跳到主要內容

臺灣博碩士論文加值系統

(98.82.140.17) 您好!臺灣時間:2024/09/08 01:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳思妙
研究生(外文):Szu-Miau Chen
論文名稱:論含孔隙導電彈性介質之轉換矩陣之建立及研析震電波散射問題之應用
論文名稱(外文):On formulation of a transition matrix for electroporoelastic medium and application to analysis of scattered seismoelectric wave
指導教授:葉超雄葉超雄引用關係
指導教授(外文):Chau-Shioung Yeh
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:114
中文關鍵詞:震電波T-矩陣
外文關鍵詞:seismoelectric wavetransition matrix
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Pride (1994) 理論藉由融合了Biot (1956) 對於孔隙彈性材料的理論,馬克斯威爾方程式,和通量/力傳輸方程式而來。本論文係基於此理論,並將Pao(1978) 對於彈性介質的推演,和Yeh et al. (2004) 對於彈性多孔隙介質的推導,而建立孔隙導電彈性介質的轉換矩陣。在推導的過程中,將耦合的運動方程式解耦為兩個部份:一部分描述膨脹(dilatational)(縱(longitudinal))波,另一部份描述轉動(rotational)(橫(transverse))波。上述的縱波包括Biot (1962) 理論的快波和慢波,而橫波包括力學剪力波和電磁波。在論文中,也利用Wronskian公式,證明解析形式的基函數具有正交的關係。為了顯示用轉換矩陣法解析震電效應的結果,文中建立一例:在孔隙導電彈性介質中,埋置一異質圓球狀導電孔隙彈性介質,分析當它承受平面入射壓力波時,波的散射現象。
On the basis of Pride’s theory (1994), which couples Biot’s theory for poroelastic medium (1956) and Maxwell equations via flux/force transport equations, we extend Pao (1978) and Yeh et al. (2004) approaches for elastic medium and poroelastic medium, respectively, to develop a transition matrix for electroporoelastic medium. During the process of derivation, we decouple our motion equations into two parts; one is dilatational (longitudinal) wave and the other is rotational (transverse) wave. The above mentioned longitudinal wave includes the fast wave and slow wave components. Regarding with transverse wave, it includes shear wave and electromagnetic wave. In this thesis, we also utilize the Wronskian formula to prove that our analytical base functions have orthogonality. To illustrate the application, we consider a simple case of the scattering problem of a spherical electroporoelastic inclusion, embedded within the surrounding electroporoelastic medium subjected to an incident plane compressional wave.
口試委員會審定書…………………………...………...………… i
誌謝………………………………………..……………..………. ii
中文摘要……………………………………..…………….….… iii
英文摘要………………………………………………..…….…. iv
第一章 緒論
1.1 前言………..………….……………….………………………1
1.2 震電效應研究發展………………….………………………….2
1.2.1 震電效應的觀測和實驗…………….…………………………2
1.2.2 震電效應的理論研究及數值分析………………….…………3
1.3 本文內容……………………………………….……………….4
第二章 孔隙導電彈性介質中聲電耦合波御制方程式
2.1 孔隙和顆粒御制方程式………………………….…………….7
2.1.1 電雙層模型…………………………………….………………7
2.1.2 電磁方程式…………………………………….………………7
2.1.3 力學方程式………………………………….…….……..…12
2.2 平均御制方程式…………………………….…….….….….12
2.2.1 平均電磁方程式…………………………….…….….…….13
2.2.2 平均力學方程式……………………………………..……..17
2.3 邊界值問題……………………………………….….……...20
2.3.1 孔隙導電彈性介質中的電場和離子數密度偏差量….…...20
2.3.2 孔隙中的流場………………………………….…….……..24
2.4 轉換係數………………………………………..……….….27
2.4.1 導體電流 和 ………………………………………………..28
2.4.2 流動電流 …………………………………………….……..29
2.4.3 相對流速 …………………………………….……….…...32
2.4.4 最後係數……………………………………….…….……..34
第三章 T-矩陣法運用於無限域中孔隙導電彈性介質之震電波之散射問題
3.1 基函數和正交條件…………………………………………...36
3.1.1 御制方程式…………………………………………………..36
3.1.2 運動方程式的解耦………………………………….….…..37
3.1.3 球座標系統下的基函數……………………….…….……..42
3.1.4 正交條件……………………………………….….………..46
3.2 孔隙導電彈性介質的T-矩陣公式…………….….…….…..49
3.2.1 入射、折射和散射波之級數展開……………….…….…..49
3.2.2 針對異質球型孔隙導電彈性介質埋置物的T-矩陣公式.….50
3.3 數值結果…………...…………………………………..……53
