理而受影響;低氧再充氧可刺激白血球增加上清液乳酸及紅血球GPx活性;紅血球CAT活性則僅在運動後增加。紅血球葡萄糖代謝率可受運動激活白血球與血漿而抑制。衰竭運動後血漿具有抗脂質氧化成分,能顯著減少紅血球脂質受到氧化傷害。結論:運動可減少紅血球葡萄糖代謝率;紅血球受運動、體外培養、低氧再充氧而增加其內外氧化壓力,運動後血漿有減少脂質氧化傷害的作用。本研究所使用的兩種抗氧化劑均無法減低紅血球內氧化壓力。
Background and Objective: Hypoxia/reoxygenation has been known to cause oxidative damage in many tissues including several intracellular components of erythrocytes. However, the mechanism of reactive oxygen species (ROS) induced by exercise and/or hypoxia/reoxygenation remains unclear. The study was to investigate the interaction between erythrocytes and plasma in vitro w/o exhaustive exercise stimulus in condition of hypoxia/reoxygenation. Methods: Eight healthy men were included as subjects (28.9 ± 2.9 yr, 170.1±5.9 cm, 68.9±7.4 kg). Erythrocytes were separated form blood samples collected before and after exhaustive treadmill exercise. The reaction samples were then reconstituted considering: w/o leukocytes or plasma replaced by PBS or plasma before exercise replaced by that after exercise (and vise versa). Test samples were incubated w/o diphenylene iodonium(DPI) (5μM) or allopurinol (5μM) at room temperature in condition of normbaric normoxia, normbaric hypoxia and hypobaric hypoxia. Biochemical parameters were analyzed including: glucose, lactate, glucolytic rate, nitric oxide in supernatants; superoxide dimutase (SOD) activity, glutathione peroxidase (CPx) activity, catalase (CAT) activity, fragility in erythrocytes; thiobarbituric acid reactive substances (TBARS) in both supernatants and erythrocytes. Repeated measures of two-way ANOVA was used to analyze data and statistically significant level was set at p ≦.05 . Results:Exercise, rearrangements and treatments of allopurinol, DPI or hypoxia/reoxygenation appeared no effect on erythrocyte fragility, supernatant NO. Increased Hypoxia/reoxygenation increased supernatant lactate release mediated by leukocytes and erythrocyte GPx activity. Erythrocyte CAT activity was increased only in erythrocytes immediately after exercise. The erythrocyte glucolytic rate was inhibited by activated leukocytes and plasma. Substances of anti-lipid peroxidation existed in postexercised plasma and can protect erythrocyte from oxidative damages. Conclusions:Exercise decreased glucolytic rate in erythrocytes. Oxidative stress inside and outside of erythrocytes was increased by exercise, culture in vitro, and hypoxia/reoxygenation. Postexercised plasma provided erythrocyte of protection from oxidative damages. Antioxidants used in this study cannot decrease oxidative stress inside the erythrocyte.
目次

第壹章 緒論 1
第一節 研究背景 1
第二節 研究目的 2
第三節 研究問題 2
第四節 操作性定義 3

第貳章 文獻探討 4
第一節 高地、運動與氧化壓力關係 4
第二節 氧化傷害指標 6
第三節 體內抗氧化酶系統與其他抗氧化劑 7
第四節 allopurinol與diphenylene iodonium (DPI) 8

第参章 研究方法 10
第一節 研究材料 10
第二節 實驗流程 11
第三節 體外(in vitro)血液樣本處理與分組 13
第四節 受試者 16
第五節 運動程序 17
第六節 血液樣本處理與分析 18
第七節 資料處理 22

第肆章 結果 23
第一節 erythrocyte fragility 23
第二節 supernatant lactate 23
第三節 supernatant glucose 24
第四節 erythrocyte SOD activity 24
第五節 erythrocyte CAT activity 25
第六節 erythrocyte GPx activity 25
第七節 supernatant NO 25
第八節 erythrocyte TBARS 26
第九節 supernatant TBARS 26
第十節 erythrocyte glucolytic rate 27

