|
Agresti, A. (1984). Analysis of Categorical Data. New York: Wiley.
Allison, P.D. (2005). Imputation of Categorical Variables with PROC MI. Philadelphia, PA, University of Pennsylvania.
Bandeen-Roche, K., Miglioretti, D.L., Zeger, S.Z., & Rathouz P.J. (1997). Latent Variable Regression for Multiple Discrete Outcomes. Journal of the American Statistical Association, Volume 92, 440, 1375-1386.
Brand, J.P.C. (1999). Development, Implementation and Evaluation of Multiple Imputation Strategies for the Statistical Analysis of Incomplete Data Sets. Thesis, University of Erasmas, Rotterdam/TNO, Prevention and Health, Leiden.
Clogg, C.C. (1995). Latent Class Models. New York: Plenum Press, 311-360.
Dayton, C.M. (1999). Latent Class Scaling Analysis, Sage Publications.
Dayton, C.M., & Macready, G.B. (1988) Concomitant-variable latent class models. Journal of the American Statistical Association, 83, 173-178.
Goodman, L.A. (1974). Exploratory Latent Structure Analysis Using Both Identifiable and Unidentifiable Models. Biometrika, 61, 215-231.
Harel, O., & Miglioretti. D. (2005). Missing information as a diagnostic tool for Latent Class Analysis. University of Connecticut.
Lazarsfeld, P.F., & Henry, N.W. (1968). Latent Structure Analysis. New York: Houghton-Mifflin.
Little, R.J.A. (1988). A Test of Missing Completely at Random for Multivariate Data with Missing Values. Journal of the American Statistical Association, Volume 83, 404, 1198-1202.
Magidson, J., & Vermunt, J.K. (2003). Latent Class Models. University of Tilburg, mimeo.
Magidson, J., & Vermunt, J.K. (2004). Latent Class Models. Newbury Park, CA: Sage Publications.
McCutcheon, A.L. (1987). Latent Class Analysis. Newbury Park, CA: Sage Publications.
McCullagh, P., & Nelder, J.A. (1989). Generalized Lineal Models. London: Chapman & Hall.
Rubin, D.B. (1976). Inference and Missing Data. Biometrika, 63, 581-592.
Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. New York: J.Wiley & Sons.
Schafel, J.L. (1997). Analysis of Incomplete Multivariate Data. London: Chapman & Hall.
Schafer, J.L., & Graham J.W. (2002). Missing Data:Our View of the State of the Art. American Psychological Association, Volume 7, 2, 147-177.
Schafer, J.L., & Olsen, M.K. (1998). Multiple Imputation for multivariate missing-data problems:a data analyst's perspective. University of Pennsylvania.
Sinharay, S., Stern, H.S., & Russell, D. (2001). The Use of Multiple Imputation for the Analysis of Missing Data. American Psychological Association, Volume 6, 4, 317-329.
Yang C. Yuan. (2002). Multiple Imputation for Missing Data:Concepts and New Development. SAS Institute Inc. Rockeville, MD.
|