3.4 本章結語………………………………………….….……...55
第四章 結論與未來展望
4.1 結論……………………………………….…….………...56
4.2 未來研究展望………………………..….…………………57
4.2.1 向量基函數的傅氏譜表述式……………………………....58
4.2.2 自由表面反射之反射波推導………………………………..69
參考文獻…………………………………….…………….………….73
附錄A 依據Lamé勢能改寫………………..…………………………92
附錄B 孔隙導電彈性介質中耦合縱、橫波的解耦過程……………96
附錄C 孔隙導電彈性介質中埋置孔隙導電彈性材質球所構成Q矩陣之子元素及相關正交條件證明………..……………….…….…..100
附錄D 數值模擬部分之宏觀轉換係數………………….………..109
附錄E 符號表………………………………………………….…..112
Abramowitz, M., and Stegun, I. A. (1964). Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series Vol. 55 (National Bureau of Standards, Washington, DC), Eq. (10.17), 437 pp.
Berryman, J. G. (1985). “Scattering by a spherical inhomogeneity in a fluid-saturated porous medium,” J. Math. Phys. 26, 1408-1419.
Biot, M. A. (1962). “Mechanics of deformation and acoustic propagation in porous media,” J. Appl. Phys. 33, 1482-1498.
Block, G. I., and Harris, J. G. (2006). “Conductivity dependence of seismoelectric wave phenomena in fluid-saturated sediments,” J. Geophys. Res. 111, B01304.
Bockris, J. and Reddy, A. (1970). Modern Electrochemistry (Plenum Press, New York), Vol. 2.
Bouchon, M. (1981). “A simple method to calculate Green’s functions for elastic layered media,” Bull. Seismol. Soc. Am. 71, 959-971.
Corwin, R. F. (1990). “The self-potential method for environmental and engineering applications,” in Ward, S. H., ed., Geotechnical and Environmental Geophysics. Vol. 1, 127-145.
Corwin, R. F., and Hoover, D. B. (1979). “The self-potential method in geothermal exploration,” Geophysics 44, 226-245.
Frenkel, J. (1944). “On the theory of seismic and seismoelectric phenomena in a moist soil,” J. Phys. (Soviet) 8, 230-241.
Fujinawa, Y., Takahashi, K., Matsumoto, T., and Kawakami, N. (1997). “Experiments to locate sources of earthquakes-related VLF-electromagnetic signals,” Proc. Japan. Acad. 73(B), (3), 33-38.
Garambois, S., and Dietrich, M. (2001). “Seismo-electric wave conversions in porous media: field measurements and transfer function analysis,” Geophysics 66, 1417-1430.
Garambois, S., and Dietrich, M. (2002). “Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid-saturated stratified porous media,” J. Geophys. Res. 107, ESE 5-1 to 5-18.
Gregory, R. D. (1996). “Helmholtz’s theorem when the domain is infinite and when the field has singular points,” Q. Jl. Mech. appl. Math. 49, 439-450.
Haartsen, M. W., and Pride, S. R. (1997). “Electroseismic waves from point sources in layered media,” J. Geophys. Res. 102 (B11), 24,745-24,769.
Haines, S. S. (2004). Seismoelectric Imaging of Shallow Targets, Ph.D. Thesis, Stanford University, 4 pp.
Haines, S. S., Pride, S. R., and Klemperer, S. (2001). “Development of experimental methods in electroseismic research, with application to aquifer characterization,” Eos. Trans. 82(47), Abstract GP22A-0268.
Han, Q. Y., and Wang, Z. J. (2001). “Time-domain simulation of SH-wave-induced electromagnetic field in heterogeneous porous media: A fast finite-element algorithm,” Geophysics 66 (2), 448-461.
Ivannov, A. G. (1939). “Effect of electriczation of earth layers by elastic waves passing through them (in Russian),” Doklady Akademii Nauk, SSSR, 24, 41-43.
