跳到主要內容

臺灣博碩士論文加值系統

(34.236.36.94) 您好!臺灣時間:2021/07/24 22:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李昭賢
研究生(外文):Chao-Hiein Li
論文名稱:鋼板剪力牆系統之耐震設計研究
論文名稱(外文):Seismic Design of Steel Plate Shear Wall Systems
指導教授:蔡克銓蔡克銓引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:土木工程學研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:335
中文關鍵詞:鋼板剪力牆容量設計束制型鋼板剪力牆瘦長型鋼板剪力牆耐震設計
外文關鍵詞:steel plate shear wallcapacity designrestrained steel plate shear wallseismic designNarrow steel plate shear wall
相關次數:
  • 被引用被引用:4
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,國內外許多研究都顯示鋼板剪力牆系統為一經濟性之耐震系統,少量的鋼板即能顯著地提升結構物抵抗側向力的勁度與強度。然而,對於鋼板剪力牆構架周圍梁柱構件的容量設計迄今尚未有一套明確且完整的結論,這也是目前國內外相關研究團隊的相當關注的焦點。另一方面,瘦長型鋼板剪力牆(高寬比大於1)在建築應用上有其優點,過去對於瘦長型鋼板剪力牆的研究仍屬有限。
有鑑於此,本研究對於鋼板剪力牆系統周圍梁柱構件提出一套簡易且可靠的容量設計方法,並藉由數值分析以及結構試驗的方法驗證其適用性。另一方面,本研究透過結構試驗的方法來觀察瘦長型鋼板剪力牆之耐震行為表現。
本研究的另一個重點在於進一步研發束制型鋼板剪力牆的耐震設計。在鋼板高度方向每隔一段距離處,藉由螺栓於鋼板兩面以兩支水平放置的鋼管緊緊將鋼板夾住,而鋼管的兩端利用鉸接形式與柱構件的翼板相接。在過去研究亦顯示束制構件能有效降低鋼板在發展拉力場時所伴隨的面外變形量。數值分析結果顯示:在加裝束制構件後,能降低鋼板剪力牆系統在受側力時之柱構件的彎矩與剪力需求以及梁構件的軸力需求,並且提升鋼板在構架側向變形時發展拉力場的效應,讓整片鋼板更均勻、更充分地被拉伸,進而提升整體剪力牆系統的勁度、強度以及消能能力。研究顯示適當地加裝束制鋼管能減少周圍構件的尺寸,進而設計出更具經濟性的鋼板剪力牆系統。本研究亦對束制型鋼板剪力牆的耐震設計提出建議。
本研究已於國家地震中心完成四座兩層樓瘦長型鋼板剪力牆構架之結構試驗,四座試體跨度皆為2.14公尺、總高度為6.5公尺(高寬比接近1.5),均採用厚度2.6公厘之LYS低降伏強度鋼板。其中兩座試體裝有束制構件,另外兩座則無,試驗的變化參數則為周圍梁柱構件之尺寸。試驗結果顯示本研究所提出之容量設計方法能有效地預測在鋼板剪力牆構架在側推過程中其周圍梁柱構件上塑鉸發生的位置及其出現之先後順序。試驗結果亦驗證前述束制型鋼板剪力牆具有更優越的耐震行為表現,同時也極具經濟性以及使用性。
In recent years, several researchers have confirmed that steel plate shear wall (SPSW) systems have the advantage of using a very small amount of steel while achieving significant lateral stiffness to resist horizontal earthquake forces. However, the capacity design of the boundary elements in the SPSW frames has not been fully developed. In addition, researches conducted on the narrow SPSW systems (large height-to-width ratio) are rather limited, even though the narrow SPSW system is more desirable for architectural demand.
In this research, a methodology for the capacity design of the boundary elements in an SPSW system is proposed. The reliability of the proposed capacity design method is verified by a series of analytical and experimental studies. Seismic performance of the narrow SPSW frames is also investigated by the experiment tests.
