跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾吉弘
研究生(外文):Tseng Chi-Hung
論文名稱:科技好奇心量表之發展研究:以樂高動手做為例
論文名稱(外文):A Study of Developing the Technological Curiosity Inventory and Its Application to LEGO Hands-on Learning
指導教授:洪榮昭洪榮昭引用關係巴白山巴白山引用關係
指導教授(外文):Hong Jon-ChaoBa Bai-Shan
學位類別:碩士
校院名稱:國立臺北教育大學
系所名稱:玩具與遊戲設計研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:中文
論文頁數:162
中文關鍵詞:好奇心量表探索過程科技
外文關鍵詞:樂高動手做curiosity inventoryexploration approachtechnologyLEGOhands-on
相關次數:
  • 被引用被引用:4
  • 點閱點閱:655
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:10
Main purpose of this research is to provide an effective tool to assess children’s technological curiosity and preferred exploration approaches. 「Technological Curiosity Inventory」 was developed through panel discussion and pilot study. The inventory was used to assess children’s technological curiosity and preferred exploration approaches toward six technology domains, and it was applied on elementary school students of Taipei City and Taipei County, including children’s who had participated LEGO hands-on learning activities.
Research findings indicated that children’s technological experiences had strong correlation with their technological curiosity, and they would adopt a quicker or a more effort-saving way to find answers. Secondly, Boys are more curious about technology topics and will look for in-depth answer. Thirdly, The third-grade children are more curious about technology and are more likely to look for in-depth answers than senior students. Children who have science/technology related experiences would have stronger sense of curiosity and use more in-depth manners to find answers. Finally, LEGO hands-on learning was used as a tool to inspire children’s technological curiosity and encourage them to adopt a more in-depth way to find answers and had been proved valid in this research.
Abstract ………………………………………………………………………ii
Chapter 1 Introduction 1
1.1. Background 1
1.2. Purposes of the study 2
1.3. Problems of the study 3
1.4. Research null hypothesis 3
1.5. Definition of terminology 4
1.5.1. Technological experiences 4
1.5.2. Technological curiosity 5
1.5.3. Preferred exploration approach 5
1.5.4. SPA (Scores of preferred exploration approach) 5
1.5.5. LEGO hands-on learning 6
1.6. Organization 6
1.6.1. Research limitation 6
1.6.2. Research delimitation 6
Chapter 2 Literature Review 8
2.1. Development of technology education environment 8
2.2. Technology literacy 11
2.3. Technological competence assessing instruments 15
2.4. Aboutness, curiosity, consciousness 17
2.5. LEGO hands-on learning 24
Chapter 3 Research design 28
3.1. Research framework 28
3.1.1. Sample backgrounds 30
3.1.2. Inventory content 30
3.2. Research samples 31
3.2.1. Samples for pilot study 31
3.2.2. Samples for inventory investigation 31
3.3. Research tool 31
3.3.1. Content of this inventory 32
3.3.2. Procedures of developing the inventory 38
3.4. Research Process 51
3.5. Alternative hypothesis 53
3.6. Data Analysis 55
3.6.1. Descriptive statistics 55
3.6.2. Pearson product-moment correlation 55
3.6.3. One-way repeated measures ANOVA 55
3.6.4. One-way ANOVA 56
3.6.5. Independent measures t-test 56
Chapter 4 Research Results 58
4.1. Descriptive statistics 58
4.2. General analysis 60
4.2.1. Analysis on technological experiences and technological curiosity 60
4.2.2. Analysis on preferred exploration approaches 70
4.3. Personal background 72
4.3.1. Analysis on gender and technological curiosity 72
4.3.2. Analysis on gender and preferred exploration approaches 75
4.3.3. Analysis on grade and technological curiosity 78
4.3.4. Analysis on grade and preferred exploration approaches 82
4.3.5. Analysis on camps and technological curiosity 86
4.3.6. Analysis on camps and preferred exploration approaches 90
4.3.7. Analysis on books and technological curiosity 94
4.3.8. Analysis on books and preferred exploration approaches 98
4.3.9. Analysis on TV/DVD programs and technological curiosity 102
4.3.10. Analysis on TV/DVD programs and preferred exploration approaches 106
4.3.11. Summary 110
