跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊承恩
研究生(外文):Cheng-En Yang
論文名稱:臺灣地區臭氧濃度變化機制探討
論文名稱(外文):The Mechanisms of Ozone Variation in Taiwan
指導教授:陳正平陳正平引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:大氣科學研究所
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:112
中文關鍵詞:臭氧長期趨勢本土外來比例特性時間滴定效應
外文關鍵詞:ozone trendlocal to long-range transport ratiocharacteristic timetitration effect
相關次數:
  • 被引用被引用:1
  • 點閱點閱:966
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究使用台灣空氣品質監測網污染物資料及中央氣象局臭氧探空資料分析1994-2003年台灣地區臭氧濃度長期變化之趨勢。綜觀各污染物濃度,只有臭氧在1994-2003年呈現逐年增加趨勢,平均每年濃度增加0.7±1.1 ppb。藉由本土外來比例估算台灣地區外圍環境傳送的臭氧濃度約為0.7±3.5 ppb。
分析質量保守方程得知污染物濃度與排放、混合層厚度、光化學機制、傳送與擴散機制有關,從中央氣象局板橋臭氧探空資料及台灣空氣品質監測網估算出臭氧的光化學特性時間約102-104秒,平流、垂直擴散及乾沉降的特性時間數量級則在104-106秒,顯示光化學機制對臭氧濃度影響較為快速。當NO濃度降低而風速較大時,臭氧濃度受平流機制影響可能增大,因此來自平流機制的貢獻也對臭氧濃度造成影響。
利用一維模式的模擬結果區分各項因子對臭氧濃度的影響,在NO/NO2的比例越大的的情況下,臭氧濃度受光化學機制影響較平流機制明顯,而NOX排放減量可造成臭氧濃度升高的結果。夜間主要影響臭氧濃度的機制則為平流過程,由於夜間背景濃度通常高於污染排放中心,臭氧濃度越接近污染排放中心將隨風速增加而上升。本研究推測1994-2003年台灣地區臭氧濃度增加主要原因是NOX排放的減量使滴定效應減弱,以及背景臭氧濃度增加而加強的平流效應。
This study applied observational data, theoretical anlysis and numerical model to analyze the trends of surface ozone in Taiwan. The measurement data showed an increasing trend of surface ozone concentration with a rate of 0.7±1.1ppb per year while other pollutants were decreasing from 1994 to 2003. A long-range transport analysis showed that background ozone has an increasing trend of 0.7±3.5 ppb per year.
According to the mass balance equation, the change of pollutant concentration involves emission, mixing layer height, photochemical processes, and advection. The characteristic time of photochemistry of ozone is 102-104 seconds, and the characteristic time of advection, vertical diffusion, and dry deposition are about 104-106 seconds. Therefore, photochemistry affects the ozone level more rapidly than other factors. When NO concentration decreases and wind speed becomes stronger, advection could be an effective factor.
Simulation results from a one-dimensional model showed that the results of ozone photochemistry are significantly influence under high NO/NO2 ratio, and a decrease in NOX emission, which gives lower local NO/NO2 ratio may enhance the ozone concentration due to a weaker titration effect. However, during the evening when there is no photochemical production, the major factor influencing ozone concentration is the advection process. So the local ozone concentration at the pollution center increases with increasing wind speed due to higher background ozone concentration. In summary, the increasing ozone trend in Taiwan was mainly due to reduce emission resulting in a weakened titration effect, as well as an increase in background ozone concentration that gives to stronger advection effect.
第一章 前言 1
第二章 研究方法 6
2.1 資料說明 6
2.2 臭氧形成機制 6
2.3 質量平衡方程理論 9
2.3.1 線性化假設與穩態解 9
2.3.2 特性時間 12
第三章 資料分析 14
3.1 空氣污染指標長期變化趨勢 14
3.2 污染物濃度長期變化趨勢 15
3.3 臭氧濃度頻譜分析 16
3.4 臭氧垂直探空長期分析 17
3.5 污染物之本土外來比例 18
第四章 理論分析 22
4.1 風速與濃度之相關性 22
4.2 混合層與濃度之相關性 24
4.3 特性時間分析 25
4.4 EKMA臭氧等濃度圖 26
第五章 數值模式與模擬 28
5.1 模式簡介 28
5.2 模式設定與實驗設計 29
5.3 模擬結果 30
5.3.1 邊界層厚度對臭氧濃度的影響 30
5.3.2 水平風速及水平尺度對臭氧濃度的影響 31
5.3.3 NO、NO2的排放比例及NOX總排放量對臭氧濃度的影響 32
5.3.4 水平風速及NOX總排放量對臭氧濃度的影響 33
5.3.5 邊界層厚度及NOX總排放量對臭氧濃度的影響 34
5.3.6 背景臭氧、NOX濃度及NOX總排放量對臭氧濃度的影響 34
5.3.7 VOCS總排放量及NOX總排放量對臭氧濃度的影響 35
第六章 結論與討論 36
6.1 研究結論 36
6.2 討論 38
參考文獻 40
附錄 110
中華民國統計資訊網,http://www.stat.gov.tw
蔡清彥,1987:臺灣北部局部環流之研究。大氣科學,15(2),179-198。
