跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 16:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王宇涵
研究生(外文):Hu-Han Wang
論文名稱:鐵人三項自由車運動不同座管角度對下肢肌群之影響
論文名稱(外文):The Effect of Different Seat Tube Angle on Muscle Activation in Triathlon
指導教授:翁梓林翁梓林引用關係
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:體育學系碩士班
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:59
中文關鍵詞:漸增式負荷均方根肌電振幅中位數頻率
外文關鍵詞:incremental workload exerciseroot mean square electromyographymedian frequency
相關次數:
  • 被引用被引用:3
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的:比較自由車運動中進行漸增式負荷測驗時,採用座管角72°與座管角度82°對下肢肌群之影響。方法:實驗對象為十名鐵人三項運動員(年齡23.70 ± 3.3 歲;身高 171.64 ± 7.65公分;體重69.91 ± 10.43公斤),以平衡次序法,在原地腳踏車測功儀上分別使用座管角度72°與座管角度82°,各進行一次漸增式負荷(毎次實驗至少間隔一周),分別觀察整體運動時間、負荷200 W 時下肢肌群神經肌肉表現、每階段負荷與均方根振幅之斜率、髖關節、膝關節與踝關節角度及頻率域之中位數頻率分析。結果:運動至衰竭時間,採用座管角82°顯著大於座管角度72°;負荷200 W時均方根振幅,股外側肌與股二頭肌在座管角度82°下顯著小於座管角度72°;均方根振幅相對負荷之斜率,股二頭肌在座管角度82°下顯著小於座管角度72°;關節角度,髖關節角度在採用座管角度82°下顯著大於座管角度72°。中位數頻率左移之程度,股外側肌、股二頭肌與比目魚肌在採用座管角度72°下顯著大於座管角度82°,以上結果均達顯著水準(p<.05)。結論:以不同座管角度下進行漸增式負測驗時,採用座管角度82°下對運動表現與部分下肢肌肉均有較好的表現。
Purpose:The purpose of this study was to compare the effects of bicycle seat tube angles (STA) of (72° and 82°) on EMG of the leg muscles during incremental test on cycle ergometer. Method:Ten male experienced triathletes
(age 23.70 ± 3.3 yrs;height 171.64 ± 7.65 cm;weight 69.91 ± 10.43 kg ) completed two tests respectively with the counter-balance design. During the two tests, we assessd the exercise time, muscle activation, and the angles of the joints. Result:The significant (p<.05) differences were as follows: in part of the time to exhaustion, STA82° > STA72°; in part of the joints angle, Hip angle was significantly higher at STA 82° compared to STA 72°; in part of the muscle activeation, Vastus Lateralis and Biceps Femoris activation was significantly lower at STA 82° compared to STA 72°; in part of the normalized slop data, Biceps Femoris was significantly lower at STA 82° compared to STA 72°; in part of The EMG signals of the median frequency (MF), Vastus Lateralis, Biceps Femoris and Soleus were significantly lower at STA 82° compared to STA 72°. Conclusion: The primary finding was that increasing the STA from 72° to 82° enabled triathletes to increase the exercise time, while significantly reducing the part of muscular activation.
目 次

中文摘要----------------------------------------------------------------------------- Ⅰ
英文摘要----------------------------------------------------------------------------- Ⅱ
謝誌----------------------------------------------------------------------------------- Ⅲ
目次----------------------------------------------------------------------------------- Ⅳ
表次----------------------------------------------------------------------------------- Ⅵ
圖次----------------------------------------------------------------------------------- Ⅶ


第壹章 緒論
一 研究背景---------------------------------------------------------------- 1
二 研究目的---------------------------------------------------------------- 5
三 研究範圍與限制------------------------------------------------------- 6
四 名詞操作性定義------------------------------------------------------- 7
第貳章 相關文獻探討
一 自由車結構與功能---------------------------------------------------- 9
二 自由車結構改變對騎乘者生理與肌肉之影響------------------- 11
三 表面肌電圖相關研究------------------------------------------------- 14
四 文獻結語---------------------------------------------------------------- 18
第参章 研究方法與步驟
一 研究對象---------------------------------------------------------------- 19
二 實驗時間與地點------------------------------------------------------- 20
三 實驗儀器與設備------------------------------------------------------- 20