4.4. LEGO hands-on learning 112
4.4.1. Analysis on LEGO hands-on learning and Technological curiosity 112
4.4.2. Analysis on LEGO hands-on learning and preferred exploration approaches 117
4.4.3. Summary 121
Chapter 5 Conclusion and suggestions 122
5.1. Discussion 122
5.2. Conclusion 125
5.3. Suggestions 126
References ……………………………………………………………………129
Appendix A: Technological Curiosity Inventory (Chinese version) 136
Appendix B: Technological Curiosity Inventory (English version) 147
馬進、劉生祥(2001)。淺談學生創新能力的培養。中國教育學刊,6,36-36。
田耐青(1999)。由電腦樂高談新世紀的學習:一個科技支援之建構學習環境實例。教學科技與媒體,44,24-35。
李隆盛(1986)。我國中國階段工藝課程發展之探討。中學工藝教育,19(5),2-8。
劉君燦(1984)。科技文化,科技史。幼獅月刊,60(2),62-67。
劉孝群(2005)。創造力研究述評。成都紡織高等專科學校學報,22(4),21-23。    
林坤誼、游光昭(2004)。透過中小學科技素養課程以培育學生創造力之探討。南大學報,38(2),
15-30。
洪榮昭(2005)。E-learning的發展與應用。台灣教育,631,2-10。
教育部(2007)。國民教育階段九年一貫課程。2007年2月3號,取自
http://teach.eje.edu.tw/9CC/index.php。
戚銘遠(1990)。英文字根字彙。台北縣:學英文化公司。
許智偉(譯)(1978)。科技與教育。台灣教育,335,55-59。
陳昭雄(1985)。工業技職教育。台北:三民。
蔡德誠(2004)。科學精神和人文精神是科學文化素質的核心。科學與無神論,2,5-6。
孫仲山(1988)。工藝教育難題分析。中學工藝教育,25(10),18-25。     
孫仲山(1991)。工藝教育的文化功能。中學工藝教育,24(11),2-9。
孫仲山、張史如(1997)。科技素養教育的本質。中學工藝教育,30(4),2-8。
楊朝祥(1984)。技術職業教育辭典。台北市:三民書局。


American Association for the Advancement of Science (1990). Science of all Americans. Oxford
University Press. NY.
American Association for the Advancement of Science. (1993). Benchmarks for science literacy:
Project 2061. New York: Oxford University Press.
Ben-Chaim, D., Fey, J., Fitzgerald, W., Benedetto, C., & Miller, J. (1998). Proportional reasoning among 7th grade students with different curricular experiences. Educational Studies in Mathematics. 36, 247-273.
Bergen, D. (2001). Learning in the robotics world: active or reactive? Childhood education. 77(4), 249-250.
Bruner, J. S. (1960). The process of education. Cambridge, MA: Harvard University Press.
Byman, R. (2005). Curiosity and sensation seeking: a conceptual and empirical examination. Personality and Individual, 38, 1365-1379.
Campbell, J. R. (1971). Cognitive and affective process development and its relation to a teacher’s interaction ratio. Journal of research in science teaching, 8, 317-323.
http://faculty.kutztown.edu/vitz/limsport/ACS218/CURINV.htm
Carruthers, P. (2000). A naturalistic theory. Cambridge: Cambridge University Press.
Chalmers, D. J. (1996). The conscious mind. In research of a fundamental theory. Oxford: Oxford University Press.
Collins, R. P., Litman, J. A., & Spielbereger, C. D. (2004). The measurement of perceptual curiosity. Personality and Individual Differences, 36, 1127,1141.
Collier, A. (1999). About aboutness. Alethia, 2(1), 2-5.
Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972). The dependability of behavioral measures: Theories of generalizability for score and profiles. New York: John Wiley & Sons.
Damasio, A. R. (2000). The feeling of what happens, emotion and the making of consciousness. London: Vintage.
Davies, M. (1995). Consciousness and the varieties of aboutness. In Macdonald and Macdonald (eds), 356-92.
Day, H. I. (1982). Curiosity and the interested explorer. Performance and instruction, 21, 19-22.
Day, H. I., & Berlyne, D. E. (1971). Intrinsic motivation. In G. S. Lesser (Ed.), Psychology and educational practice (pp.294-335). Glenview, IL: Scott, Foresman and Company.
Denis, B., & Hubert, S. (2001). Collaborative learning in an educational robotics environment. Computers in human behavior, 17(5-6), 465-480.
Dennett, D. C. (1996). Kinds of minds. Towards an understanding of consciousness. London: Weidenfeld & Nicolson
de Preester, H. (2002). Intentionality and the inside/outside distinction in sensitive system. Consciousness and Emotion, 3(1), 65-79.
DfEE. (1997). Baseline Assessment Schemes: Submission Guidelines. London: DfEE
DfES. (1998). Promoting children’s mental health within early years and school setting. http://www.dfew.gov.uk/sne/documents/UPDATE_8.htm
Dyrenfurth, M. J., & Mihalevich, J. R. (1987). Technological literacy: more than computer literacy! Paper presented at the National School Boards Association Conference, Dallas, TX, USA.