第伍章 討論 28

第陸章 結論與建議 30

引用文獻 31
附錄 40
附錄一、受試者須知 40
附錄二、受試者同意書 41
附錄三:受試者健康狀況調查表 42

表次
表3-1 血液樣本培養與給藥分組 15
表3-2 血液樣本處理與重組關係表 16
表3-3 受試者基本資料 16
表3-4 Bruce 運動負荷protocol 17

圖次
圖3-1 實驗流程圖 12
圖5-1 血液處理影響關係圖 29
圖7-1-1 血液樣本於常壓常氧(NNo)處理一小時後之erythrocyte fragility 在各種rearrangement and treatment間的比較 43
圖7-1-2 血液樣本於常壓低氧(NHo)處理一小時後之erythrocyte fragility 在各種rearrangement and treatment間的比較 44
圖7-1-3 血液樣本於低壓低氧(HHo)處理一小時後之erythrocyte fragility 在各種rearrangement and treatment間的比較 45
圖7-1-4 血液樣本CON組於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)處理一小時後之erythrocyte fragility 在各種rearrangement and treatment間的比較 46
圖7-1-5 血液樣本ALL組於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)處理一小時後之erythrocyte fragility 在各種rearrangement and treatment間的比較 47
圖7-1-6 血液樣本DPI組於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)處理一小時後之erythrocyte fragility 在各種rearrangement and treatment間的比較 48
圖7-2-1 rearrangement and treatment 於常壓常氧(NNo)一小時之supernatant lactate 濃度比較 49
圖7-2-2 rearrangement and treatment 於常壓低氧(NHo)一小時之supernatant lactate 濃度比較 50
圖7-2-3 rearrangement and treatment 於低壓低氧(HHo)一小時之supernatant lactate 濃度比較 51
圖7-2-4 rearrangement and treatment 無給予抑制劑於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之supernatant lactate 濃度比較 52
圖7-2-5 rearrangement and treatment 給予抑制劑allopurinol於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之supernatant lactate 濃度比較 53
圖7-2-6 rearrangement and treatment 給予抑制劑DPI於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之supernatant lactate 濃度比較 54
圖7-3-1 rearrangement and treatment 於常壓常氧(NNo)一小時之supernatant glucose 濃度比較 55
圖7-3-2 rearrangement and treatment 於常壓低氧(NHo)一小時之supernatant glucose 濃度比較 56
圖7-3-3 rearrangement and treatment 於低壓低氧(HHo)一小時之supernatant glucose 濃度比較 57
圖7-3-4 rearrangement and treatment 無給予抑制劑於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之supernatant glucose 濃度比較 58
圖7-3-5 rearrangement and treatment 給予抑制劑allopurinol於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之supernatant glucose 濃度比較 59
圖7-3-6 rearrangement and treatment 給予抑制劑DPI於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之supernatant glucose 濃度比較 60
圖7-4-1 rearrangement and treatment 於常壓常氧(NNo)一小時之erythrocyte SOD activity 比較 61
圖7-4-2 rearrangement and treatment 於常壓低氧(NHo)一小時之erythrocyte SOD activity 比較 62
圖7-4-3 rearrangement and treatment 於低壓低氧(HHo)一小時之erythrocyte SOD activity 比較 63
圖7-4-4 rearrangement and treatment 無給予抑制劑於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte SOD activity 比較 64
圖7-4-5 rearrangement and treatment 給予抑制劑allopurinol於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte SOD activity 比較 65
圖7-4-6 rearrangement and treatment 給予抑制劑DPI於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte SOD activity 比較 66
圖7-5-1 rearrangement and treatment 於常壓常氧(NNo)一小時之erythrocyte CAT activity 比較 67
圖7-5-2 rearrangement and treatment 於常壓低氧(NHo)一小時之erythrocyte CAT activity 比較 68
圖7-5-3 rearrangement and treatment 於低壓低氧(HHo)一小時之erythrocyte CAT activity 比較 69
圖7-5-4 rearrangement and treatment 無給予抑制劑於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte CAT activity 比較 70
圖7-5-5 rearrangement and treatment 給予抑制劑allopurinol於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte CAT activity 比較 71