四 場地佈置---------------------------------------------------------------- 24
五 實驗方法與步驟------------------------------------------------------- 25
六 資料處理與統計分析------------------------------------------------- 30
第肆章 結果
ㄧ 運動至衰竭時間------------------------------------------------------- 33
二 運動學分析------------------------------------------------------------- 34
三 肌肉化程度------------------------------------------------------------- 36
第伍章 討論
一 運動至衰竭時間------------------------------------------------------- 44
二 運動學分析------------------------------------------------------------- 45
三 肌肉化程度------------------------------------------------------------- 46
第陸章 結論
引用文獻
中文文獻
方俊喬(2005) 自由車一公里計時賽選手之座管高度與下肢最佳動力學協調模式。台灣生物力學年會暨國科會研究成果發表會論文集。
田國華(2004) 武術馬步參與肌群與肌肉疲勞之EMG研究。碩士論文,中國文化大學教練研究所,台北,台灣。
吳武政(2001) 以誘導式歸納途徑法探討自行車騎乘姿勢與車架尺寸之關係。碩士論文,成功大學工業設計研究所,台南,台灣。
阮炳耀(1998) 自行車人機適配決策與動態模擬系統之研究。碩士論文,成功大學工業設計研究所,台南,台灣。
周峻忠(2006) 不同騎乘姿勢對原地自由車運動之生理反應的影響。碩士論文,台灣師範大學體育研究所,台北,台灣。
林正常譯(2002) 運動生理學。臺北縣,藝軒圖書出版社。
張慧藏(1995) 自行車操作之人機關係電腦模擬系統研究。碩士論文,成功大學工業設計研究所,台南,台灣。
彭千華(2005) 老年人肌力流失與肌肉疲勞的肌電圖與肌動圖研究。碩士論文,中國文化大學教練研究所,台北,台灣。
曾懷恩(1987) 自由車運動時下肢之力學分析及人機系統模式探討。碩士論文,成功大學機械系,台南,台灣。






英文文獻
Argentin, S., Hausswirth, C., Bernard, T., Bieuzen, F., Leveque, J-M., Couturier, A., & Lepers, R. (2006). Relation between preferred and optimal cadences during two hours of cycling in triathletes. British Journal of Sports Medicine, 40, 293-298.
Ashe, M., Scroop, G., Frisken, P., Amery, C., & Wilkins, M. (2003). Body position affects performance in untrained cyclists. British Journal of Sports Medicine, 37, 441-444.
Atkinson, G., Davison, R., Jeukendrup, A., & Passfield, L. (2003). Science and cycling: current knowledge and future directions for research. Journal of Sports Science, 21, 767-787.
Basmajian, J.V. & DeLuca, C.J. (1985). Muscle alive: Their functions revealed by electromyography (5th ed.). Baltimore: Williams & Wilkins.
Bernard, T., Vercruyssen, F., Grego, F., Hausswirth, C., Lepers, R., Vallier, J-M. & Brisswalter, J. (2003). Effect of cycling cadence on subsequent 3 km running performance in well trained triathletes. British Journal of Sports Medicine, 37, 154-159.
Berne, R.M.&Levy, M.N.(1998). Physiology (4thed.) Baltimore: Mosby.
Bigland-Ritchie, B. (1981). Force/force and fatigue of human voluntary contractions. Exercise and Sport Sciences Reviews, 9, 75 - 117.
Bohlmann, J. T. (1981) Injuries in competitive cycling. Physician Sportsmed, 9(5), 117-124.
Burke, E.R. (1994). Proper fit of the bicycle. Clinics in Sports Medicine 13, 1-14.
Cavanagh, P.R. & Sanderson, D.J. (1986) The biomechanics of cycling: studies of the pedaling mechanics of elite pursuit riders. in Burke E.R. Science of cycling, Human Kinetics Publishers, Champaign, 91-122.
Chaffin, D.B., Andersson, G.B., & Chaffin, D. (1999). Occupational biomechanics (3rd ed.). New York: John Wiley & Sons.
Conwit, R.A., Stashuk, D., Tracy, B.L., McHugh, M., Brown, W.F., & Metter, E,J. (1999). The relationship of motor unit size, firing rate, and force. Clinical Neurophysiology, 110(7), 1270-1275.
Faria, I. E., Dix, C., & Frazer, C. (1978). Effect of body position during cycling on heart rate, pulmonary ventilation, oxygen uptake and work output. Journal of Sports Medicine, 18, 49-56.
Garside, L., & Doran, D. A. (2000). Effects of bicycle frame ergonomics on triathlon 10-km running performance. Journal of Sports Sciences, 18(10), 825-833.
Gnehm, P., Reichenbach, S., & Alpeter, E. (1997). Influence of different racing position on metabolic cost of elite cyclists. Medicine and Science in Sports and Exercise, 29, 818-823.