Dyrenfurth, M. J., & Kozak, M. R. (Eds.) (1991). Technological literacy: 40th yearbook of the council on technology teacher education. Peodia, IL: Glencoe Civision, MacMillan/ McGraw-Hill Publishing Company.
Ebel, R. L., & Frisbie, D. A. (1979). Essentials of educational measurements (3rd ed.) Englewoods-Cliffs, NJ: Prentice-Hall.
Elias, M., Zins, J., Weissberg, R., Frey, K., Greenberg, M., Haynes, N., Kessler, R., Schwab-Stone, M., & Shriver, T. (1997). Promoting social and emotional learning. Alexandria, Virginia: ASCD.
Epstien, S. (1994). Integration of the cognitive and the psychodynamic unconscious, American psychologist, 49, 33-41.
Erekson, T. (1992). Technology Education from the academic rationalist theoretical perspective. Journal of technology education, 3(2), 6-14.
Erwin, B. (2001). Creative projects with LEGO. New York: Addison-Wesley.
Flowers, T. R., & Gossett, K. A. (2002). Teaching problem solving, computing, and information technology with robots. Journal of Computing Sciences in Colleges, 17(6), 45-55.
Fernaeus, Y. & Tholander, J. (2006). Designing for programming as joint performances among groups of children. Interacting with computers, 18, 1012-1031.
Fingon, J. C. (2005). The words that surround us. Teaching pre K-8, 35(8), 54-55.
Gelman, R. & Brenneman, K. (2004). Science learning pathways for young children. Early childrenhood research quarterly, 19(1), 150-158.
Gulliksen, H. (1950). Theory of mental test. New York: John Wiley & Sons.
Herschbach, D. (1989). Conceptualizing curriculum change. Journal of Epsilon Pi Tau, 55(1), 19-28
Ihde, D. (1997). The structure of technology knowledge. International journal of technology and design education, 7, 73-79.
Jones, G., Langrall, C., Thorton, C., & Nesbit, S. (2002). Elementary students』 access to powerful mathematical ideas. In L. English (Ed.) Handbook of international research in mathematics education. (pp. 113-141). NJ: Lawrence Erlbaum Associates.
Munirah, S. K., & Yau, C. M. (2006). A study of student’s perceptions and performance in a 「play-N-learn」 physics workshop. Paper presented at National Institute of Education, (NIE). Singapore.
Kashdna, T. B., Rose, P., & Fincham, f. D. (2004). Curiosity and exploration: facilitating positive subjective experiences and personal growth opportunities. Journal of personality assessment, 3, 291-305.
Kilhstorm, J. F. (1990). The cognitive unconsciousness. In: L. A. Pervin, Editor, Handbook of personality: theory and research. New York: Guilford Press.
Kirkland, L., Aldridge, J., & Kuby, P. (1991). Environmental print and the kindergarten classroom. Reading improvement, 28(4), 219-222.   
Lesley, J. (2006). Awareness is relative: dissociation as the organization of meaning. Consciousness and cognition, 15(3), 593-604.
Lord, F. M. (1980). Applications of item response theory to practical testing problems. Hillsdale, NJ: Lawrence Erlbaum Associates.
Lund, H. H., & Pagliarini, L. (2001). Edutainment robotics: applying modern AI techniques. In proceedings of International Conference on Autonomous Minirobots for Research and Edutainment (AMIRE-2001).
Martin, F. G. (1994). Circuits to control: Learning engineering by designing LEGO robots. MIT Press.
McCrae, R. R., & Costa, P. T. (1997). Conceptions and correlated of openness to experience. In R. Hogan, J. Johnson, & S. Briggs (Eds.), Handbook of personality psychology (pp. 825-847). San Diego, CA: Academic Press.
McRobbie, C. J., Stein, C., & Ginns, I. S. (2003). Student approaches to design in a robotics challenge. Paper presented at the annual conference of the European association for research in learning and instruction, (EARLI). Pauda, Italy, (August 26-30).
Miglino, O., Lund, H. H., & Cardaci, M. (1999). Robotics as an educational tool. Journal of interactive research, 10(1), 25-47.
Mumford, M. D., & Licuanan, B. (2004). Leading for innovation: Conclusions, issues, and directions. The leadership quarterly, 15(1), 163-171.
Mumford, M. D., Scott, G. M., Gaddis B., & Strange J. M. (2002). Leading creative people: orchestrating expertise and relationships. The leadership quarterly, 13(6), 705-750.