The restrained SPSW system is constructed with horizontal restrainers made from a pair of steel tube members sandwich over the steel panel from the two sides using through bolts and pin-connected to the column flanges. Past research results have indicated that restrainers can successfully reduce the large out-of-plane displacement of the steel pate. In this research, extensive analytical studies demonstrate that the restrainers are able to reduce the flexural and shear demands of the columns and the axial load demand of the beams. It also promotes the development of the tension field action in the steel panel. Tests confirmed that properly using the horizontal restrainers, the size of the boundary elements can be reduced. Recommendation on the seismic design of the restrained SPSW systems is also provided in this research.
Four 2-story 2.14-meter wide by 6.5-meter narrow SPSW frames were constructed and cyclically tested to a roof drift of 0.05 radians in National Center for Research on Earthquake Engineering (NCREE). The low yield strength steel plates of 2.6mm were adopted for all four specimens. Two out of four SPSWs were constructed with horizontal restrainers. The key parameter of this series of tests is the size of the boundary elements of the specimens. Tests results confirm that the proposed capacity design method is effective in predicting the forming location and sequence of the plastic hinges. Tests also confirm that the restrained SPSW systems are more economical and have better seismic performance and serviceability than unrestrained SPSW systems.
第一章 緒論…………………………………………………………1
1.1 前言………………………………………………………………1
1.2 研究動機…………………………………………………………1
1.3 研究目的與內容…………………………………………………2
1.4 論文架構…………………………………………………………3
第二章 鋼板剪力牆的基本力學理論及相關規範介紹……………4
2.1 概述………………………………………………………………4
2.2 未束制型鋼板剪力牆……………………………………………4
2.2.1 基本原理………………………………………………………4
2.2.2 拉力場角度公式………………………………………………4
2.2.3 數值模型………………………………………………………10
2.2.4 塑性分析………………………………………………………13
2.2.5 相關試驗………………………………………………………14
2.3 束制型鋼板剪力牆………………………………………………16
2.3.1 基本概念………………………………………………………16
2.3.2 文獻回顧………………………………………………………17
2.4 耐震設計…………………………………………………………18
2.5 周圍構件容量設計………………………………………………20
2.6 美國設計規範之相關規定………………………………………25
第三章 周圍構件容量設計…………………………………………28
3.1 容量設計研究方法………………………………………………28
3.2 周圍構件之力學行為特性………………………………………28
3.3 單層單跨鋼板剪力牆系統容量設計之數值實驗………………30
3.3.1 鉸支承鋼板剪力牆系統………………………………………31
3.3.2 固支承鋼板剪力牆系統………………………………………33
3.4 容量設計概念……………………………………………………35
3.5 多層樓單跨鋼板剪力牆系統之容量設計………………………38
3.5.1 耐震設計流程…………………………………………………39
3.5.2 應變硬化效應…………………………………………………41
3.5.3 頂梁之容量設計………………………………………………41
3.5.4 中間梁之容量設計……………………………………………45
3.5.5 一樓柱之容量設計……………………………………………51
3.5.6 其餘樓層柱構件之容量設計…………………………………55
3.5.7 梁柱接頭之韌性設計…………………………………………57
3.5.8 柱構件之詳細檢核……………………………………………58
3.5.9 底梁之容量設計………………………………………………59
第四章 束制型鋼板剪力牆…………………………………………60
4.1 概述………………………………………………………………60
4.2 束制型鋼板剪力牆之數值實驗…………………………………60
4.3 束制型鋼板剪力牆周圍構件之力學行為………………………65
4.4 束制構件之設計…………………………………………………68
4.5 束制構件之接合細節……………………………………………70
4.6 束制型鋼板剪力牆系統之容量設計……………………………72
4.6.1 耐震設計流程…………………………………………………72
4.6.2 梁構件之容量設計……………………………………………72
4.6.3 一樓柱之容量設計……………………………………………74
4.6.4 其餘樓層柱構件之容量設計…………………………………76
