跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 08:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:翁士傑
研究生(外文):SHIH-CHIEH WENG
論文名稱:影響潛在成長曲線模型選擇之因子探討
論文名稱(外文):Exploring Influential Factors for Model Selection in Latent Growth Curve Models
指導教授:林定香林定香引用關係
指導教授(外文):TING-HSIANG LIN
學位類別:碩士
校院名稱:國立臺北大學
系所名稱:統計學系
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:63
中文關鍵詞:潛在成長曲線模型選模小樣本檢定統計量訊息指標
外文關鍵詞:Latent Growth Curve ModelingModel SelectionTest Statistics in Small Sample SizeInformation Criteria
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1374
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
潛在成長曲線模型(Latent Growth Curve Modeling,LGCM)對於縱貫研究資料的分析,已經被廣泛的使用在心理學、教育學或是生物醫學等研究領域上面。在一般的縱貫研究裡,我們會對於能觀察到的某些現象,包括行為、態度等,想了解隨著時間的改變,我們有興趣的現象是否會隨著時間改變,因此潛在成長曲線模型是用來分析重複測量的變數在不同時間點上,觀測值的起始狀態與被觀測時段間的成長或衰退率的變化情形。在本篇論文裡主要便探討了使用潛在成長曲線模型,當所蒐集到的樣本數很小的情形下,根據檢定統計量的表現來識別模式選擇的正確比率,或稱檢定力。
探究過往的學者,鮮少有對於小樣本的潛在成長曲線模型檢定統計量表現的探討,且對於模型的選擇多使用連續型變數為主的模型,於是本研究所選用的模型仍為連續型變數的模型,但對於模擬研究中所使用的影響因子設定六個影響因子:樣本數個數、截距項的變異數、斜率項變異數、斜率項平均數、截距項與斜率項的共變異數、觀察變項的個數。本研究使用過往學者(Nevitt & Hancock, 2004;Bentler & Yuan, 2000)在文章中所提出的檢定統計量來對於潛在成長曲線模型在小樣本下模式識別的檢定力表現。研究中使用蒙地卡羅(Monte Carlo)的模擬方法,首先模擬出所需要分析的資料,接著把資料放回研究中所設定的五個巢狀(nested)模型裡進行模擬研究來估算出各種影響因子條件下的檢定力表現。
經由本研究的模擬發現,影響模式選擇檢定力的主要因子為樣本數個數、截距項與斜率項的共變異數及觀察變項的個數。而對於本研究的統計量與選模指標之檢定力而言,BIC選模指標的表現最好,其次為 的表現較好,Adjusted-BIC的表現最差。最後本研究整理出可供實證研究者參考使用的檢定力表。
The use of Latent Growth Curve Modeling(LGCM), in longitudinal study data analysis has been widely used in the field of Psychology, Education and Medical research. We are interested in observing the effect of time on the action or attitude of the subject in a general longitudinal study, whether these behavior vary as time progress. Hence, LGCM is a technique to analyze the repeat measurements of a variable at different time frame. This essay will discuss the use of LGCM with small sample size, to identify the accuracy of model selection or power using test statistics.
In the past, researchers rarely investigate the use of LGCM with small sample size, and the model selection is mainly continues variable type. This research will follow the selection of model and use continues variable type. In the simulation study, the following six factors are used: number of sample sizes, variance of intercept, variance of slope, means of slope, covariance of intercept and slope, number of observation variables. This research uses the test statistics to identify the power performance of LGCM in small sample size. The research uses Monte Carlo simulation, first simulating the data need for analysis, then feedback the data in to the five nested model for simulation research to estimate the power performance in different affecting factor variation.
The results of simulation indicate that the main factors are number of sample sizes, covariance of intercept and slope and the number of observation variables. In terms of the power of the sample size and model selection for this research, BIC model selection indicator has the best performance, followed by , Adjusted-BIC has the worst performance. This research has resulted in producing a power table for the use of experimental researchers.
目錄 I
表目錄 II
圖目錄 III
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究貢獻 3
第二章 文獻探討 4
第一節 理論模型的介紹 4
第二節 檢定統計量與選模指標的介紹 15
第三節 影響因子之相關文獻探討 19
第三章 研究方法 21
第一節 研究設計 21
第二節 分析計畫 29
第四章 研究結果 31
第一節 影響因子研究之結果 31
第二節 多元迴歸分析結果 38
第五章 結論與建議 46
第一節 研究結論 46
第二節 研究建議與未來研究方向 47
參考文獻 49
附錄 52
楊志堅,劉心筠,楊志強 (2004)。縱貫研究以潛在成長模式分析之樣本數與檢定力研究,國立政治大學「教育與心理研究」,27卷3期,頁603-626。

黃芳銘 (2004)。結構方程模式:理論與應用,台北市:五南。

Acock, A.C., & Li, F. (1999). Latent growth curve analysis: A gentle introduction. Available in pdf format at: http://www.orst.edu/Dept/hdfs/acock/lgcgeneral.pdf

Acock, A.C. (2005). Growth Curves and Extensions Using Mplus. These are lecture notes for a presentation at Academica Sinica in December of 2005.