圖7-5-6 rearrangement and treatment 給予抑制劑DPI於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte CAT activity 比較 72
圖7-6-1 rearrangement and treatment 於常壓常氧(NNo)一小時之erythrocyte GPx activity 比較 73
圖7-6-2 rearrangement and treatment 於常壓低氧(NHo)一小時之erythrocyte GPx activity 比較 74
圖7-6-3 rearrangement and treatment 於低壓低氧(HHo)一小時之erythrocyte GPx activity 比較 75
圖7-6-4 rearrangement and treatment 無給予抑制劑於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte GPx activity 比較 76
圖7-6-5 rearrangement and treatment 給予抑制劑allopurinol於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte GPx activity 比較 77
圖7-6-6 rearrangement and treatment 給予抑制劑DPI於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte GPx activity 比較 78
圖7-7-1 rearrangement and treatment 於常壓常氧(NNo)一小時之supernatant NO濃度比較 79
圖7-7-2 rearrangement and treatment 於常壓低氧(NHo)一小時之supernatant NO濃度比較 80
圖7-7-3 rearrangement and treatment 於低壓低氧(HHo)一小時之supernatant NO濃度比較 81
圖7-7-4 rearrangement and treatment 無給予抑制劑於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之supernatant NO濃度比較 82
圖7-7-5 rearrangement and treatment 給予抑制劑allopurinol於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之supernatant NO濃度比較 83
圖7-7-6 rearrangement and treatment 給予抑制劑DPI於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之supernatant NO濃度比較 84
圖7-8-1 rearrangement and treatment 於常壓常氧(NNo)一小時之erythrocyte TBARS 濃度比較 85
圖7-8-2 rearrangement and treatment 於常壓低氧(NHo)一小時之erythrocyte TBARS 濃度比較 86
圖7-8-3 rearrangement and treatment 於低壓低氧(HHo)一小時之erythrocyte TBARS 濃度比較 87
圖7-8-4 rearrangement and treatment 無給予抑制劑於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte TBARS 濃度比較 88
圖7-8-5 rearrangement and treatment 給予抑制劑allopurinol於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte TBARS 濃度比較 89
圖7-8-6 rearrangement and treatment 給予抑制劑DPI於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte TBARS 濃度比較 90
圖7-9-1 rearrangement and treatment 於常壓常氧(NNo)一小時之supernatant TBARS 濃度比較 91
圖7-9-2 rearrangement and treatment 於常壓低氧(NHo)一小時之supernatant TBARS 濃度比較 92
圖7-9-3 rearrangement and treatment 於低壓低氧(HHo)一小時之supernatant TBARS 濃度比較 93
圖7-9-4 rearrangement and treatment 無給予抑制劑於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之supernatant TBARS 濃度比較 94
圖7-9-5 rearrangement and treatment 給予抑制劑allopurinol於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之supernatant TBARS 濃度比較 95
圖7-9-6 rearrangement and treatment 給予抑制劑DPI於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之supernatant TBARS 濃度比較 96
圖7-10-1 rearrangement and treatment 於常壓常氧(NNo)一小時之erythrocyte glucolytic rate比較 97
圖7-10-2 rearrangement and treatment 於常壓低氧(NHo)一小時之erythrocyte glucolytic rate比較 98
圖7-10-3 rearrangement and treatment 於低壓低氧(HHo)一小時之erythrocyte glucolytic rate比較 99
圖7-10-4 rearrangement and treatment 無給予抑制劑於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte glucolytic rate比較 100
圖7-10-5 rearrangement and treatment 給予抑制劑allopurinol於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte glucolytic rate比較 101
圖7-10-6 rearrangement and treatment 給予抑制劑DPI於常壓常氧(NNo)、低壓低氧(HHo)、低壓低氧(HHo)一小時之erythrocyte glucolytic rate比較102
一、中文部份
林學宜、林俊宏、徐台閣 (2004)。不同強度之耐力運動對血液中維生素C、E濃度的影響。體育學報,37,1-10。