第五章 試驗計畫與試驗過程記錄…………………………………77
5.1 試驗計畫…………………………………………………………77
5.2 試體設計…………………………………………………………77
5.3 基礎之設計………………………………………………………81
5.4 側撐系統之設計…………………………………………………81
5.4.1 側撐構架系統…………………………………………………82
5.4.2 梁柱接頭側撐元件……………………………………………82
5.5 施力系統…………………………………………………………83
5.6 量測與資料收集系統……………………………………………83
5.6.1 量測系統………………………………………………………83
5.6.2 資料收集系統…………………………………………………86
5.7 試驗加載歷時……………………………………………………86
5.8 試驗過程記錄……………………………………………………87
5.8.1 N試體 …………………………………………………………87
5.8.2 RS試體…………………………………………………………89
5.8.3 S試體 …………………………………………………………90
5.8.4 CY試體…………………………………………………………92
第六章 試驗結果與分析……………………………………………94
6.1 概述………………………………………………………………94
6.2 材料試驗結果……………………………………………………94
6.3 試體試驗結果……………………………………………………95
6.4 遲滯迴圈結果……………………………………………………103
6.5 束制構件效應討論………………………………………………105
6.5.1 鋼板面外挫屈量………………………………………………105
6.5.2 遲滯迴圈………………………………………………………106
6.5.3 一樓柱底塑鉸…………………………………………………107
6.5.4 柱端剪力………………………………………………………109
6.5.5 柱構件向內撓曲趨勢…………………………………………110
6.6 拉力場角度………………………………………………………110
6.7 數值分析與試驗結果比…………………………………………111
6.7.1 非線性側推分析………………………………………………111
6.7.2 模擬反覆側推之位移控制分析………………………………112第七章 結論與建議…………………………………………………114
7.1 結論………………………………………………………………114
7.2 建議………………………………………………………………117
參考文獻………………………………………………………………118
1.AISC (2005), Specification for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL.
2.AISC (2005), Seismic Provisions for Structural Steel Buildings, American Institute of Steel Construction, Chicago, IL.
3.Astaneh-Asl, A., (2002), “Seismic Behavior and Design of Composite Steel Plate Shear Walls”, Steel TIPS Report, Structural Steel Educational Council, Moraga, CA, May.
4.Astaneh-Asl, A. and Zhao, Q. (2002), “Cyclic Behavior of Steel Shear Wall Systems”, Proceedings, Annual Stability Conference, Structural Stability Research Council, April, Seattle.
5.Berman, J., (2002), “Experimental Investigation of Lightgauge Steel Plate Shear Walls for the Seismic Retrofit of Buildings”, M.A.Sc. thesis, Department of Civil, Structural, and Environmental Engineering, State University of New York at Buffalo, December 2002.
6.Berman, J., and Bruneau, M., (2003), “Plastic Analysis and Design of Steel Plate Shear Walls”, Journal of Structural Engineering, ASCE, Vol. 129, No.11, November 1, 2003, pp. 1448-1456
7.Berman, J., and Bruneau, M., (2005), “Experimental Investigation of Light-Gauge Steel Plate Shear Wall”, Journal of Structural Engineering, ASCE, Vol. 131, No.2, February 1, 2005, pp. 259-267.
8.Chi, B., and Uang C.M., (2002), “Cyclic Response and Design Recommendations of Reduced Beam Section Moment Connections with Deep Columns”, Journal of Structural Engineering, ASCE, Vol. 128, No.4, April, pp. 464-473.
9.Driver, R.G., Kulak, G.L., Elwi A.E., and Kennedy D.J.L., (1998), “Fe and Simplified Models of Steel Plate Shear Wall”, Journal of Structural Engineering, ASCE, Vol. 124, No.2, February 1998, pp. 121-130.
10.Driver, R.G., Kulak, G.L., Kennedy D.J.L., and Elwi A.E., (1998), “Cyclic Test of Four-Story Steel Plate Shear Wall”, Journal of Structural Engineering, ASCE, Vol. 124, No.2, February 1998, pp. 112-120.
11.Elgaaly, M., (1998), “Thin steel plate shear walls behavior and analysis”, Thin-Walled Structures Vol.32, pp. 151-180.