Johnston, M. J. S. (1997). “Review of electric and magnetic fields accompanying seismic and volcanic activity,” Surveys in Geophysics 18(5), 441-475.
Karakelian, D., Klemperer, S. L., Fraser-Smith, A. C., and Thompson, G. A. (2002). “Ultra-low frequency electromagnetic measurements associated with the 1988 Mw 5.1 San Juan Bautista, California earthquake and implications for mechanisms of electromagnetic earthquake precursors,” Tectonophysics, 359(1-2), 65-79.
Kennett, B. L. N., and Kerry, N. J. (1979). “Seismic waves in a stratified half space,” Geophys, J. R. Astron. Soc. 57, 557-583.
Kruyt, H. R. (1952). Colloid Science (Elsevier, Amsterdam, Netherlands), Vol. 1.
Liu, Q. (1997). “The PSTD algorithm: a time domain method requiring only two cells per wavelength,” Microwave Opt. Tech. Lett. 15, 158-165.
Liu, L. and Arcone, A. S. (2003). “Numerical simulation of the wave-guide effect of the near-surface thin layer on radar wave propagation,” J. Environ. Eng. Geophys. 8, 133-141.
Liu, L., Xiao, L., Liu, H. and Yan, H. (2006). “Numerical simulation of the effect of a DC electric field on seismic wave propagation with the pseudospectral time domain method,” Pure Appl. Geophys. 163, 1893-1913.
Martner, S. T. and Sparks, N. R. (1959). “The electroseismic effect,” Geophysics 24 (2), 297-308.
Massenet, F., and Pham, V. N. (1985). “Mapping and surveillance of active fissure zones on a volcano by the self-potential method,” J. Volcanol. Geotherm, Res. 24, 315-338.
Mikhailenko, B. G. and Soboleva, O. N. (1997). “Mathematical modeling of seismo-magnetic effects arising in the seismic wave motion in the earth’s constant magnetic field,” Appl. Math. Lett. 10, 47-51.
Mikhailov, O. V., Haartsen, M. W., and , M. N. (1997). “Electroseismic investigation of the shallow surface: Field measurements and numerical modeling,” Geophysics 62, 97-105.
Morse, P. M., and Feshbach, H. (1953). Methods of Theoretical Physics (McGraw-Hill, New York), Eq. (9), 1865 pp.
Neev, J., and Yeatts, F. R. (1989). “Electrokinetic effects in fluid-saturated poroelastic media,” Phys. Rev. B 40, 9135-9141.
Olsson, P. (1984). “Elastostatics as a limit of elastodynamics – a matrix formulation,” Appl. Sci. Res. 41, 125-151.
Overbeek, J. Th. G. (1952a). Electrochemistry of Double Layer. In Colloid Science, Vol. 1 (H. R. Kruyt, Ed. ) (Elsevier, Amsterdam, Netherlands), 115-193.
Overbeek, J. Th. G. (1952b). The Interaction Between Colloidal Particles. In Colloid Science, Vol. 1 (H. R. Kruyt, Ed. ) (Elsevier, Amsterdam, Netherlands), 245-277.
Pain, C. C., Saunders, J. H., Worthington, M. H., Singer, J. M., Stuart-Bruges, W., Mason, G., and Goddard, A. (2005). “A mixed finite-element method for solving the poroelastic Biot equations with electrokinetic coupling,” Geophys. J. Int. 160 (2), 592-608.
Pao, Y. H., and Mow, C. C. (1976). “Theory of normal modes and ultrasonic spectral analysis of the scattering of waves in solids,” J. Acoust. Soc. Am. 59, 1046-1056.
Pao, Y. H. (1978). “Betti’s identity and transition matrix for elastic waves,” J. Acoust. Soc. Am. 64, 302-310.
Park, S. K., Johnston, M. J. S., Madden, T. R., Morgan, F. D., and Morrison, H. F. (1993). “Electromagnetic precursors to earthquakes in the ULF band: A review of observations and mechanisms,” Rev. Geophys. 31(2), 117-143.
Parkhomenko, E. (1971). “Borehole and laboratory studies of the seismoelectric effect of the second kind in rocks,” Izvestiya, Earth Physics. 9, 663-666.