林學宜、林培元、徐廣明、徐台閣(2000)。不同強度運動對抗氧化酵素及丙二醛的影響。體育學報, 29, 137-148。

蔡宇柔(2003)。攀登帕米爾列寧峰(7134 M)對海平面運動能力及血球變化影響之研究(碩士論文,中國文化大學,2003)。全國博碩士論文資訊網,091PCCU0419013。

林嘉志、姚承義、陸康豪(印刷中)。硫辛酸對抑制運動引起氧化壓力機轉的探討。中華體育。

二、外文部份
Alessio, H. M. (1993). Exercise-induced oxidative stress. Medicine and Science in Sports and Exercise, 25(2), 218-224.

Asha Devi, S., Subramanyam, M. V., Vani, R., & Jeevaratnam, K. (2005). Adaptations of the antioxidant system in erythrocytes of trained adult rats: impact of intermittent hypobaric-hypoxia at two altitudes. Comparative Biochemistry and Physiology. Toxicology and Pharmacology : CBP, 140(1), 59-67.

Askew, E. W. (2002). Work at high altitude and oxidative stress: antioxidant nutrients. Toxicology, 180, 107-119.

Bakonyi, T., & Radak, Z. (2004). High altitude and free radicals. Journal of Sports Science and Medicine, 3, 64-69.

Casas. M., Casas H,, Pages, T, Rania, R., Ricart. A., Ventura, J. L., Ibanez. J., Rodriguez, F. A., & Viscor, G. (2000). Intermittent hypobaric hypoxia induces altitude acclimation and improves the lactate threshold. Aviat Space Environ Medicine,71(2), 125-30.

Dalle-Donne, I., Aldini, G., Carini, M., Colombo, R., Rossi, R., & Milzani, A. (2006). Protein carbonylation, cellular dysfunction, and disease progression. Journal of Cellular and Molecular Medicine, 10(2), 389-406.

Faraci, F., & Didion, S. (2004). Vascular protection: superoxide dismutase isoforms in the vessel wall. Arteriosclerosis, Thrombosis, and Vascular Biology, 24(8), 1367-1373.

Finkel, T. (1998). "Oxygen radicals and signaling. Current Opinion in Cell Biology,10(2): 248-53.

Frei, B., England, L., & Ames, B. N. (1989). Ascorbate is an outstanding antioxidant in human blood plasma. Proceedings of the National Academy of Sciences of the United States of America, 86(16): 6377–6381.

Furchgotte, R. F. & Zwadzki, J. V. (1980). The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature, 288, 373-376.

Gonzalez, N. C., N. C., & Wood, J. G. (2001). Leukocyte-endothelial interactions in environmental hypoxia. Advanced Experimental Medicine and Biology, 474, 899-903.

Griendling, K. K., D. Sorescu & M. Ushio-Fukai (2000). NAD(P)H oxidase: role in cardiovascular biology and disease. Circulation Research, 86(5), 494-501.

Hallwell, B., Murcia, M. A., Chirico, S. & Aruoma, O.I.,(1995),Free radicals and antioxidants in food and in vivo: what they do and how they work. Critical Reviews in Food Science and Nutrition, 35 (1-2),7-10.

Hallwell B, Gutteridge JM, & Cross CE. (1992).Free radicals, antioxidants, and human disease: where are we now? The Journal of Laboratory and Clinical Medicine, 119(6), 598-620.

Hellsten, Y. (1994). Xanthine dehydrogenase and purine metabolism in man. With special reference to exercise. Acta physiologica Scandinavica and Supplementum, 621, 1-73.

Hellsten, Y., Tullson, P. C., Richter, E. A., & Bangsbo, J. (1997). Oxidation of urate in human skeletal muscle during exercise. Free Radical Biology and Medicine, 22(1-2), 169-174.

Heunks, L. M., Vina, J., van Herwaarden, C. L., Folgering, H. T., Gimeno, A., & Dekhuijzen, P. N. (1999). Xanthine oxidase is involved in exercise-induced oxidative stress in chronic obstructive pulmonary disease. American Physiological Society, 277(6 Pt 2), R1697-1704.