Gottschall, J.S. & B.M. Palmer. (2002). The acute effects of prior cycling cadence on running performance and kinematics. Med. Sci. Sports Exerc., 34(9), 1518-1522.
Hazel, M. C. & Jacques, H., (2000) Musculoskeletal Assessment Joint Range of Motion and Manual Muscle Strength. 351 west garden street Baltimore. Maryland 21201-2436 USA.
Heiden, T. & Burnett, A. (2003) The effect of cycling on muscle activation in the running leg of an Olympic distance triathlon. Sports Biomechanics 2,35-49.
Heil, D.P., Wilcox, A.R., & Quinn, C.M. (1995). Cardiorespiratory responses to seat-tube angle variation during steady-state cycling. Med. Sci. Sports Exerc., 27(5), 730-735.
Hunter, A.M., St Clair Gibson, A., Lambert, M.I., Nobbs, L. & Noakes, T.D. (2003) Effects of supramaximal exercise on the electromyographic signal. British Journal of Sports Medicine 37, 296-299.
Lippold, O.C.J. (1952). The relationship between integrated action potentials in a human muscle and its isometric tension. Journal of Physiology, 177, 492-499.
Matheny, F. (1992) Finding perfect saddle height. Bicycling, 33(4), 108-110.
Mestdagh, K.V. (1998) Personal perspective: in search of an optimum cycling posture. Applied Ergonomics, 29(5), 325-334.
Moritani, T. & Muro, M. (1987). Motor unit activity and surface electromyogram power spectrum during increasing force of contraction. European Journal of Applied Physiology and Occupational Physiology, 56, 260-265.
Perotto, O.A., (1994). Anatomical guide for the electromyographer: the limbs and trunk., (3rd ed.). Springfield,Ill.: Blackwell.
Perry, S. R., Housh, T. J., Johnson, G. O., Ebersole, K. T., Bull, A. J., Evetovich, T.K., & Smith, D. B. (2001). Mechanomyography, electromyography, heart rate , and ratings of perceived exertion during incremental cycle ergometry . Journal of Sports Medicine and Physical Fitness, 41, 183-188.
Petitjean, M., Maton, B., & Cnockaert, J.C. (1992). Evaluation of human dynamic contraction by phonomyography. Journal of Applied Physiology, 73(6), 2567-2573.
Petrofsky, J.S. (1979) Frequency and amplitude analysis of the EMG during exercise on bicycle ergometer.
Price, D. & Donne, B. (1997) Effect of variation in seat tube angle at different seat heights on submaximal cycling performance in man. Journal of sports Sciences. 15(4), 395-402.
Ricard, M.D., Hills-Meyer, R., Miller, M.G., & Michael, T.J. (2006) The effects of bicycle frame geometry on muscle activation and power during a wingate. Journal of Sports Science and Medicine, 5,25-32.
Rose, M.T. (1989) Stellungssuche. (Search for the right posture) Sportrad, 11, 45-49.
Sheel, A., Lamal, I., & Potvin, P. (1996). Comparison of aero-bars versus traditional cycling posture on physiological parameters during submaximal cycling. Journal of Applied Physiology, 2, 16-21.
Sleivert, G.G., & Rowlands, D.S. (1996) Physical and physiological factors associated with success in the triathlon. International Journal of Sports Medicine. 22(1), 8-18.
Stokes, M.J. & Dalton P.A. (1991a). Acoustic myographic activity increases linearly up to maximal voluntary isometric force in the human quadriceps muscle. Journal of Neurological Science, l0l, 163-167.
Stokes, M.J. & Dalton, P.A. (1991b). Acoustic myography for investigating human skeletal muscle fatigue. Journal of Applied Physiology, 71(4), 1422-14226.
Stokes, M.J., & Cooper, R.G. (1992). Musc1e sounds during voluntary and stimulated contractions of the human adductor po1lich muscle. Journal of Applied Physiology, 72, 1908-1913.
Stulen, F.B. & DeLuca, C.J. (1981). Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity. IEEE Transactions on Biomedical Engineering, 28(7), 515 522.
Vandewalle, H., Maton, B., Le Bozec, S. & Guerenbourg, G. (1991) An elecromyographic study of an all-out exercise on a cycle ergometer.
Zwarts, M.J., & Keidel, M. (1991). Relationship between electrical and vibratory output of muscle during voluntary contraction and fatigue. Muscle & Nerve, 14, 756-761.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top