跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/14 03:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳文謙
研究生(外文):CHEN, WEN-QIAN
論文名稱:ThresholdVEC-GARCH模型之建立、估計與應用–台灣地區股價與外資關聯性之研究
論文名稱(外文):Modeling, Estimation and Application of Threshold VEC-GARCH Model:The Relationships between Stock Price and Foreign Investment in Taiwan
指導教授:劉祥熹劉祥熹引用關係鍾麗英鍾麗英引用關係
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:統計學系
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:95
中文關鍵詞:非線性共整合門檻向量誤差修正模型條件異質性
外文關鍵詞:nonlinear co-integrationthreshold VECMGARCH
相關次數:
  • 被引用被引用:1
  • 點閱點閱:519
  • 評分評分:
  • 下載下載:90
  • 收藏至我的研究室書目清單書目收藏:1
本文結合 Hensen and Seo (2002) 的門檻向量誤差修正 (threshold VECM) 模型,與多變量GARCH模型,建立一門檻向量誤差修正暨多變量GARCH (threshold VEC-GARCH) 模型,以探討台灣地區股價與外資的關聯性。此模型的非線性門檻效果可將股價與外資的關係刻劃成兩種不同狀態,在不同狀態下探討其間的關聯性,並同時藉由多變量GARCH模型探討其波動外溢效果。由於股價與外資的關係可能受到股市多頭空頭、經濟景氣以及政局情勢等因素影響而有所不同,故本文以前述所建立的非線性實證模型探討之,並與傳統線性共整合模型作一比較。此外,本文按「股價與外資買進」、「股價與外資賣出」分開進行實證分析,藉此探討前述兩者是否具有非對稱性。研究期間為自民國90年1月2日至民國96年4月4日,共日資料1542筆。實證結果發現:

一、「股價與外資買進」與「股價與外資賣出」皆存在共整合關係,且共整合關係皆具有對稱雙門檻效果,此門檻效果將共整合關係刻劃成兩個不同的狀態。且偏離長期均衡關係之狀態,其誤差修正向具有均數回復 (mean-reverting) 之功能。

二、線性共整合模型檢測下,股價領先外資買進,且股價與外資賣出互有領先落後關係。故「股價與外資買進」與「股價與外資賣出」的關係為非對稱。

三、門檻共整合模型檢測下顯示:(1)「股價與外資買進」方面:接近長期均衡關係之狀態,股價與外資買進的關係與線性共整合模型相同;偏離長期均衡關係之狀態,則為外資買進領先股價。(2)「股價與外資賣出」方面:接近長期均衡關係之狀態,股價與外資賣出的關係與線性共整合模型相同;偏離長期均衡關係之狀態,則為股價領先外資賣出。「股價與外資買進」與「股價與外資賣出」的關係亦為非對稱。

四、上述四組實證模型中,各當期波動變數皆顯著受自身落遲波動影響。波動外溢效果方面,外資買進變動率皆受到股價報酬率影響;而外資賣出變動率則不受股價報酬率波動之影響。
This study proposes a threshold VEC-GARCH model, which combines Hesen and Seo’s (2002) threshold VECM and multivariate GARCH model to investigate the relationships between stock price (hereinafter SP) and foreign investment in Taiwan. In this proposed model, the relationships between SP and foreign investment can be discussed in two separate regimes by the non-linearity threshold effect; in the meanwhile, the volatility spillover can be discussed by the multivariate GARCH model. As the SP and foreign investment vary with the prosperity and recession of stock market and economy, as well as the political situation; therefore this study investigates their relationships by the proposed model and at the same time make a comparison with the traditional linear model. In addition, this study has done empirical analysis for “SP and foreign investment buy-in (hereinafter FI)” and “SP and foreign investment sold-out (hereinafter FO)” respectively, to investigate whether the asymmetric exists between the two situations. The data utilized in this study dates from January 2nd 2001 to April 4th 2007, 1542 in total. The empirical results of the study are shown as follows:

1.Co-integration exists both in “SP and FI” and “SP and FO”, and it is with symmetric double threshold effect. This effect characterizes the co-integration in two different regimes. In the outside long-term equilibrium regime, the error-correction term has mean-reverting function.