Ilavazhagan, G., Bansal, A., Prasas, D., Thomas, P., & Sharma, S., K., K., (2001). Effect of Vitamin E Supplementation on Hypoxia-Induced Oxidative Damage in Male Albino Rats. Aviatione Space Environ Medicine, 72, 899-903.

Irani, K. (2000). Oxidant signaling in vascular cell growth, death, and survival : a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circulation Research, 87(3), 179-83.

Ji, L. L., Gomez-Cabrera, M. C., Steinhafel, N. & Vina, J. (2004). Acute exercise activates nuclear factor (NF)-κB signaling pathway in rat skeletal muscle. The Federation of American Societies for Experimental Biology: official publication of the Federation of American Societies for Experimental Biology, 18, 1499–1506.

Ji, L. L. (1993). Antioxidant enzyme response to exercise and aging. Medicine and Science in Sports and Exercise, 25(2), 225-231.

Joanny, P., Steinberg, J., Robach, P., Richalet, J. P., Gortan, C., Gardette, B., & Jammes, Y. (2001). Operation Everest III (comex'97): the effect of simulated sever hypobaric hypoxia on lipid peroxidation and antioxidant defence system in human blood at rest and after maximal exercise. Resuscitation, 49, 307-314.

Kanter, M. M., Lesmes, G. R., Kaminsky, L. A., La Ham-Saeger, J., & Nequin, N. D. (1988). Serum creatine kinase and lactate dehydrogenase changes following an eighty kilometer race. European Journal of Applied Physiology and Occupational Physiology, 57(1), 60-3.

Khanna, Savita., Atalay, M., Lodge, J., Laaksonen D., Mustafa, G., Sashwati, R., & Sen, C. K.(1999). α-lipoic acid supplementation:tissue glutathione homeostasis at rest and after exercise. Journal of Applied Physiology, 86(4), 1191-1196.

Mari, G. C., Consuelo, B., Federico, V. P., Juan, S., Ji, L. L., & Jose, V.(2005). Decreasing xanthine oxidase-mediated oxidative stress prevents useful cellular adaptations to exercise in rats. The Journal of Physiology, 567(1), 113–120.

Maxwell, S. R., Jaleman, P., Thomason, H., Leguen, C., & Thorpe, G. H. (1993). Changes in plasma antioxidant status during eccentric exercise and the effect of vitamin supplementation. Free Radical Research, 84, 407-412.

Miller, A. A., Drummond, G. R., & Sobey, C. G. (2006). Reactive oxygen species in the cerebral circulation: are they all bad? Antioxidants and Redox Signaling, 8(7-8), 1113-1120.

Moller, P., Loft, S., Lundby, C., & Olsen, N. V. (2001). Acute hypoxia and hypoxic exercise induce DNA strand breaks and oxidative DNA DAMAGE IN HUMANS. The Federation of American Societies for Experimental Biology: official publication of the Federation of American Societies for Experimental Biology, 15, 1181-1186.

Packer, L., Witt, E. H., & Tritschler, H. J.,(1995). Alpha-lipoic acid as a biological antioxidant. Free Radical Biology and Medicine, 19(2), 227-250.

Radak, Z., Lee, K., Choi, W., Sunoo, S., Kizaki, T., & OhIshi, S. (1994). Oxidative stress induced by intermittent exposure at a simulated altitude of 4000m decreases mitochondrial superoxide dimutase content in soleus muscle of rats. European Journal of Applied Physiology, 69, 392-395.

Radak, Z., Nakamura, A., Nakamoto, H., Asano, K., Ohno., H., & Goto, S. (1998). A period of anaerobic exercise increases the accumulation of reactive carbonyl derivatives in the lungs of rats. Plungers Archiv European Journal of Physiology, 435, 439-441.

Rodriguez, F. A., Casas, H., Casas. M., Pages, T., Rama., Ricart, A., Ventura, J., Ibanez. J., & Viscor, G. (1999). Intermittent hypobaric hypoxia stimulates erythropoiesis and improves aerobic capacity. Medicine and Science in Sports and Exercise, 31(2), 264-268.