柳中明、劉紹臣,1988:台北市臭氧污染研究。環境保護與生態保育研討會論文集。
李春龍,1992:臺灣地區春季臭氧之研究,國立臺灣大學大氣科學研究所碩士論文。
柳中明,1992:一維垂直光化模式之研究與應用。大氣科學,119-130。
黃靜雅,1992:台北地區夏季高臭氧濃度生成之大氣環境研究。國立臺灣大學大氣科學研究所碩士論文。
蔡育文,1993:影響台北、高雄近地層臭氧生成因素研究。國立臺灣大學大氣科學研究所碩士論文。
蘇惟中,1995:區域風場與高臭氧生成之相關分析與模擬。國立臺灣大學大氣科學研究所碩士論文。
環保署,2000:空氣品質保護25年紀實。行政院環保署。
陳自光,2001:臺灣地區酸沉降本土外來貢獻比例之研究。國立臺灣大學大氣科學研究所碩士論文。
袁君秋,2002:臺灣地區空氣品質指標之探討。國立臺灣大學環境科學研究所碩士論文。
程萬里,2003。私人聯繫。
黃星富,2003:南投地區高臭氧空氣污染事件探討。國立臺灣大學環境科學研究所碩士論文。
柳中明,葉銘德,彭立新,吳俊傑,劉紹臣,2004:冬夏季長程傳送影響臺灣海域背景臭氧之模擬探討。大氣科學,32,1-21。
徐光蓉,張修武,2004:臺灣臭氧垂直分佈變化趨勢。大氣科學,32,351-365。
黃鏡芸,2005:南投地區高臭氧空氣污氣污染事件探討。國立臺灣大學大氣科學研究所碩士論文。
Atkinson R., et al., 1997: Evaluated kinetic and photochemical data for atmospheric chemistry. Journal of Physical and Chemical Reference Data, 26, Supplement VI, 1329-1499.
Brönnimann, S., B. Brigitte, W. Heinz, 2002: Trends in near-surface ozone concentrations in Switzerland. Atmospheric Environment, 36, 2841-2852.
Brown, S. S., R. K. Talukdar, and A. R. Ravishankara, 1999a: Rate constants for the reaction OH + NO2 + M → HNO3 + M under atmospheric conditions. Chemical Physics Letters, 299, 277-284.
Brown, S. S., R. K. Talukdar, and A. R. Ravishankara, 1999b: Reconsiderations of the rate constant for the reaction of hydroxyl radicals with nitric acid. Journal of Physical Chemistry, 103, 3031-3037.
Chen, K. S., Y. T. Ho, C. H. Lai, and Y. M. Chou, 2003: Photochemical modeling and analysis of meteorological parameters during ozone episodes in Kaohsiung, Taiwan. Atmospheric Environment, 37, 1811-1823.
Crutzen, P. J., 1995: Ozone in the troposphere. Composition, Chemistry, and Climate of the Atmosphere, edited by H. B. Singh. Van Nostrand Reinhold, N.Y., 349-393.
Danielson, E. F., 1968: Stratosphere-troposphere exchange based on radioactivity, ozone and potential vorticity. Journal of the Atmospheric Sciences, 25, 502-518.
DeMore, W. G., et al., 1997: Chemical kinetics and photochemical data for use in stratospheric modeling. JPL Publication, 97-4, 266pp.

Fiore, A. M., D. J. Jacob, I. Bey, R. M. Yantosca, B. D. Field, A. C. Fusco, and J. G. Wilkinson, 2002: Background ozone over the United States in summer: Origin, trend, and contribution to pollution episodes. Journal of Geophysical Research, 107, 4275-4301.
Fishman, J., C. E. Watson, J. C. Larsen, and J. A. Logan, 1990: Distribution of tropospheric ozone determined from satellite data. Journal of Geophysical Research, 95, 3599-3617.
Hauglustaine, D. A., Granier, C., Brasseur, G. P., and Megie, G., 1994: The importance of atmospheric chemistry in the calculation of radiative forcing on the climate system. Journal of Geophysical Research, 99, 1173-1186.
Heo, J. S., and D. S. Kim, 2002: The characterization of surface ozone concentration in Seoul, Korea. Journal of Korean Society for Atmospheric Environment. 18(E3), 129-142.
Heo, J. S., K. H. Kim, and D.S. Kim, 2004: Pattern recognition of high O3 episodes to forecast daily maximum ozone. Terrestrial, Atmospheric and Oceanic Sciences, 15, 199-220.
Holzworth, G. C., 1972: Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution Throughout the Contiguous United States. Office of Air Programs AP-101. Environmental Protection Agency, Research Triangle Park, NC 27711 (Available from NTIS. Accession Number PB 207 103).
Huang, H. C. and J. S. Chang, 2001: On the performance of numerical solvers for a chemistry submodel in three-dimensional air quality models 1. Box model simulations. Journal of Geophysical Research, 106, 20175-20188.