2.In linearity co-integration model, SP leads FI to change and a lead-and-lag relation that exists between SP and FO respectively. Therefore, “SP and FI” and “SP and FO” are asymmetrically related.

3.In threshold co-integration model: (1) the interaction of “SP and FI” shows that the relationships between SP and FI is same as that in linear model in the inside long-term equilibrium regime while FI leads SP to change in the outside long-term equilibrium regime. (2) the interaction of SP and FO shows that the cause-and-effect relationship between SP and FI is same as that in linear model in the inside long-term equilibrium regime while SP leads FO to change in the outside long-term equilibrium regime. Therefore, “SP and FI” and “SP and FO” are asymmetrically related as well.

4.In the aforementioned four empirical models, each current volatility variable is significantly affected by its lagged volatility. As to volatility spillover effect, FI change rate is affected by SP return rate; but FO change rate is not affected by SP return rate. It shows that “SP and FI” and “SP and FO” are also asymmetrically related under volatility spillover effect.
第 一 章 緒論
第 1 節 研究背景與動機
第 2 節 研究目的
第 3 節 研究方法與步驟
第 4 節 研究對象、範圍與資料來源
第 5 節 論文架構

第 二 章 外資投資國內股市之概況
第 1 節 外資投資國內證券市場之過程
第 2 節 外資投資國內證券市場之關係

第 三 章 基礎理論與文獻回顧
第 1 節 基礎理論
第 2 節 文獻回顧
第 3 節 本章綜論

第 四 章 相關計量方法與基本模型建構
第 1 節 時間序列型態與單根檢定法
第 2 節 模型最適落持數選取與殘差診斷
第 3 節 向量自我迴歸模型與因果關係檢測
第 4 節 共整合檢定與向量誤差修正模型
第 5 節 效率性門檻向量誤差修正模型
第 6 節 GARCH 族模型理論與相關檢定
第 7 節 多變量 GARCH 模型表示法

第 五 章 實證結果與分析
第 1 節 資料敘述
第 2 節 單根檢定
第 3 節 共整合檢定
第 4 節 效率性門檻效果檢定
第 5 節 ARCH 效果檢定
第 6 節 實證模型之建立與分析
第 7 節 本章小節