Schroder, H., Navarro, E., Tramullas, A., Mora, J. & Galiano, D. (2000).Nutrition antioxidant status and oxidative stress in professional basketball players: effects of a three compound antioxidative supplement. Journal of Sports Medicine, 21, 146-150.

Schmidt, M., Askew, E. W., Roberts, D. E., Prior, R. L., Ensign, W. Y. J., & Hesslink, R. E. J. (2002). Oxidative Stress in humans training in a cold, moderate altitude environment and their response to a phytochemical antioxidant supplement. Wilderness and Environmental Medicine, 13, 94-105.

Sen, C. K. (1995). Oxidants and antioxidants in exercise. Journal of Applied Physiology, 79, 675-686.

Sjodin, B., Westing, Y.H. & Apple F.S. (1990). Biochemical mechanisms for oxygen free radical formation during exercise. Sports Medicine, 10(4), 236-254.

Sorescu, D., K. Szocs & K. K. Griendling. (2001). NAD(P)H oxidases and their relevance to atherosclerosis. Trends in Cardiovascular Medicine, 11(3-4),124-31.

Stray-Gundersen, J., Chapman, R. F., & Levine, B. D. (2001). "Living high-training low" altitude training improves sea level performance in male and female elite runners. European Journal of Applied Physiology, 91(3), 1113-1120.

Stephanie, D.W., & Peter, J. H. (2003). Alpha-lipoic acid and cardiovascular disease. Journal of Nutrition, 133, 3327-3330.


Sundaresan, M., Z. X. Yu, V. J. Ferrans, K. Irani & T. Finkel (1995). Requirement for generation of H2O2 for platelet-derived growthfactor signal transduction. Science, 270(5234): 296-9.

Suzuki, Y. J., H. J. Forman & A. Sevanian (1997). Oxidants as stimulators of signal transduction. Free Radical Biology and Medicine, 22(1-2), 269-85.

Teichert, J., & Preiss, R. (1992). HPLC-methods for determination of lipoic acid and its reduced form in human plasma. International Journal of Clinical Pharmacology, Therapy, and Toxicology, 30(11), 511-512.

Ushio-Fukai, M., R. W. Alexander, M. Akers & K. K. Griendling (1998). p38
Mitogen-activated protein kinase is a critical component of theredox-sensitive signaling pathways activated by angiotensin II. Role in vascular smooth muscle cell hypertrophy. The Journal of Biological Chemistry, 273(24), 15022-9.

Vasankari, T. J., Kujala, U. M., Rusko, H., Sarna, S., & Ahotupa, M. (1997). The effect of endurance exercise at moderate altitude on serum lipid peroxidation and antioxidative functions in humans. European Journal of Applied Physiology and Occupational Physiology, 75(5), 396-399.

Vina, J., Gomez-Cabrera, M. C., Lloret, A., Marquez, R., Minana, J. B., & Pallardo, F. V. (2000). Free radicals in exhaustive physical exercise: mechanism of production, and protection by antioxidants. IUBMB Life, 50(4-5), 271-277.

Wang M. Y. & Liehr J. G. (1995). Lipid Hydroperoxide-Induced Endogenous DNA Adducts in Hamsters: Possible Mechanism of Lipid Hydroperoxide-Mediated Carcinogenesis. Archives of Biochemistry and Biophysics ,316, 1, 38-46.

Wollin, S. D. & Jones, P. J.(2003).Alpha-lipoic acid and cardiovascular disease. Journal of Nutrition,133 , 3327-3330.
Wozniak, A., Drewa, G., Chesy, G., Rakowski, A., Rozwodowska, M., & Olszewska, D. (2001). Effect of altitude training on the peroxidation and antioxidant enzymes in sportsmen. Medicine and Science in Sports and Exercise, 33(7), 1109-1113.

Yano, S., & Yano, N. (2002). Regulation of catalase enzyme activity by cell signaling molecules. Molecular and Cellular Biochemistry , 240(1-2), 119-130.

Yu BP. (1994). Cellular defenses against damage from reactive oxygen species. Physiological Reviews, 74(1), 139-62.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