Pride, S. R. (1994). “Governing equations for the coupled electromagnetics and acoustics of porous media,” Phys. Rev. B 50, 15,678-15,696.
Pride, S. R., Gangi, A. F., and Morgan, F. D. (1992). “Deriving the equations of motion for porous isotropic media,” J. Acoust. Soc. Am. 92, 3278-3290.
Pride, S. R., and Haartsen, M. W. (1996). “Electroseismic wave properties,” J. Acoust. Soc. Am. 100, 1301-1315.
Pride, S. R., and Morgan, F. D. (1991). “Electrokinetic dissipation induced by seismic waves,” Geophysics 56 (7), 914-925.
Revil, A., Saracco, G. and Labazuy, P. (2003). “The volcano-electric effect,” J. Geophys. Res. 108 (B5), 2251, doi: 10.1029/2002JB001835.
Roberts, J. J., and Lin, W. N. (1997). “Electrical properties of partially saturated Topopah Spring tuff: Water distribution as a function of saturation,” Water Resour. Res. 33 (4), 577-587.
Slattery, J. C. (1967). “Flow of viscoelastic fluids through porous media,” J. Am. Inst. Chem. Eng. 13 (6), 1066-1071.
Stern, O. (1924). “Zur theorie der elektrolytischen doppelschicht,” Z. Electrochem. 30, 508-516.
Sternberg, E. (1960). “On the integration of the equations of motion in the classical theory of elasticity,” Arch. Rat. Mech. Anal. 6, 34-50.
Stratton, J. A. (1941). Electromagnetic Theory (McGraw-Hill, New York).
Thompson, A. H., and Gist, G. A. (1991). “Electroseismic prospecting,” Soc. Expl. Geophys. 61st Ann. Internat. Mtg, 425-427.
Thompson, A. H., and Gist, G. A. (1993). “Geophysical applications of electrokinetic conversion,” Lead. Edge 12(12),1169-1173.
Thompson, R. R. (1936). “The seismic electric effect,” Geophysics 1 (3), 327-335.
Utada, H. (1993). “On the physical background of the VAN earthquake prediction method,” Tectonophysics 224, 153-160.
White, B. S. (2005). “Asymptotic theory of electroseismic prospecting,” SIAM J. Appl. Math. 65 (4), 1443-1462.
Yeh, C. S., Teng, T. J., and Shih, P. J. (2004). “On formulation of a transition matrix for poroelastic medium and application to analysis of scattering problem,” J. Acoust. Soc. Am. 116 (2), 655-676.
Ying, C. F., and Truell, R. (1956). “Scattering of a plane longitudinal wave by a spherical obstacle in an isotropically elastic solid,” J. Appl. Phys. 27, 1086-1097.
Zhu, Z., Haartsen, M. W., , M. N. (1999). “Experimental studies of electrokinetic conversions in fluid-saturated borehole models,” Geophysics 64, 1349-1356.
Zlotnicki, J., Le , J. L. (1988). “Volcanomagnetic effects on Piton de la Fournaise Volcano ( Island),” J. Geophys. Res. 93(B8), 9157-9171.
Zlotnicki, J., Le , J. L. (1990). “Possible electrokinetic origin of large magnetic variations at la Fournaise volcano,” Nature 343, 633-636.
Zohdy, A. A. R., Anderson, L. A., and Muffler, L. J. P. (1973). “Resistivity, self-potential, and induced-polarization surveys of a vapor-dominated geothermal system,” Geophysics 38, 1130-1144.
波達波夫, 等著. 裘慰庭, 李樂天, 譯. (1997) 震電勘探原理, 北京, 石油工業出版社.
施博仁(2004). 向量多極之傅氏譜表示式及其在彈性和孔隙彈性半空間散射問題分析之應用, 國立台灣大學土木工程學研究所博士論文.
聶雅玉(2003). 半空間中電磁波的散射問題, 國立台灣大學應用力學研究所博士論文.
嚴洪瑞, 劉洪, 李幼銘, 徐國慶, 王雙喜, 李天樹, 金成志, 唐建人, 及 王篤臨(1999). “震電勘探方法在大慶油田的實驗研究,” 地球物理學報 42(2), 257-267.
范小平, 楊從杰, 李清河, 及 田韜(2006). “震電效應研究進展與前景展望,” 西北地震學報 28(4), 364-369.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top