Nakicenovic, N., & Riahi, K. (2002). An assessment of technological change across selected energy
scenarios. IIASA-Report RR-2-005, IIASA, Laxemburg, Austria.
National Council of Techers of Mathematics (2004). Principles and standards for school mathematics: introduction. Retrieved 5th June 2007 from WWW: http://Standard.nctm.org/
Okhuyzen, G. A., & Eisenhardt, K. M. (2002). Integrating knowledge in groups. Organization science, 13, 370-386.
Papert, S. (1980). Mindstorms: children, computers, and powerful Ideas. New York: Basic Books.
Papert, S. (1986). Constructionism: a new opportunity for elementary science education. Unpublished proposal to the National Science Foundation. Cambridge, MA: MIT Media Laboratory.
Papert, S., & Harel, I. (Ed.). (1993). Constructionism. Norwood, NJ: Ablex Publishing Corporation.
Petroski, H. (1985). To engineer is human: the role of failure in successful design. New York: St. Martins Press.
Perlovsky, L. I. (2006). Towards physics of the mind: Concepts, emotions, consciousness, and symbols. Physics of life reviews, 3, 23-55.
Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning and instruction, 12, 61-86.
Resnick, M., Martin, F., Sargent, R., & Silverman, B. (1996). Programmable bricks: Toys to think with. IBM systems journal, 35(3-4), 443-452.
Resnick, M., & Ocko, S. (1991). LEGO/Logo: learning through and about design. In Constructionism. Norwood, NJ: Abiex Publishing.
Resnick, M. (1998). Technologies for lifelong kindergarten. Educational technology research and development, 46(4), 43-55.
Rogers, C. (2004). Bringing engineering to elementary school. Journal of STEM education, 5(3-4), 17-28.
Rose, J. A., & Asher, S. R. (2004). Children’s strategies and goals in response to help-giving and help-seeking tasks within a friendship. Child development, 75(3), 749-763.
Sakamura, K. (1999). Entertainment and edutainment. IEEE Micro, 19(6), 15-19.
Salovey, P., & Sluyter, D. J. (1997). (Eds.) Emotional development and emotional intelligence, (p 10). New York: Basic Books.
Sanders, M. (Ed) (1986). Technological literacy: an educational mandate. Roanoke, VA: Virginia Polytechnology College.
Savage, E., & Sterry, L. (1990). A conceptual framework for technology education. Reston, VA: International Technology Education Association.
Schwab, J.J. (1974). The concept of the structure of a discipline, Chapter in Eisner, E. W., & Vallance, E. Conflicting conceptions of curriculum. Berkeley, CA: McCutchan Publishing.
Searle, J. R. (1984). Minds, brains & science. London: Penguin books.
Searle, J. R. (1990). Consciousness, explanatory inversion, and cognitive science. Behavioral and Brain Science, 13, 585-96.
Searle, J. R. (1992). The rediscovery of the mind. London: The MIT press.
Stashak, G. (1981). Technological literacy: The publisher’s role. Technology Education Symposium II, Menomonie, WI, USA.
Stewart-Brown, S., & Edmunds, L. (2003). Assessing emotional and social competence in early years and primary school settings. Perspectives in education, 21, 17-41.
Suen, H. K. (1990). Principles of test theories. Hillsdale, NJ: Lawrence Erlbaum Associates.
Turkle, S. (1995). Life on the screen: Identity in the age of the internet. New York: Simon & Schuster.
von Brevern, H. (2004). Cognitive and logical rationales for e-learning objects. Educational technology & society, 7(4), 2-25.
Wang. E. (2004). Engineering with LEGO bricks and ROBOLAB. USA: University of Nevada.
Weare, K. (2000). Promoting mental social and emotional health: A whole school approach. London: Routledge.
Weare, K. (2002). What works in developing children’s social and emotional competence and well-being. London: DfES.
Webster’s dictionary (2006). [online]. 2006.09.15. Retrieved from: http://www.m-w.com/ .
Wee, A. & Lee, A. (2005). Facilitating good teaching at the faculty of science.
Centre for development of teaching and learning, 9(1), 227-240.
Wright, J. R. (1993). The lexicon of technological literacy. Technology teacher, 52(8), 3-8.
Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school.
Developmental review, 27(2), 172-223.
Zuckerman, M. (1994). Behavioral expressions and biosocial bases of sensation seeking. New York: Cambridge University Press.
Zuckerman, M., Kuhlman, D. M., Thornquist, M., & Kiers, H. (1991). Five (or three) robust questionnaire scale factors of personality without culture. Personality and individual differences, 12, 929-941.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top