第 六 章 結論與建議
第 1 節 結論
第 2 節 建議
[1] 王佑鈞 (2005),「選擇權波動率指數與標的資產之因果性資訊內涵 - 效率性門檻共整合模型於德國股價指數市場之應用」,銘傳大學財務金融學系研究所碩士論文。
[2] 江淑玲 (2001),「外資是否主導亞太地區股市、匯市」,輔仁大學金融學系研究所碩士論文。
[3] 李崇主 (1997),「臺灣地區股價、匯率與外資關聯性之研究」,國立中興大學企業管理學系研究所碩士論文。
[4] 姜淑美、鄭婉秀、邱建良 (2003),「外資交易行為、股市及匯市動態關係之研究」,風險管理學報,第五卷,第一期,頁 45-64。
[5] 徐魁均 (2002),「外資、匯率、利率及臺灣股價之關聯與波動性之研究 - GARCH-VEC 模型之應用」,國立台北大學合作經濟學系研究所碩士論文。
[6] 陳伯禎 (2005),「台灣地區股價指數、匯率及外資買賣行為之研究」,中國文化大學國際貿易學系研究所碩士論文。
[7] 張振中 (2005),「臺灣、香港、上海與深圳股市關聯性與波動外溢效果之研究 - VEC-TGARCH 模型之實證應用」,國立台北大學統計學系研究所碩士論文。
[8] 張健偉 (2005),「效率性雙門檻共整合模型之建構與其於選擇權波動率指數與標的資產間因果性資訊內涵之辨認 - 韓國 KOSPI200 指數與選擇權日內高頻資料分析」,銘傳大學財務金融學系研究所碩士論文。
[9] 黃懷慶 (2000),「臺灣股市三大機構投資人投資行為之實證研究」,朝陽科技大學財務金融學系研究所碩士論文。
[10] 黃莉芷 (2005),「以門檻誤差修正模型分析台灣股價指數及外資買賣超之長短期互動關係」,淡江大學財務金融學系研究所碩士論文。
[11] 黃金佩 (2006),「FIVAR-FIGARCH 模型建立、估計與應用 - 臺灣地區股價、匯率、外人投資之關聯性之檢測」,國立台北大學統計學系研究所碩士論文。
[12] 謝明祥 (2005),「以門檻向量誤差修正模型研究股價指數期貨與股價指數間之價格關係」,建華金融季刊,第三十期,頁 81-100。
[13] Akaike, H. (1969).`` Power Spectrum Estimation through Autoregressive Model Fitting,''Annals of the Institute of Statistic Mathematics, 21, 407-419.
[14] Akaike, H. (1973).`` Information Theory and an Extension of the Maximum Likelihood Principle,''Proc. 2nd International Symposium on Information Theory
(Eds. Petrov, B. N. and Csaki, F.), 267-281, Akademiai Kiado, Budapest.
[15] Akaike, H. (1974).`` A New Look at the Statistical Model Identification,''IEEE Transactions on Automatic Control, AC-19, 716-723.
[16] Baba, Y., R. F. Engle, D. F. Kraft and K. F. Kroner (1989).`` Multivariate simultaneous generalized GARCH,''manuscript
[17] Balke, N. S. and T. B. Fomby (1997).`` Threshold Cointegration,''International Economic Review, 38, 627-645.
[18] Berndt, E. K., B. H. Hall, R. E. Hall and J. A. Hausman (1974).`` Estimation Inference in Nonlinear Structural Models,''Annuals of Economic and Social Measurement, 4, 653-665.
[19] Bollerslev, T. (1986).`` Generalized Autoregressive Conditional Heteroskedasticity,''Journal of Financial Economics, 31, 307-327.
[20] Bollerslev, T., R. Y. Chou and K. F. Kroner (1992).`` ARCH modeling in France: A Review of the Theory and Emperical Evidence,''Journal of Econometrics, 52, 5-59.
[21] Bollerslev, T., R. F. Engle and J. M. Wooldridge (1988).`` A Capital Asset Pricing Model with Time-varying Covariances,''Journal of Political Economy, 96, 116-131.
[22] Box, G. E. P. and D. A. Pierce (1970).`` Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models,''Journal of the American Statistical Association, 65, 1509-1526.
[23] Chung, H. M., T. W. Ho and L. J. Wei (2005).`` The Dynamic Relationship between the Prices of ADRs and Their Underlying Stocks:Evidence from the Threshold Vector Error Correction Model,''Applied Economics, 37, 2387-2394.
[24] Day, T. E. and C. M. Lewis (1992).`` Stock Market Volatility and the Information Content of Stock Index Options,''Journal of Econometrics, 52, 267-287.
[25] Dickey, D. A. and W. A. Fuller (1979).`` Distribution of the Estimators for Autoregressive Time Series with a Unit Root,''Journal of American Statistic Association, 74, 427-431.
[26] Dickey, D. A. and W. A. Fuller (1981).`` Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root,''Econometrica, 45, 1057-1072.
[27] Enders, W. and P. L. Siklos (2001),`` Cointegration and threshold adjustment,''Journal of Business and Economic Statistics, 29, 166-176.
[28] Engle, R. F. (1982).`` Autoregressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation,''Econometrica, 50, 987-1008.
[29] Engle, R. F. and C. W. J. Granger (1987).`` Co-integration and Error-correction: Representation, Estimation, and Testing,''Econometrica, 55, 251-276.