12.Elgaaly, M., and Liu, Y., (1997), “Analysis of Thin-Steel Plate Shear Walls”, Journal of Structural Engineering, ASCE, Vol. 123, No.11, November 1997, pp. 1487-1496.
13.Engelhardt, M.D., Winneberger, T., Zekany, A.J., and Potyraj, T.J., (1998), “Experimental Investigation of Dogbone Moment Connections”, Engineering Journal, fourth quarter, pp.128~138.
14.FEMA (2001), FEMA350 Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Chapter 3: Connection Qualification.
15.Hibbitt, Karlsson, and Sorenson, Inc. (HKS) (2002a). “ABAQUS/CAE Users Manual.” Version 6.3, Hibbitt, Karlsson, and Sorenson, Inc., Pawtucket, Rhode Island.
16.Hibbitt, Karlsson, and Sorenson, Inc. (HKS) (2002b). “ABAQUS/Standard Users Manual.” Version 6.3, Hibbitt, Karlsson, and Sorenson, Inc., Pawtucket, Rhode Island.
17.Hitaka, T., Matsui, C., Tsuda, K., and Sadakane, Y., (2000), “Elastic-Plastic Behavior of Building Steel Frame with Steel Bearing Wall with Slits”, 12th World Conf. on Earthquake Engineering, Auckland, New Zealand, 833/6/A.
18.Kuhn, P., Peterson, J.P., and Levin, L.R., (1952), “A Summary of Diagonal Tension, Part 1 -- Methods of Analysis”, National Advisiory Committee for Aeronautics, Technical note 2662.
19.Lubell, A.S., Prion, H., Ventura, C.E., and Rezai, M., (2000), “Unstiffened Steel Plate Shear Wall Performance Under Cyclic Loading”, Journal of Structural Engineering, ASCE, Vol. 126, No.4, April, pp. 453-460.
20.Montgomery, C.J., and Medhekar, M., (2001), Discussion of “Unstiffened Steel Plate Shear Wall Performance Under Cyclic Loading” by Lubell, A.S., Prion, H., Ventura, C.E., and Rezai, M., Journal of Structural Engineering, ASCE, Vol. 126, No.4, April 2000, pp. 453-460.
21.Mo, Y.L., and Perng, S.F., (2000), “Seismic Performance of Framed Shear walls Made of Corrugated Steel”, Proceedings of the Sixth ASCCS International Conference on Steel-Concrete Composite Structures, Los Angeles, Ca, March 22-24, pp.1057-1064.
22.Salmon C.G., and Johnson J.E., (1996), “Steel Structure Design and Behavior”, Fourth Edition, Harper Collins.
23.Timler, P., Ventura, C.E., Prion, H., and Anjam, R., (1998), “Experimental and Analytical Studies of Steel Plate Shear Walls as Applied to the Design of Tall Buildings”, Struct. Design Tall Build. 7, pp. 233–249.
24.Vian, D., Lin, Y.C., Bruneau, M., and Tsai, K.C., (2003), “Cyclic Performance of Low Yield Strength Steel Panel Shear Walls”, Proceedings of The Sixteenth KKCNN Symposium on Civil Engineering, Kolon Hotel, Gyeongju, Korea, December 8-10, pp.379-384.
25.Vian, D., Bruneau M., (2004), “Testing of special LYS steel plate shear walls”, Thirteenth World Conference on Earthquake Engineering, electronic paper no. 978.
26.Vian, D., (2005), “Steel plate shear walls for seismic design and retrofit of building structures”, Ph.D. Dissertation, Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY.
27.林志翰 (2005), 「實尺寸兩層樓鋼板剪力牆子結構擬動態試驗與分析」,國立台灣大學土木工程學系結構工程組碩士論文。
28.林盈成 (2004), 「低降伏強度鋼板剪力牆之耐震行為研究」,國立台灣大學土木工程學系結構工程組碩士論文。
29.陳生金與張耀文(2000), 「低降伏鋼鋼板剪力牆之耐震特性」,第五屆結構工程研討會。
30.謝旺達 (2006), 「鋼板剪力牆之有限元素分析與設計研究」,國立台灣大學土木工程學系結構工程組碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top