Bartlett, M. S. (1950). Tests of significance in factor analysis. British Journal of Psychology, Statistical Section, 3, 77-85.

Barnes, Grace M., Reifman, Alan S., Farrell, Michael P., & Dintcheff, Barbara A. (2000). The Effects of Parenting on the Development of Adolescent Alcohol Misuse: A Six-Wave Latent Growth Model. Journal of Marriage and the Family, Vol. 62, Number 1, P175-186.

Bentler, Peter M., & Yuan, Ke-Hai. (1999). Structural Equation Modeling with Small Samples:Test Statistics. Multivariate Behavioral Research, 34 (2), 181-197.

Bollen, K.A. (1989). Structural Equations with Latent Variables. New York:John Wiley.

Fouladi, R. T. (1998). Covariance structure analysis techniques under conditions of multivariate normality and nonnormality — modified and bootstrap based test statistics. Paper presented at the annual meeting of the American Educational Research Association, San Diego, CA.


Fouladi, R. T. (1999). Model fit in covariance structure analysis under small sample conditions — Modified maximum likelihood and asymptotically distribution free generalized least squares procedures. Paper presented at the annual meeting of the American Educational Research Association, Montreal, Canada.

Fouladi, R. T. (2000). Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality. Structural Equation Modeling: A Multidisciplinary Journal, 7, 356-410.

Garst, Harry, Frese, Michael, & Molenaar, Peter C.M. (2000). The Temporal Factor of Change in Stressor-Strain Relationships: Growth Curve Model on a Longitudinal Study in East Germany. Journal of Applied Psychology, Vol. 85 Issue 3, p417-438.

Kenneth P. Burnham, & Anderson, David R. (2004). Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research, Vol. 33, No. 2, 261-304.

Kubrin, Charis E., & Herting, Jerald R. (2003). Neighborhood correlates of homicide trends: An Analysis Using Growth-Curve Modeling. Sociological Quarterly, Vol. 44 Issue 3, p329.

Madsen, K. S. (1977). A Growth Curve Model for Studies in Morphometrics. Biometrics, Vol. 33, No. 4., pp.659-669.

Mitchell, Christina M., Beals, Janette, & Kaufman, Carol E. (2006). Alcohol Use, Outcome Expectancies, and HIV Risk Status among American Indian Youth: A Latent Growth Curve Model with Parallel Processes. Journal of Youth & Adolescence, Vol. 35 Issue 5, p726-737, 12p.

Mitchell, Christina M., Kaufman, Carol E.& Beals, Janette. (2005). Resistive Efficacy and Multiple Sexual Partners Among American Indian Young Adults: A Parallel-Process Latent Growth Curve Model. Applied Developmental Science,Vol. 9, No. 3, 160–171.

Muthén, B. (2001). Second-generation structural equation modeling with a combination of categorical and continuous latent variables. In L. M. Collins & A. G. Sayer (Eds.) New methods for the analysis of change. (pp. 291-322). Washington, DC: American Psychological Association.

Muthén, B.O., & Curran, P.J. (1997). General longitudinal modeling of individual differences in experimental designs: A latent variable framework for analysis and
power estimation. Psychological Methods, 2, 371-402.
Muthén, L.K., & Muthén, B.O. (1998-2006). Mplus User’s Guide. Fourth Edition.
Los Angeles, CA: Muthén & Muthén.

Nevitt, J. & Hancock. G. R. (2004). Evaluating Small Sample Approaches for Model Test Statistics in Structural Equation Modeling. Multivariate Behavioral Research, 39 (3), 439-478.

Satorra, A. & Bentler, P. M. (1988). Scaling corrections for chi-square statistics in covariance structure analysis. American Statistical Association 1988 proceedings of the Business and Economics Sections (pp. 308-313). Alexandria, VA: American Statistical Association.

Satorra, A. & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variables
analysis: Applications for developmental research (pp.399-419). Thousand Oaks, CA:
Sage.

Schwarz, G. (1978). Estimating the Dimension of a Model. Annals of Statistics 6:461-464.

Wickrama, K. A. S., Frederick O. Lorenz, Rand D. Conger Glen H., & Elder, Jr.(1997). Marital Quality and Physical Illness: A Latent Growth Curve Analysis. Journal of Marriage and the Family, Vol. 59, No. 1., p.143-155.

Yuan, Ke-Hai., & Bentler, Peter M. (2000). Three Likelihood-Based Methods for Mean and Covariance Structure Analysis with Nonnormal Missing Data. Sociological Methodology, Vol. 30, pp.165-200.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top