[30] Engle, R. F., V. K. Ng, and M. Rothschild (1990).`` Asset Pricing with a Factor-arch Covariance Structure: Empirical Estimates for Treasury Bills,''Journal of Econometrics, 45, 213-237.
[31] Fama, E. (1965).`` The Behavior of Stock Market Price,''Journal of Business, 38, 34-105.
[32] Fama, E. (1991).`` Efficient Capital Markets: A Review of Theory and Empirical Work,''Journal of Finance, 26, 1575-1617.
[33] Gonzalo, J. and T. H. Lee (2000).`` On the Robustness of Cointegration Tests when Series are Fractionally Integrated,''Journal of Applied Statistics, 27, 821-827.
[34] Granger C. W. J. (1969).`` Investigating Causal Relations by Econometric Models and Cross-spectral Methods,''Econometrica, 37(3), 424-438.
[35] Granger, C. W. J. and P. Newbold (1974).`` Spurious Regressions in Econometrics,''Journal of Econometrics, 2, 111-120.
[36] Hansen, B. E. (1996).`` Inference when a Nuisance Parameter is not Identified under the Null Hypothesis,''Econometrica, 64, 413-430.
[37] Hansen, B. E. and B. Seo (2002).`` Testing for Two-regime Threshold Cointegration in Vector Error-correction Models,''Journal of Econometrics, 110, 293-318.
[38] Jarque, C. M. and A. K. Bera (1980).`` Efficient Tests for Normality, Homoscedasticity and Serial Independence of Regression Residuals,''Economics Letters, 6(3), 255-259.
[39] Johansen, S. (1988).`` Statistical Analysis of Cointegration Vectors,''Journal of Economic Dynamics and Control}, 12, 231-254.
[40] Johansen, S. and K. Juselius (1990).`` Maximum Likelihood Estimation and Inference on Co-integration with Application to the Demand for Money,''Oxford Bulletin of Economics and Statistics, 52, 169-210.
[41] Johansen, S. (1991).`` Estimation and Hypothesis Testing of Co-integration Vector in Gaussian Vector Autoregressive Models,''Econometrica, 59, 1551-1580.
[42] Kahneman, D. and A. Tversky (1979).`` Prospect Theory: An Analysis of Decision, under risk,''Econometrica, 47, 263-291.
[43] Lamoureux, C. G. and W. D. Lastrapes (1993).`` Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatility,The Review of Financial Studies, 6(2), 293-326.
[44] Liu, D., D. Jansen and Q. Li (2005).`` Regime Switching in the Dynamic Relationship between Stock Returns and Inflation,'' Applied Financial Economics Letters, 1, 273-277.
[45] Ljung, G. M. and E. P. Box (1978).`` On a Measure of Lack of Fit in Time Series Models,''Biometrika, 65(2), 297-303.
[46] Mandelbrot, B (1963).`` Forecasts of Future Prices, Unbiased Markets and Martingale Models,''Journal of Business, 39, 224-255.
[47] Phillips, P. C. B. and P. Peron (1988).`` Testing for a Unit Root in Time Series Regression,''Biometrika, 75, 335-346.
[48] Pantula, S. G., G. Gonzales-Farias and W. A. Fuller (1994).`` A Comparison of Unit Root Test Criteria,''Journal of Business and Economic Statistics}, 12(4), 449-459.
[49] Said, E. S. and D. A. Dickey (1984).`` Testing for Unit Roots in Autoregressive-Moving Average Models of Unknown Order,''Biometrika, 71, 599-607.
[50] Schwarz, G. (1978).`` Estimating the Dimension of a Model,''Annals of Statistics, 6, 461-464.
[51] Sims, C. A. (1980).`` Macroeconomics and Reality.''Econometrica, 48, 1-49.
[52] Tsay, R. S. (1989).`` Testing and Modeling Threshold Autoregressive Processes,''Journal of the American Statistical Association, 84, 231-240.
[53] Tsay, R. S. (1998).`` Testing and Modeling Multivariate Threshold Models,''Journal of the American Statistical Association 93, 1188-1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top