Jacob, D. J., J. A. Logan, and P. P. Murti, 1999: Effect of rising Asian emissions on surface ozone in the United States. Geophysical Research Letters, 26, 2175-2178.
Jeffries, H. E. and R. Crouse, 1990: Scientific and technical issues related to the application of incremental reactivity. Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC.
Kappos A. D., and G. Koss, 1990: Health effects of ozone as component of summer smog. Offentl Gesundheitswes, 53, 16-22.
Krupa S. V., W. J. Manning, 1988: Atmospheric ozone: formation and effects on vegetation. Environmental Pollution, 50, 101-137.
Liu, C. M., C. Y. Huang, S. L. Shieh, and C. C. Wu, 1994: Important meteorological parameters for ozone episodes experienced in the Taipei basin. Atmospheric Environment, 28, 159-173.
Lin, C.-Y. C., D. J. Jacob, J. W. Minger, A. M. Fiore, 2000: Increasing background ozone in surface air over the United States. Geophysical Research Letters, 27, 3465-3468.
Lin, C. Y., S. C. Liu, C. C.-K. Chou, T. H. Liu, C. T. Lee, C. S. Yuan, C. J. Shiu, C. Y. Young, 2004: Long-range transport of Asian dust and air pollutants to Taiwan. TAO, 15, 759-784.
Lin, C. Y., S. C. Liu, C. C.-K. Chou, S. J. Huang, C. M. Liu, C. H. Kuo, C. Y. Young, 2005: Long-range transport of aerosols and their impact on the air quality of Taiwan. Atmospheric Environment, 39, 6066-6076.
McKeen, S. A, G. Mount, F. Eisele, E. Williams, J. Harder, P. Goldan, W. Kuster, S. C. Liu, K. Baumann, D. Tanner, A. Fried, S. Sewell, C. Cantrell, R. Shetter, 1997: Photochemical modeling of hydroxyl and its relationship to other species during the Tropospheric OH Photochemistry Experiment. Journal of Geophysical Research, 102, 6467-6494.
McRea, G. J., 1981: Mathematical modeling of photochemical air pollution. Ph D. Thesis, Cal. Inst. Of Tech. Pasadena, Cal.
NASA Advanced Supercomputing,http://www.nas.nasa.gov
Pakpong P, J. Hirokawa, Y. Kajii, H. Akimoto, and M. Nakao, 1999: Influence of regional-scale anthropogenic activity in northeast Asia on seasonal variations of surface ozone and carbon monoxide observed at Oki, Japan. Journal of Geophysical Research, 104, 3621-3632.
Pascal, H. and D. M. McClung, 2000: A new perspective on computer-aided avalanche forecasting : scale and scale issues. Presented at the International Snow Science Workshop 2000.
Penkett, S. A., B. M. Jones, K. A. Brice, and A. E. Eggleton, 1979: The importance of atmospheric ozone and hydrogen peroxide in oxidizing sulfur dioxide in cloud and rain water. Atmospheric Environment, 13, 123-137.
Pond, S., 1975: The exchanges of momentum, heat and moisture at the ocean-atmosphere interface. Numerical Models of Ocean Circulation. National Academy of Science, Washington, DC.
Prather, M. J., and D. J. Jacob, 1997: A persistent imbalance in HOx and NOx photochemistry of the upper troposphere driven by deep tropical convection, Geophysical Research Letters, 24, 3189-3192.
Seinfeld J. H., and S. N. Pandis, 1998: Atmospheric chemistry and physics: from air pollution to climate change. A Wiley-Interscience publication, USA, 1326 pp.
Sriram N. K., 2002: Estimation of atmospheric boundary layer depth from RAMAN LIDAR using 2-D spatial filters. MS thesis, College of Engineering, Pennsylvania State University.
Staehelin, J., J. Thudium, R. Buhler, A. Volz-Thomas, and W. Graber, 1994: Trends in surface ozone concentrations at Arosa (Switzerland). Atmospheric Environment, 28, 75-87.
Trainer, M., E. Y. Hsie, S. A. McKeen, T. Tallamraju, D. D. Parish, F. C. Fehsenfeld, and S. C. Liu, 1987: Impact of natural hydrocarbons on hydroxyl and peroxy radicals at a remote site, Journal of Geophysical Research, 92, 11879-11894.
Trainer, M., et al., 1991: Observations and modeling of the reactive nitrogen photochemistry at a rural site. Journal of Geophysical Research, 96, 3045-3063.
Vingarzan R., Bill T., 2003: Trend analysis of ground level ozone in the greater Vancouver/Fraser Valley area of British Columbia. Atmospheric Environment, 37, 2159-2171.
Wang, Y., S. C. Liu, H. Yu, S. T. Sandholm, T. Y. Chen, D. R. Blake, 2000: Influence of convection and biomass burning outflow on tropospheric chemistry over the tropical Pacific. Journal of Geophysical Research, 105, 9321-9334.
World Meteorological Organization (WMO), 1994: Scientific assessment of ozone depletion. Global Ozone Research Monitoring Project Report 37, Geneva.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top